SEMESTER: I

PROGR	AM		BE-N	laval A	rchitect	ture &	Offsho	re Engi	neerin	g					
Course	Code		Cour	se Nan	ne					L	,	Г	Р		С
UCLEC	201		Tec	chnical	Englis	sh - I				2		0	0		2
Year an	d Sem	ester	I Ye	ar & I	Semes	ter			(Contact	Hours	Per W	Veek	I	
Prerequ	isite co	ourse	Nil							2 Hrs					
Course	catego	ory	Huma Social	anities a Scienc	ind es	Ma cou	nagem rses	ent	I	Professio	onal Co	re	Profes	sional I	Elective
			Ba	asic Sci	ence	Eng	gineerir	ng Scier	nce	Open	Electiv	ve	N	Iandato	ory
Course	Object	ives	1. T aı w 2. M	o make nd supp riting Iaking	e the s porting in Eng them	tudent g their glish. realize	s learn skill the the i	to sp devel mporta	eak gr opmer ance (rammat nt –Lis of Engl	ically stening ish as	correc g, spea Globa	t Engli aking, al lang	ish. G readir guage	buiding ng and and its
Course	e Outco	omes	After 1. (2. I 3. I 4. I 5. I 6. A	succes Sutline Sutling Substration Substra	ssful c the in te tech guish d e skill p good the sk	omplet nportan nical a ifferen for wr l listen ills to s	tion of ince of and ger t tense riting f ing an speak a	Cours technic neral v s and i ormal d spea and wr	se, the cal En ocabu identif and in king s rite En	studen glish. lary. fication formal kills glish g	ts will of con letters ramma	be abl mmon s	e to errors		
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	-	-	-	-	-	3	3	-	3	3	-	3	-	-	-
CO2	-	-	-	-	-	3	3	-	2	2	-	3	-	-	-
CO3	-	-	-	-	-	2	2	-	2	2	-	2	-	-	-
CO4	-	-	-	-	-	2	2	-	3	3	-	3	-	-	-
CO5	-	-	-	-	-	2	2	-	3	3	-	3	-	-	-
CO6	-	-	-	-	-	3	3	-	3	3	-	3	-	-	-
AVERAGE	-	-	-	-	-	2.5	2.5	-	2.67	2.67	-	2.83	-	-	-
COR	RELATI	ON LEV	ELS	1.	SLIG	HT (LO	W)	2. N	MODER	ATE (ME	DIUM)	3.	SUBSTA	NTIAL (HIGH)

UNIT 1: COMMUNICATION SKILL & READING SKILL

6 Hrs

6 Hrs

Importance of Technical Communication-Topic sentence and its Role-Reading and Interpretations-Critical Reading -Creative and Critical Thinking-Note Making -Transfer of Information-Visual Aids-Graphics-Lab.

UNIT II: FOCUS ON LANGUAGE – VOCABULARY

General Vocabulary-Dictionary-Word Formation: Prefix and Suffix-Synonyms and antonyms- Idioms and Phrases-Homophones-Technical Vocabulary-Words commonly misspell –Lab-Test.

UNIT III: ENGLISH GRAMMAR

Parts of Speech-Subject Verb Agreement-Tenses, Articles, Prepositions-Common errors in English-Lab-Test.

UNIT IV: WRITING SKILL

Descriptive Writing –Paragraph-Technical descriptions-Essays-Letter Writing – Formal and Informal-Business Letters-Job Application Letter-Types of reports-Instructions and Checklists- Lab-Test.

UNIT V: LISTENING AND SPEAKING

Types of Listening -Listening and note taking-Pronunciations-Stress and Intonation- Conversation technique-Dialogue Writing -Professional Communication-Interview-Group Discussion –Power point Presentation Lab.

TOTAL: 30 Hours

TEXT BOOKS:

- 1. Department of English, Anna University. Mindscapes: English for Technologists and Engineers. Orient Blackswan, Chennai. 2012
- 2. Dhanavel, S.P. English and Communication Skills for Students of Science and Engineering. Orient Blackswan, Chennai. 2011

REFERENCES:

- 1. Essential Grammar in use- Raymond Murphy, Cambridge, 2007.
- 2. Raman, Meenakshi & Sangeetha Sharma. Technical Communication: Principles and Practice. Oxford University Press, New Delhi. 2011.
- 3. Regional Institute of English. English for Engineers. Cambridge University Press, New Delhi. 2006.
- 4. Rizvi, Ashraf. M. Effective Technical Communication. Tata McGraw-Hill, New Delhi. 2005
- 5. Rutherford, Andrea. J Basic Communication Skills for Technology. Pearson, New Delhi. 2001.
- 6. Viswamohan, Aysha. English for Technical Communication. Tata McGraw-Hill, New Delhi. 2008.

6 Hrs

6 Hrs

PROGR	AM		BE-N	aval A	rchitect	ure & (Offsho	e Engi	neerii	ng							
Course	Code		Cour	se Nan	ne					L		Γ	Р		С		
UBMTC	201		Engi	neerin	g Math	nemati	cs-I			3		1	0		4		
Year and	d Sem	ester	I Ye	ar & I	Semes	ter				Contact	Hours	Per W	Veek				
Prerequi	isite co	ourse	Nil							4 Hrs							
Course	catego	ory	Huma Social	nities a Science	nd es	Ma cou	nagem rses	ent		Professio	nal Co	re	Profess	sional H	lective		
				• • •		T	• •	C		0							
			Ba	asic Sci	ence	Eng	gineerin	ig Scien	ice	Open	Electiv	ve	IVI	landato	ory		
				\checkmark													
Course	Object	ives	1. T three	o knov e dimer	v the a	pplica	tion of	f analy	rtical	geomet	ry and	l under	rstandi	ng sha	pes of		
			2. T	o unde	rstand	the tec	hniau	es of d	iffere	entiating	a fund	ction.					
			3. To	o acqua	aint the	e stude	nt with	n funct	ion o	of severa	l varia	bles.					
			4. Te	 4. To introduce the concepts and methods to solve the integrals. 5. To acquaint the student with function of several variables. 													
			5. To	4. To introduce the concepts and methods to solve the integrals.5. To understand the application of integrals.													
Course	Outco	omes	After	succes	ssful c	omplet	tion of	Cours	e, the	e studen	ts will	be abl	e to				
			1. 5	Solve t	he prol	blems	using t	hree-d	limen	sional a	nalytic	cal geo	metry.				
			2. /	Apply	the th	neorem	is and	form	ulae	for sol	ving	proble	ms in	differ	ential		
			0	calculu	s.												
			3. (Classif	y the fi	unction	ns of se	everal	varia	bles							
			4. <i>I</i>	Apply i	ntegra	l calcu	lus on	engin	eerin	g proble	ems.						
			5. U	Jse mu	iltiple i	integra	uls to s	olve pi	roble	ms	• 1		C				
			6. <i>I</i>	Apply	the co	ncepts	s of C	alculu	s and	a analyt	ical g	eometi	ry for	engine	eering		
PPOs /	DO1	DOA				BO (D 07	DOR	DOG	DO10	DO11	DO12	DCO1	D GO2	DSO2		
COs	2	PO2	2	P04	P05	PU6	P07	PO8	P09	POIO	POII	POIZ	2	PS02	PS03		
	3	3	3	2	-	-	-	-	-	-	-	-	2	2	2		
C02	2	2	2	2	-	-	_	-	-	-	-	-	-	-	-		
CO4	3	3	3	2	2	-	-	-	-	-	-	2	2	2	2		
CO5	2	2	2	2	2	-	-	-	-	-	-	1	-	3	3		
CO6	3	3	3	2	2	-	_	-	-	-	-	2	3	3	3		
AVERAGE	2.7	2.7	2.7	2	2	-	-	-	-	-	-	1.8	2.3	2.4	2.4		
CORI	RELATI	ON LEV	ELS	1	. SLIG	HT (LO	W)	2. N	MODE	RATE (ME	DIUM)	3.	SUBSTA	NTIAL (HIGH)		
UNIT I	: THR	REE D	IMEN	SION	AL AN	NALY	TICA	L GEO	OME	ETRY				1	2 Hrs		

Equation of a sphere – Plane section of a sphere – Tangent Plane – Equation of a cone – Right circular cone – Equation of a cylinder – Right circular cylinder.

12 Hrs

UNIT-II:- DIFFERENTIAL CALCULUS

Differentiation of algebraic – circular - exponential and logarithmic functions of products and quotient – Functions of a function and simple implicit functions – Successive differentiation- introduction and notation – nth order derivatives of standard functions – nth order derivatives using trigonometric identities and standard functions and partial fractions – Leibnitz theorem – Maclaurin's Theorem and standard expansions – Taylor's theorem – Indeterminate forms and L'Hospital's rule.

UNIT- III:- FUNCTIONS OF SEVERALVARIABLES

Limits and continuity-Partial derivatives – definition-geometrical interpretation and rules of partial differentiation – Higher order partial derivatives – Homogeneous functions – Euler's theorem for homogenous functions – Total derivatives and chain rules – Differentiation of implicit functions and composite functions – Maxima and Minima– Method of Lagrangian multipliers.

UNIT- IV:- INTEGRAL CALCULUS

Integration by trigonometric substitution – The definite integral as the limit of a sum- Bernoulli's rule – Reduction formulae – Properties of definite integrals – beta and gamma Functions and problems – Work done by variable forces – mean values – Root mean square values of in sin x and Cos nx.

UNIT -V:- MULTIPLE INTEGRALS

Double and triple integrals – Cartesian coordinates – Region of integration and change of order of integration – Spherical polar and cylindrical coordinates Theorems of parallel and perpendicular axes. Applications – Area – Volume - Mass of wire - lamina and solid - Centre of Gravity of wire – lamina and solid – Moment of Inertia using multiple integrals.

TOTAL : 60 Hours

TEXT BOOKS:

1. Bali N. P and Manish Goyal, —Text book of Engineering Mathematics, Third edition, Laxmi Publications (p) Ltd., 2008.

2. Grewal. B.S, —Higher Engineering Mathematics, 40th Edition, Khanna Publications, Delhi, 2007. **REFERENCES:**

1. Dass, H.K., and Er. Rajnish Verma," Higher Engineering Mathematics", S. Chand Private Ltd., 2011.

2. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2012.

3. Peter V. O'Neil," Advanced Engineering Mathematics", 7th Edition, Cengage learning, 2012.

4. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, NewDelhi, 2008.

5.Sivarama Krishna Das P. and Rukmangadachari E., "Engineering Mathematics", Volume I, Second Edition, PEARSON Publishing, 2011.

12 Hrs

12 Hrs

PROGR	AM		BE-N	aval A	rchitect	ure & (Offsho	e Engi	neerin	g					
Course	Code		Cour	se Nan	ne					L		Г	Р		С
UCPHC	201		Engi	neering	g Physi	cs-I				3	(0	0		3
Year an	d Sem	ester	I Ye	ar & I	Semes	ter			(Contact	Hours	Per W	/eek		
Prerequi	isite co	ourse	Nil							3 Hrs					
Course	catego	orv	Huma	nities a	nd	Ma	nagem	ent		Professio	nal Co	re	Profes	sional E	lective
course	euroge) 1	Social	Scienc	es	cou	rses								
			Ba	sic Sci	ence	Eng	gineerin	ng Scien	ice	Open	Electiv	7e	Μ	[<mark>andat</mark> o	ry
Carrier			1 7			1 4 h a h		h		a a li da a		. da 41.			and a
Course	Object	ives	1.		erstand	i the b	asic m	echani	cs of	sonds a	ina mu	ias, ine	eir proj	perties	and
			8	ipplica	tions.										_
			2. 1	fo lear	n the b	asic p	rincipl	es of E	lectro	omagne	tic ind	uction	, Electi	ricity a	nd
			e	electric	al mac	chines.									
Course	Outco	omes	After	succes	ssful c	omplet	tion of	Cours	e, the	studen	ts will	be abl	e to		
			1. 5	Summa	rize th	e laws	and p	rincipl	es of	basic m	lechan	ics			
			2. I	Explair	the co	oncept	s of hy	drosta	tics a	nd hydr	odyna	mics			
			3. I	llustra	te the j	propert	ties of	matter	•						
			4. I	Demon	strate	the bas	sic prin	iciples	of he	at and l	ight				
			5. (Jutline	the ba	isic pri	inciple	s of ele	ectric	ity and	electri	cal ma	chines		
			6. <i>I</i>	Apply	the f	undam	entals	of e	lectro	magnet	tic inc	luction	n for	engine	eering
			8	ipplica	tions	r	r	r			r				1
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	1	2	-	-	-	-		-	2	2	2	3
CO2	2	2	2	2	2	-	-	-	-	-	-	2	2	3	3
	2	2	2	1	2	-	-	-	-	-	-	-	2	1	1
C04	2	2	2	1	2	-	-	-	-	-	-	2	2	2	2
	3	2	2	2	3	-	-	-	-	+ -	-	2	$\frac{2}{2}$	3	$\frac{2}{2}$
AVERAGE	2.33	2.17	2.17	1 67	2.33	-	_	_	_	-	_	2.2	2	2.33	$\frac{2}{2.17}$
COR	RELATI	ON LEV	ELS	1.07	1. SL	IGHT (L	OW)	2. N	MODER	ATE (ME	DIUM)	3.	<u>~</u> SUBSTA	NTIAL (1	HIGH)
TINITOT		-	TOO	1		、	,				,				× ×

UNIT I: MECHANICS

9 Hrs

Force-inertia – Newton's laws of motion- impulse and impact – Friction – cause of friction – types of friction - laws of friction - coefficient of friction - angle of friction. Motion-types of motion - simple harmonic motion - simple pendulum - circular motion -centripetal and centrifugal force - conical pendulum-working of a steam engine governor based on the principle of conical pendulum. Newton's law of universal gravitation - Satellite-principle of launching of satellite - orbital velocity - time period - escape velocity. Planetary motion and Kepler's Laws - Deduction of Kepler's third law - Law of gravitation from Kepler's third law.

UNIT II: HYDROSTATICS AND HYDRODYNAMICS

Fluid-Pascal's law - Archimedes principle - Laws of floatation - centre of buoyancy - stability of equilibrium of a floating body - metacentre - metacentric height of a ship - experiment. Hydrostatic pressure, differential manometer - Centre of pressure - Centre of pressure of a rectangular lamina

immersed in a homogenous liquid at rest – Centre of pressure of a triangular lamina with one side parallel to the surface-Surface tension – angle of contact – capillarity – derivation of surface tension. Viscosity – Viscous Force-Stokes Law – coefficient of viscosity – experiment to find coefficient of viscosity. Bernoulli's Theorem – Venturimeter – Plimsol lines.

UNIT III: PROPERTIES OF MATTER

Elasticity- stress and strain – Hooke`s law – modulus of elasticity – different types – Poisson ratio Torsion – torque per unit twist – work done in twisting – Torsion pendulum – theory and experiment – bending of beams – bending moment – Cantilevers – depression of a cantilever – non uniform bending and uniform bending – theory and experiment.

UNIT IV: HEAT AND LIGHT

Laws of thermodynamics – Specific heat capacity – Specific heat capacity of gases – CP and CV – Relation between them – Transmission of heat – conduction – coefficient of thermal conductivity – Lee,s disc experiment – cylindrical flow of heat – convection – radiation – Black body radiation – distribution of energy – Wien's displacement law– Rayleigh Jeans law. Interference – Double slit experiment-Diffraction due to single slit and circular aperture. Limit of resolution, Resolving power of optical instruments.

UNIT V: ELECTRICITY

Heating effect of current – Joules law of heating – Applications – fuse – thermopile. Ampere`s Law, Biot Savart law – Magnetic field at a point due to straight conductor carrying current – Kirchhoff's current and voltage laws – Whetstone's network – Electromagnetic induction – Faraday's laws of Electromagnetic induction – Lenz law – Self induction – Mutual induction . DC Generator – principle, construction and working – AC Generator – principle, construction and working – Losses in transformer – methods to reduce the losses.

TOTAL: 45 Hours

TEXT BOOKS:

- 1. A Nelson, "Engineering Mechanics" Tata McGRaw Hill, 2009
- 2. M. Narayanamurthi, M. Nagarathnam, "Statics, Hydrostatics and Hydrodynamics", The National Publishing Company, 8th Edition, 2008.
- 3. R. Murugeshan, Properties of matter and acoustics, S. Chand & Co, New Delhi 2012.
- 4. D.S. Mathur, Elements of properties of matter, S.Chand & Company Ltd., New Delhi 2010.
- 5. Brijlal, N. Subramanyam and P.S. Hemne "Heat and thermodynamics", S.Chand & Co, New Delhi 2008.
- 6. N. Subramanian, Brijlal and M.N. Avadhanulu, A text book of Optics, S. Chand & Co, New Delhi, 2012.

REFERENCES:

- 1. R Feynmann, R Leighton, M Sands, "The Feynmann Lectures on Physics", Volume 1, Pearson Education; 1st edition 2012.
- 2. D Halliday, R Resenic and J Walker "Fundamentals of Physics", Wiley India, 6th edition, 2006.
- 3. Brijlal and Subramaniyam, "Properties of matter", S. Chand & Co, New Delhi, Revised edition, 2008.
- 4. R W. Fox, A T. McDonald, P J. Pritchard John, "Introduction to Fluid Mechanics", Wiley & Sons, 6th edition, 2008.

9 Hrs

9 Hrs

- 5. E M. Purcell and Morin, "Electricity and Magnetism", 3rd Edition, Cambridge University Press, 2011
- 6. A Ghatak, "Optics", McGraw-Hill Education; 1st Edition, 2009

PROGR	AM		BE-N	aval A	rchitect	ure & (Offsho	re Engi	neerir	ıg					
Course	Code		Cours	se Nan	ne					L		Γ	Р		С
UBCHC	201		Engir	neering	g Chen	nistry				3	(0	0		3
Year an	d Sem	ester	I Yea	ar & I	Semes	ter			(Contact	Hours	Per W	/eek		
Prerequi	isite co	ourse	Nil							3 Hrs					
Course	catego	ory	Huma Social	nities a Scienc	and es	Ma cou	nagem rses	ent]	Professio	onal Co	re	Profes	sional E	lective
			Ba	sic Sci	ence	Eng	gineerir	ng Scien	ice	Open	Electiv	7 e	Ν	[andato	ry
							-	_							
Course	Object	omes	1. 7 (2. 7 s 3. 7 a After 1. 1 2. (0 3. 1 4. 1 5. 1 r 6. M	Fo im Chemic Fo und torage Fo deve pplica succes Illustra Dutline dentify Illustra Disting nateria	part a cals, an erstand device elop po tions. ssful co te the f e the co y the ty te the b uish t lls	soun ad treat d princ es and olymer complet concepts passic p che pr corrosi	d kno tment of the im based tion of nentals s of wa fuels rincipl roduction	wledg of wate portan materi Cours of pha atter trea and ch es of e on tech ntrol te	e witer for er for d in c ce of als ar e, the ase ru atmen aracte lectro chnol	th resp industr orrosio fuels. ad funct studen ile and n ile and n it techn erizatio ochemic ogies	ect to ial pur n contr ional r ts will reduces n of va cal reac of me	Phas pose. rol, the nateria be abl d phase trious of trious a stallic	e rule e conce ils tow e to e rule constitu and red and red	ept of ards di	ardous energy fferent ctions etallic
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	2	2	-	-	-	-	2	-	-	-	-	1	2	-	-
CO2	2	2	-	-	-	-	3	-	-	-	-	1	2	-	-
CO3	2	2	-	-	-	-	3	-	-	-	-	1	2	-	-
CO4	2	2	-	-	-	-	3	-	-	-	-	1	2	-	-
CO5	3	2	-	-	-	-	3	-	-	-	-	1	2	-	-
CO6	3	2	3	-	2	-	3	-	-	-	-		2	-	-
AVERAGE	2.33	2.00	3.00	-	2.00	-	2.83	-	-	-	-	1.00	2.00	-	-
COR	XELA I I	UN LEVI	ers		I. SL	IGHT (L	UW)	2. N	MODE	KATE (ME	υιυΜ)	5.	SUBSTA	NTIAL (HIGH)

UNIT- I PHASE RULE

9 Hrs

Terminology-Phase rule – one component system, reduced phase rule – application of reduced phase rule to binary alloy system-Hazard of Inorganic, Organic cargos carried on board vessels with respect to flammability, toxicity, reactivity and solubility.

UNIT- II WATER & IT TREATMENTS

9 Hrs

Sources of water - hard and soft water-determination of hardness - Softening of water - lime soda process Ion exchange process - Boiler feed water - removal of oil - blow down operation - Caustic Embrittlement -Internal conditioning - Water for domestic purposes screening - aeration, sedimentation, Chlorination, break point chlorination - Disinfection with ozone – desalination - Waste water treatment- marine sediments.

UNIT -III **FUEL & COMBUSTION**

Conventional & non-conventional energy resources and energy conversion - classification and properties of fuel - calorific value determination using bomb calorimeter - Solid fuels - Analysis - proximate and ultimate analysis, hydrogenation & carbonization of coal - Liquid fuels - characterization of various constituents viz petrol diesel with regard to their application in IC engine (knocking)Gaseous fuels- coal gas, producer gas, biogas, water gas and flue gas analysis using Orsat apparatus - Toxic and other ill effects of cargos on human and environment.

UNIT -IV **ELECTROCHEMISTRY**

Electrodes - Standard & single electrode potential - Nernst equation - Cell terminology - cell reaction -Galvanic cells - fuel cells - Lead acid battery - Nickel cadmium battery - Electrochemical Reaction: Electrolysis - Electroplating - galvanizing - Corrosion Control on Board Ship: Thermodynamics & Kinetics of corrosion - various forms of corrosion - corrosion prevention methods.

Lubricants: Classification and properties of lubricating oils (Viscosity, flash, fire point & cloud and pour points) Effects of pressure on melting & boiling point - Relevance of gas laws to LPG carrier and reefer ships. Physical and Chemical Properties of Fuels and Lubricants - Production of Oils from Crude Oil - Properties and characteristics of fuels and lubricants - Shore side and shipboard sampling and testing - Interpretation of test results - Contaminants including microbiological infection - Treatments of fuels and lubricants including storage, centrifuging, blending, pretreatment and handling. 9 Hrs

UNIT-V

Production of steel - Bessemer converter process - Open hearth process - Chemical addition to steels production of non-ferrous alloys, brass, bronze, aluminum alloys - Special reference to ship building (ship propellers etc) - Cement - manufacturing of cement - setting & hardening of cement concrete - reinforced concretes - Basic Metallurgy - Metals and Processes - Properties and Uses - Non-Metallic Materials - Characteristics and limitations of process used for fabrication and repair - Process -Heat Treatment of Carbon Steel - Technology of Material - Metallurgy of Steel and Cast Iron - Properties and application of material used in machinery on board ship.

Organic Compounds: Hydrocarbon- petroleum & its fractionated products - extraction of aromatic compounds from Petroleum - Aromatic compounds - Benzene - polycyclic hydrocarbons- Naphthalene, anthracene, Naphthacene - Fiber and Reinforced plastics.

Total: 45 Hours

TEXT BOOK:

- 1. Jain P.C. and Monica Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company (P) Ltd., New Delhi, 2010
- 2. Kannan P., Ravikrishnan A., "Engineering Chemistry", Sri Krishna Hi-tech Publishing Company Pvt. Ltd. Chennai, 2009

REFERENCES:

- 1. Dara S.S, Umare S.S, "Engineering Chemistry", S. Chand & Company Ltd., New Delhi 2010
- 2. Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company, Ltd., New Ozin G. A. and Arsenault A. C., "Nanochemistry: A Chemical Approach to Nanomaterials", RSC Publishing, 2005.

PROGRAM	BE-Naval Architecture & Offshore Engineering

9 Hrs

Course	e Code	;	Cou	rse Nan	ne:					L		Т		Р		С
UBM	ССРА	L	Eng	ineerin	ıg Graț	ohics				0		2		2		3
Year /	Semes	ster	I Ye	ar & I S	Semeste	er			Cor	ntact ho	ours per	week				
Prereq	quisite	course	Nil						4 H	Irs						
Cours	se cate	gory	Hum Socia	anities Il Scien	and ces	Mar cour	nagemo	ent	Pro	fession	al Core		P	rofessio	nal Ele	ctive
			Basi	c Scien	ice	Engi	ineerinş nce	g		Oj	pen Ele	ctive		N	Mandat	ory
Course	e Obje	ctive	1.De conc 2. Te	evelop cepts. o analy	the abi	ility of I desig	studen n idea	nts to u s of en	inders gineer	tand gr	raphic oducts	skills f	for con	nmuni	cation	of
			1. 1 2. 0 3. 1 4. 1 5. 0 6. 1	Identif Constr true ind Illustra Demor Constr Exami	y the the uct the clination the the strate uct the ne the	nree D projec on simple the pro isome differe	imensi ction o solid ojectio etric pr	ional of f point on plai n of so ojectio metric	bjects s, stra in surf lids an on of si views	in two ight lin face nd deve imple s and pr	elopmo solids	nsional deterri ent of s	l media minatio	a on of tr es	rue len	gth and
I	PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	2	2	2	2	2	-	-	-	-	1	-	-	-	-	-
	CO2	3	3	2	3	1	-	-	-	-	2	-	-	-	2	-
	CO3	2	2	3	2	2	-	-	-	-	3	-	-	-	2	-
	CO4	3	3	2	2	1	-	-	_	-	1	-	-	3	-	-
	CO5	3	2	2	3	3	-	-	_	-	2	-	-	2	-	2
	CO6	3	3	2	2	3	-	-	-	-	3	-	2	-	-	2
А	AVERAGE	2.67	2.50	2.17	2.33	2.00	-	-	-	-	2.00	-	2.00	2.50	2.00	2.00
	CORI	RELATIO	ON LEV	ELS		1. SL	IGHT (L	OW)	2. N	MODER	ATE (ME	DIUM)	3.	SUBSTA	NTIAL (1	HIGH)

UNIT-I PLANE CURVES AND ORTHOGRAPHIC VIEWS

Introduction-Use of drafting instruments-Drawing conventions-size-Line types-Lettering and dimensioning Curves used in engineering practices: Conics – Construction of ellipse, parabola and hyperbola by eccentricity method - Construction of cycloid - construction of involutes of square and circle - Drawing of tangents and normal to the above curves Visualization concepts: Representation of Three Dimensional objects in two dimensional media-Visualization of objects from pictorial views to orthographic views

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES

Orthographic projection: Principal views and principal planes of projection-First angle projection- Third angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes -Determination of true lengths and true inclinations by rotating line method-Projection of plane surfaces

UNIT III PROJECTION OF SOLIDS

Projection of simple solids placed in Different positions-perpendicular to HP or VP-parallel to either HP or VP and inclined to the other-Inclined to both VP and HP

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES **12 Hrs**

Sectioning of simple solids in simple vertical position when the cutting plane is inclined to the one of the principal planes-Development of lateral surfaces of simple solids by Parallel line method and radial line method

UNIT V ISOMETRIC PROJECTION AND ISOMETRIC VIEWS

Principles of isometric projection-isometric projection of simple solids-Guide lines to read the isometric view visualizing of plane surfaces inclined to the direction of view.

TOTAL : 60 Hours

TEXT BOOKS:

1.Bhatt N.D. and Panchal V.M., Engineering Drawing., Charotar Publishing House, 50th Edition, 2010.

2.Gopalakrishna K.R., Engineering Drawing. (Vol. I & II combined), Subhas Stores, Bangalore, 2007.

3.Luzzader, Warren J. and Duff, John M., Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005

REFERENCES:

1.Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009.

12 Hrs

12 Hrs

12 Hrs

PRO	OGRAM	[BE-N	Naval A	Architec	ture &	Offsho	ore Eng	ineerin	g						
Cou	rse Code	;	Intro	oductio	on to Pi	ogran	ming	in C		L		Т		Р		С
UC	ITC01		and	C++						3		0		0		3
Yea	r / Semes	ster	I Yea	ar & I S	Semeste	r			Cor	ntact ho	ours per	week				
Prer	equisite	course	NIL						3 H	rs						
Cou	irse cate	gory	Hum Socia	anities Il Scien	and ces	Mar cour	nageme	ent	Pro	fessiona	al Core		Pı	ofessio	nal Eleo	ctive
			Basi	c Scien	ice	Engi Scier	ineering nce	5		OI	oen Elec	ctive		N	/Iandat	ory
Cou	rse Obje	ome	1. 7 2. 7 3. 7 4. 7 5. 7 After 1. 0 2. 1 3. 1 4. 1 5. 1 6. 1	Fo exp Fo dev Fo des Fo con Fo finc the su Outling Demor Explain Illustra Develo	lain the elop pro- cribe the vert and errors ccessfue the ba in the ba in the co in th	e prob roblem ne Pro- a Algo and e al com asic or proble oncept function ax for wledge	lem so a solut: gramm rithm, <u>execute</u> pletion ganiza m-solv s of ar ons and writing e of co	lving c ions fo ing str Pseudo a C pr n of the tion of ving co rays ar l point g progr	concept r the c ructure o code rogram e cours comp oncepts nd strin ers of rams in and p	omput of C l and F and F se, the uter ar s of C l ngs C Lang n C lar rogram	ng a col er by u languag lowcha studen nd intro languag nguage nguage nming	mputes ising p ge. art into ts will oduction ge in C	r. roblen a C pr be abl	n solvi rogram le to: umber	ng too ı. syster	ls.
	PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	2	2	2	-	2	-	-	-	-	-	-	-	-	-	-
	CO2	3	3	2	2	1	-	-	-	-	-	-	-	-	-	-
	CO3	3	3	3	2	2	-	-	-	-	2	-	-	-	-	-
	CO4	2	2	2	-	1	-	-	-	-	2	-	-	-	-	-
	CO5	2	2	2	-	3	-	-	-	-	2	-	3	-	-	-
	CO6	3	3	3	2	3	-	-	-	-	2	-	2	-	-	-
	AVERAGE	2.50	2.50	2.33	2.00	2.00	-	-	-	-	2.00	-	2.50	-	-	-
	CORI	RELATIO	ON LEVI	ELS	I	1. SL	IGHT (L	OW)	2. N	MODERA	TE (ME	DIUM)	3.	SUBSTAI	NTIAL (I	HIGH)

UNIT I: INTRODUCTION

Generations and Classification of Computers - Applications of Computers - Basic Organization of a Computer -Number system - Binary, Decimal, Octal and Hexadecimal - Problems

UNIT-II:-INTRODUCTION TO PROBLEM SOLVING AND PROGRAMMING 9 Hrs

General Problem - Solving Concepts - Problem Solving Concepts for the Computer - An Introduction to Programming Structure - Problem Solving with the Sequential Logic Structure - Problem Solving with Decisions - Problem Solving with Loops

UNIT- III:- DATA STRUCTURES

Primary Data Types - One-dimensional Arrays - Two-dimensional Arrays - Table Look-Up Technique - Sequential Search, Binary Search - Sorting Techniques - Selection Sort, Bubble Sort, Shell Sort, Stacks, and Queues - File Concepts

UNIT- IV:- PROGRAMMING STRUCTURE OF C LANGUAGE

Importance of C - Basic Structure of a C Program – Constants, variables and data types- Operators and Expressions -Input and Output Operations - Branching and Looping - Arrays and Strings - User-defined Functions

UNIT –V:- PROGRAMMING IN C LANGUAGE

Structures and Unions - Pointers - File Management in C - Development of C programs - Executing a C Program compilation and linking - Common Programming Errors - Program Testing - Program Debugging

TEXT BOOKS:

- 1. Maureen Sprankle & Jim Hubbard, "Problem Solving & Programming Concepts", Sixth Edition, Prentice Hall, 2012.
- 2. E. Balagurusamy, "Programming in ANSI C", Seventh Edition, McGraw Hill India, 2016.
- 3. Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition, Pearson Education, 2006.

REFERENCES:

- 1. Ashok Kamthane, "Programming in C", Third Edition, Pearson Education India, 2015.
- 2. Herbert Schildt, "C: The Complete Reference", Fourth edition, McGraw Hill Education, 2000.
- 3. Byron S Gottfried, "Programming with C", Schaum's Outlines, Second Edition, Tata McGrawHill, 2006.
- 4. Dromey R.G., "How to Solve it by Computer", Pearson Education, Fourth Reprint, 2007

PROGRAM	BE-Naval Architecture & Offshore Engineer	ing			
Course Code	Course Name	L	Т	Р	С
UBBTC01	Environmental Studies	2	0	0	2

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Total: 45 Hours

Year and	d Sem	ester	I Ye	ar & I	Semes	ter			(Contact	Hours	Per W	Veek		
Prerequi	isite co	ourse	Nil						/	2 Hrs					
Course	catego	ory	Huma	nities a	nd	Ma	nagem	ent	P	Professio	nal Co	re	Profes	sional H	Elective
			Social	Scienc	es	cou	rses								
			Ba	sic Sci	ence	Eng	gineerir	ng Scien	ice	Open	Electiv	7e	N	Iandato	ory
							٦								
Course	Object	ives	1. 7	Fo stud	ly the i	nterre	lations	hip bet	tween	living	organi	sm and	d envir	onmer	nt.
			2.	Fo stuc	ly the	integra	ated th	emes a	and bi	odivers	sity, na	atural 1	resourc	ces, po	llution
			0	control	and w	aste m	anage	ment.							
Course	Outco	omes	After	succe	ssful c	omplet	tion of	Cours	e, the	studen	ts will	be abl	e to		
			1.	Implei	ment s	scientif	fic, teo	chnolog	gical,	econo	mic a	nd pol	litical	solutio	ons to
				enviro	nment	al prot	plems.								
			2.	Identif	fy the i	nterre	lations	hip bet	tween	living	organi	sm and	d envir	onmer	nt.
			3.	Under humar	stand 1 n world	the 1m	portan	ce of e	enviro	onment	by ass	sessing	g 1ts 1n	npact of	on the
			4.	Analy	ze the	vision	the su	rround	ing en	nvironn	nent, it	s func	tions a	nd its v	value.
			5.	Discus	ss the c	levelo	pment	and in	nprove	ement i	n std. o	of livir	ıg.		
			6.	Classi	fy the	integ	rated	themes	s sucl	h as b	oiodive	rsity,	natura	l reso	urces,
		r		polluti	on cor	ntrol ar	nd was	te man	agem	ent.	1	1	1	1	· · · · · ·
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-	2	-	-
CO3	2	3	2	-	1	-	-	-	-	-	-	2	-	-	-
CO4	2	2	-	2	2	-	-	-	-	-	-	2	3	-	-
CO5	3	2	2	2	1	-	-	-	-	-	-	3	-	-	-
	3 27	3 7	2	2	5 19	-	-	-	-	-	-	2	2	-	-
CORI	ELATI	ON LEV		<u> </u>	SLIG	 НТ (LOV	N)	2. M	- IODER4			<u> </u>	L 2.3 SUBSTAI	TIAL (I	- HGH)

UNIT I:

Environmental studies – terminologies – need for public awareness – Natural resources – Renewable and non – renewable resources – Characteristics, uses and conservation of natural resources-Forest resources, Water resources, Mineral resources, Food resources, Energy resources and Land resources – Role of an individual in conservation of natural resources – equitable use of resources for sustainable lifestyles.

Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the different ecosystems – Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

UNIT III:

6Hrs

6Hrs

Introduction – Definition : genetic, species and ecosystem diversity – Biogeographical classification of India –Value of biodiversity : consumptive use, productive use, social, ethical, aesthetic and option values – Biodiversity at global, National and local levels – Inida as a mega-diversity nation Hot-sports of

biodiversity– Threats to biodiversity - Endangered and endemic species of India – Conservation of biodiversity : In-situ and Ex-situ conservation of biodiversity.

UNIT IV:

Environmental Pollution – Cause, effects and control measures of different types of pollution-Solid waste Management –Role of an individual in prevention of pollution – Disaster management. Social Issues and the Environment – from Unsustainable to Sustainable development – Urban problems related to energy – Water conservation – Resettlement and rehabilitation of people – its problems and concerns-Environmental ethics – Climate change, global warming, nuclear hazards, ill-effects of fireworks – Wasteland reclamation – Laws and acts in India for environment protection , Public awareness.

UNIT V:

Population growth-variation among nations-Population explosion – Family Welfare Programme – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare– Role of Information Technology in Environment and human health. Field work and Field Visit.

TOTAL : 30 Hours

TEXT BOOK:

1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004.

2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi,2006. **REFERENE BOOKS:**

1. Agarwal K.C. Environmental Biology, Nidi Publications Limited, Bikaner, India, 2001.

2. Erach Bharucha. Textbook of Environmental Studies for Undergraduate Courses.

University Grants Commission, New Delhi , 2013.

3. N. Arumugam and V Kumaresan, Environmental Studies (UGC Syllabus), Saras Publications, Nagercoil, India, 2014.

4. D.K. Asthana and Meera Asthana, A Textbook of Environmental Studies. S. Chand Publishing, New Delhi, 2010.

5. B.S. Chauhan, Environmental Studies. Laxmi Publications, New Delhi, 2015

6Hrs

PROGR	RAM		BE-N	laval A	rchitect	ure &	Offsho	re Engi	neerin	g					
Course	Code		Cour	se Nan	ne					L		Γ	Р		С
UBCHO	CPA		Engi	neering	g Chen	nistry l	Labora	tory		0	(0	2		1
Year an	d Sem	ester	I Ye	ar & I	Semes	ter		•	(Contact	Hours	Per W	Veek		
Prerequ	isite co	ourse	Nil							2 Hrs					
Course	catego	ory	Huma Social	anities a l Science	nd es	Ma cou	nagem rses	ent	P	Professio	onal Co	re	Profess	sional H	Elective
			Re	osic Sci	onco	Enc	nneerir	ng Scier		Open	Flectiv	70	M	[andate	191 7
			Da	$\frac{1510}{}$	ence	Ellă	gineern	ig Sciel		Open	Electiv		141	lanuau	<u>'' y</u>
Course	Object	ives	1. 7 2. 7	Fo mak quality Fo enl conduc of disso	tivity,	studen eters t the s metal	t to de hrough tudent ion con	velop volur on ir ntent, c er by v	praction netric netrum netrum leterm iscom	cal skil analys ental i ination etry.	ls in this. nethoo of mo	he dete ls for lecula	ermina estima r weigl	tion of ation of ht and	water of pH, degree
Course	e Outco	omes	After 1. I 2. H 3. I 4. C 5. I 6. H	succes Illustra Explair Demon BOD,T Compa Determ and deg Explair	ssful c te how h how strate DS an re the ine Sin gree of h how	omplet to est to cald how t d TSS titratio ngle E dissoc to dete	tion of imate 1 culate ' o estir of wat n meth lectroc ciation rmine	Cours Bicarb Total H nate T ter nods of le pote of a pote Proxir	e, the onate Hardne Tempo f acid, ntial o olyme nate a	studen and Hy ess and rary ar base a of Galv r nalysis	ts will vdroxic Chlor nd Per nd Fer anic c of fue	be abl le Alka ide Co manen rous ic ell and l and	e to alinity intent c it Hard on I Molee its Cal	of wate Iness, cular v	er COD, veight value
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	-	3	3	-	2	-	2	3	-	2	1	-	-
CO2	2	2	-	2	3	-	3	-	3	2	-	-	1	-	-
CO3	2	1	-	3	2	-	3	-	2	3	-	-	1	-	-
CO4	2	1	-	3	3	-	3	-	3	2	-	-	1	-	-
C05	3	2	-	3	2	-	-	-	2	3	-	-	1	-	-
CO6	3	2	3	2	2	-	3	-	3	2	-	-	1	-	-
AVERAGE	2.33	1.67	3	2.67	2.5	-	2.8	-	2.5	2.5	-	2	1	-	-
COR	RELATI(ON LEV	ELS		1. SL	IGHT (L	OW)	2. N	MODER	ATE (ME	DIUM)	3.	SUBSTA	NTIAL (HIGH)
List of]	Experi	iment	5:												

- 1. Estimation of Bicarbonate Alkalinity
- 2. Estimation of Hydroxide Alkalinity
- 3. Estimation of Total Hardness of Water
- 4. Estimation of Chloride Content of Water
- 5. Estimation of Temporary and Permanent Hardness
- 6. Estimation of COD & BOD of Water, TDS and TSS (Demo only)

- Conduct metric Titration of a strong acid and base.
 PH titration of a strong acid and strong base
- 9. Potentiometric titration of Ferrous Ion
- 10. Determination of Single Electrode potential (Galvanic Cell)
- 11. Determination of Calorific value of a solid fuel
- 12. Determination of Molecular weight of a polymer.
- 13. Determination of degree of dissociation of a polymer.
- 14. Proximate analysis of a solid fuel / Liquid fuel

TOTAL : 30 Hours

PRO	OGRAM	I	BE-1	Naval A	Architec	ture &	Offsho	ore Eng	ineerin	g							
Cou	rse Code	;	Cou	rse Nan	ne:					L		Т		Р		С	
UCI	LECPB		Spo	ken En	glish-I					0		0		4		2	
Year	r / Seme	ster	I Ye	ar & I S	Semeste	er			Cor	ntact ho	ours per	week	1				
Prer	equisite	course	Nil						4 H	rs							
Cou	irse cate	gory	Hum Socia	anities al Scien	and ces	Mar cour	nageme rses	ent	Pro	fessiona	al Core		Pı	ofessio	nal Ele	ctive	
			Basi	c Scien	ice	Engi	ineerinş nce	3		OI	pen Eleo	ctive		N	Aandat	ory	
Cou	rse Obje	ome	1. 2. After 1. 2. 3. 4. 5. 6.	To help and cor To help Making in toda the su Develo gramm Define Infer th Develo Develo Build i	p learne mprehe p learne g them y's sce ccessfu atical of their p ne delic op liste p good	ers devend the ers dev realizenario. ul com ls in errors berspec cacy of ning a d attitue	velop them by velop them by velop them by velop them is the implementation of the them is the	heir lis asking heir sp mporta n of the hal cor nore op the lin aking s l behav persor	tening questi eaking ance o e cours nversat peratio nguisti skills f vior nality o	skills, ions, so g skills f Engl: se, the tion; c nally cs skil or effe levelo	which eek cla and sp ish as studen compre	will, e rificati beak fl Global ts will hend	enable ons. uently langu be abl their v	them 1 in real age an e to: views	isten to conte d its in withou	o lectur xts. mporta	res
	PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	CO1	-	-	-	-	-	2	2	2	2	2	-	2	-	-	-	
	CO2	-	-	-	-	-	2	1	2	2	3	-	2	-	-	-	
	CO3	-	-	-	-	-	2	1	2	2	2	-	3	-	-	-	
	CO4	-	-	-	-	-	2	2	2	2	1	-	3	-	-	-	
	CO5	-	-	-	-	-	3	2	2	3	2	-	1	-	-	-	
	CO6	-	-	-	-	-	3	1	2	1	2	-	2	-	-	-	
	AVERAGE	-	-	-	-	-	2.33	1.50	2.00	2.00	2.00	-	2.17	-	-	-	
	COR	RELATI	ON LEV	ELS		1. SL	IGHT (L	OW)	2. N	MODERA	ATE (ME	DIUM)	3.	SUBSTA	NTIAL (I	HIGH)	

UNIT 1: GRAMMAR AND FOUNDATON

Training the students on basic grammar and foundation and laying the standard platform-A complete standard syllabus of Cambridge is used-The main part of the 1st semester is to cover the major tenses (Present tense, Present Continuous, Past Tense, Past Continuous, Present Perfect, and Present Perfect continuous).

UNIT II: FOCUS ON LANGUAGE – VOCABULARY

General Vocabulary-Dictionary-Word Formation: Prefix and Suffix-Synonyms and antonyms- Idioms and Phrases- Diplomatic Phrases - Food Phrases- Vocabulary-Words commonly misspelt - Lab-Test.

UNIT III: INTERACTIVE ENGLISH

The main objective is English for International communication-It course contains conversations, snapshots, readings, activities, a greater variety and amount of listening materials and more visuals to introduce vocabulary, more opportunities to build fluency, and up-to-date art and design- The course covers the fours skills of listening, speaking, reading and writing, as well as improving pronunciation and building vocabulary.

UNIT IV: LISTENING AND SPEAKING

Types of Listening -Listening and note taking-Pronunciations-Stress and Intonation- Conversation technique-Dialogue Writing -Professional Communication-Interview-Group Discussion -Power point Presentation-Debate, Oratorical Lab

UNIT V: INTERVIEW SKILLS AND PERSONALITY DEVELOPMENT

Out of box thinking -Lateral Thinking- Intrinsic and Extrinsic Motivators- Factors influencing Attitude-Challenges and lessons from Attitude- Etiquette-Value of time- Diagnosing Time Management- Weekly Planner To do list- Prioritizing work.

TOTAL : 60 Hours

TEXT BOOKS:

1. Essential Grammar in use- Raymond Murphy, Cambridge, New Third Edition

REFERENCE BOOKS:

1. New Interchange (English for International Communication) Jack C. Richards

18 Hrs

10 Hrs

4 Hrs

14 Hrs

PR	OGRAM	I	BE-1	Naval A	Archited	cture &	Offsho	ore Eng	ineerin	g							
Cou	rse Code	e	Dree		inain	Cand		ab		L		Т		Р		С	
UC	ITCPA		PIOS	grannin	ing in v		C++ L	<i>a</i> 0		0		0		2		1	
Yea	r / Seme	ster	I Ye	ar & I S	Semeste	er			Cor	ntact ho	ours per	week					
Prer	requisite	course	Nil						2 H	rs							
Cou	irse cate	gory	Hum Socia	anities al Scien	and ces	Mar cour	nagem(rses	ent	Pro	fession	al Core		Pı	ofessio	nal Ele	ctive	
			Basi	c Scien	ice	Engi	ineerinį nce	g		Ol	pen Ele	ctive		N	Mandat	ory	
							\checkmark										
Cou	rse Obje	ctive	1. 2. 3.	To co To ide To de	mpile a entify t bug the	and ex he syn	ecute j tax eri ram in	prograi rors an C	ms in (d sema	C antic e	rrors						
Cou	rse Outc	ome	After 1. 2. 3. 4. 5. 6.	the su Devel quadr Devel and P Detern Detern conso Devel	op log atic eq op log erimete mine n mine th mine v nants i op log	ul com ics to uation ic to p er of th naximu ne sum whethe n a giv ic to p	swap srint Fine Circum, min and n r a striven striven	n of the two nu ibonace le, Tri inimun nultipli ing is ing	e cours umbers ci Seri angle, n, Sum cation palinc peratio	se, the s, findi es and and So and a of two lrome	studen ng lar sum c quare average o matri or not ng func	ts will gest of of odd e of ele ces and fi	be abl given numbe ements nd num	e to: numb ers and of an mber c	pers an l to fin array of vow	d roots d the a els anc	s of area 1 of
	PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
	C01	2	2	2	1		-	-	-	-	2	-	1	-	-	-	
	CO2	3	2	3	2	-	-	-	-	-	2	-	2	-	-	-	
	CO3	3	2	3	2	2	-	-	-	-	1	-	2	-	-	-	
	CO4	2	2	2	1	2	-	-	-	-	1	-	2	-	-	-	
	CO5	2	2	2	2	2	-	-	-	-	2	-	2	-	-	-	
	CO6	2	3	3	2	3	-	-	-	-	2	-	2	-	-	-	
	AVERAGE	2.33	2.17	2.50	1.67	2.25	-	-	-	-	1.67	-	1.83	-	-	-	
	COR	RELATI	ON LEV	ELS		4. SL	IGHT (L	OW)	5. N	MODER	ATE (ME	DIUM)	6.	SUBSTA	NTIAL (HIGH)	

LIST OF EXPERIMENTS

- 1. Program to write in ascending and descending order of a given 'n' numbers using C
- 2. Program to find the odd, even, maximum, minimum, sum and average of given 'n' numbers using C
- 3. Program to swap two numbers without using third variable using C
- 4. Program to solve quadratic equation using C
- 5. Program to find the Fibonacci sequence using C
- 6. Program to find the Addition of two matrixes using C
- 7. Program to identify the palindrome string
- 8. Program to use File operations create, open, read, write, close and search
- 9. Program to apply sequential and binary search in C
- 10. Program to apply Selection Sort, Bubble Sort, Shell Sort algorithms
- 11. Write functions for Stack operations create a stack, add & remove an item
- 12. Write functions for Queue operations create a queue, add & remove an item

TOTAL : 30 Hours

SEMESTER-II

PROGRA	М	BE-I	BE-Naval Architecture & Offshore Engineering Course Name: L T P C													
Course Co	de	Cou	rse Nar	ne:				L		Т		P		(С	
UCLEC02		Tech	nnical E	English-	II			2		0		0		2	2	
Year / Sem	lester	I Ye	ar & II	Semest	er			Cor	ntact ho	ours per	r week					
Prerequisit	e course	Nil						2 H	łrs							
Course cat	egory	Hun Soci	nanitie al Scie	s and nces	Mai cou	nagem rses	ent	Pro	ofessior	nal Co	re	P	rofessi	onal E	lective	
		Basi	c Scier	ice	Eng Scie	ineerii nce	ng	Op	en Eleo	ctive		N	Iandat	ory		
Course Ob	jective	I. 2. impo	 To make the students learn to speak grammatically correct English. Guiding and supporting their skill development –Listening, speaking, reading and writing in English Making them realize the importance of English as Global language and its mportance in today's scenario. 													g
Course Ou	tcome	Afte	r the su	iccessfu	ıl comp	oletion	of the c	course,	the stu	dents w	vill be a	ble to:				
			1.	Identif	y the in	mporta	nce of t	technic	al Engl	ish						
			2.	Apply	good c	commu	nication	n skill	for enh	ancing	vocabi	ulary				
			3.	Develo	op skill	s in rea	ading									
			4.	Build	knowle	dge on	writing	g letter	s and d	escript	ive writ	tings				
			5.	Develo	op spea	king a	nd liste	ning sk	ills							
			6. Apply the correct pause and pronunciation													
PPOs / CO	B PO	PO 2	PO 2	PO 4	PO 5	PO	PO 7	PO o	PO	PO 10	PO	PO 12	PS O1	PS	PS	
	5 I	2	3	4	2	0	/ 	ð	۲ 2	10	11	12		02		
CO1	-	-	-	-	-	2	2	-	2	2	-	2	-	-	-	
CO2	-	-	-	-	-	3	2	-	2	2	-	2	-	-	-	
CO3	-	-	2 1						2	2	-	2	-	-	-	

LEVELS			(LOW)			(MEDIUM)				L (HIGH)					
CORR	ELA	ΓΙΟΝ		1	. SLI	GHT		2	. MO	DERA	ТЕ	3	. SUE	BSTAN	TIA
RAG E	-	-	-	-	-	2.00	2.00	-	2.00	2.00	-	2.00	-	-	-
AVE															
CO6	-	-	-	-	-	1	3	-	2	2	-	2	-	-	-
CO5	-	-	-	-	-	2	2	-	2	2	-	2	-	-	-
CO4	-	-	-	-	-	2	2	-	2	2	-	2	-	-	-

UNIT I: COMMUNICATION & FOCUS ON LANGUAGE

Process of Communication -Language as a tool of Communication-Importance of Technical Communication.

UNIT II: VOCABULARY & ENGLISH GRAMMAR

General Vocabulary-Dictionary-Word Formation: Prefix and Suffix-Synonyms and antonyms- Idioms and Phrases-Homophones -Parts of Speech-Subject Verb Agreement-Tenses, Articles, Prepositions-Common errors in English General Vocabulary - Adverbs- Gerund and Infinitive - Word Formation: Prefix and Suffix - Noun - Compound Noun-Adjective - Degrees of Comparison - Double Adjective - Voice - Tense - Verbs - Homograph, Homophone - Commonly Confused Words - Collocation - Punctuation marks.

UNIT III: READING SKILL

Intensive Reading-Skimming & Scanning - Extensive Reading - Meta cognitive reading - Topic sentence and its Role-Reading and Interpretations- Critical Reading – Reading and summarizing.

UNIT IV: WRITING SKILL

Descriptive Writing – Paragraph-Technical descriptions-Essays-Letter Writing – Formal and Informal-Business Letters-Job Application Letter-Types of reports-Instructions and Checklists Paragraph Writing- Descriptive Writing –Paragraph - Definition Writing – Extended Definition – Purpose Statement – Sequence words – E mail writing – Flow chart – pie chart – note taking – Dialogue writing – Circular writing- Latter to the editor – personal letter writing – circular writing

UNIT V: LISTENING AND SPEAKING

Types of Listening -Listening and note taking-Pronunciations-Stress and Intonation- Conversation technique- Dialogue Writing -Professional Communication-Interview-Group Discussion -Power point Presentation-Lab Listening and note taking - Role play - Group Discussion

TOTAL: 30 Hours

TEXT BOOK:

1.Department of English, Anna University. Mindscapes: English for Technologists and Engineers. Orient Blackswan, Chennai. 2012.

2.English and communication skills-S.P.Dhanavel.Orient Blackswan (2010).

6 Hrs

6 Hrs

6 Hrs

6 Hrs

REFERENCE BOOKS:

1.Essential Grammar use - Raymond Murphy, Cambridge (2007).

2. Anderson, Paul V. Technical Communication: A Reader-Centered Approach. Cengage. New Delhi. 2008.

3. Muralikrishna, & Sunita Mishra. Communication Skills for Engineers. Pearson, New Delhi. 2011.

4.Smith-Worthington, Darlene & Sue Jefferson. Technical Writing for Success. Cengage, Mason USA. 2007.

PROGR	AM				BE-Na	aval A1	chited	ture &	c Offsh	ore En	gineer	ing									
Course C	Code				Course	e Name	e:			L	7	Г		Р		С					
UBMTC	02				Engine	eering	Mathe	ematics	s - II	3		1		0		4					
Year and	Seme	ster			I Year	& II S	emest	er		Con	tact ho	ours pe	er w	reek							
Prerequis	site cou	ırse			NIL					4 He	ours										
Course c	ategory	ý			Huma and Se Science	nities ocial ces	M co	anage urses	ment	Pro Cor	fessior e	nal	Pro	ofessio	onal El	ective					
					Basic Scienc	ce	E1 Sc	nginee ience	ring	Ope Elec	en ctive		Ma	andato	ory						
						\checkmark															
Course	Dbject	ive				1. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	Fo pro liffere fo pro order o fo acc needed fo und proble fo cre using t	vide th ntial e vide th ordinar uaint th for ph lerstan ms. ate new ransfo	ne requ quation ne requ ry diffe the stud roblem d the s w dom rm.	ired sk ns. ired id rential dent wi s in en tandard ains to	ill to a equati ith the gineer d techr handle	pply t solve ons. conce ing dis iques e the p	the c the pts of scipil of c	concep proble of vect line. comple lem in	ts of or ms on tor calc ex varia easier	rdinary higher culus able by					
Course C	outcom	e			 Infer knowledge on ordinary differential first order equations Illustrate the use of ordinary differential higher order equations Solve problems using vector calculus Demonstrate the properties of analytic functions Demonstrate Laplace transforms in engineering applications Apply differential equations, vector calculus and Laplace transforms in engineering applications 											tions tions tions tions					
PPOs / COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO 2	1	PSO 1	PSO 2	PSO 3					

CO1	3	2	3	2	2	-	-	-	-	-	-	3	2	2	2
CO2	3	2	3	2	3	-	-	-	-	-	-	3	2	2	2
CO3	2	3	2	2	2	-	-	-	-	-	-	3	2	2	2
CO4	3	2	3	2	2	-	-	-	-	-	-	3	2	2	2
CO5	3	3	3	3	3	-	-	-	-	-	-	3	2	2	2
CO6	3	3	3	3	3	-	-	-	-	-	-	3	2	2	2
AVERA GE	2.8 3	2.5	2.8 3	2.3 3	2.5	_	-	-	-	-	-	3	2.33	2.5	2.5
CORRI LEVEL	ELAT S	ION	1	1	. SL (L	IGHT OW)	1	2	. M((M	DDERA EDIUN	ATE M)	3.	SUB (HIG	STANT H)	TIAL

UNIT I ORDINARY DIFFERENTIAL EQUATIONS-FIRST ORDER AND APPLICATION 12Hrs

Definition - order and degree - formation of differential equation - Solution of first order - first degree equations in variable separable form - homogeneous equations - other substitutions - Equations reducible to homogeneous and exact differential equations - Equations reducible to exact Integration Factor - Linear differential equation of first order first degree, reducible to linear - Applications to electrical circuits and orthogonal trajectories.

UNIT II ORDINARY DIFFERENTIAL EQUATIONS-HIGHER ORDER AND APPLICATIONS12 Hrs

Higher (nth) order linear differential equations - definition and complementary solution- Methods of obtaining PI, Method of variation of parameters - Method of undetermined coefficients - Cauchy's Homogeneous LDE and Legendre's equations - System of Ordinary Differential Equations Simultaneous equations in symmetrical form.

UNIT III VECTOR CALCULUS Hrs

Gradient Divergence and Curl – Directional derivative – irrotational and solenoidal vector fields –Vector integration - Green's theorem in a plane, Gauss divergence theorem and stokes' theorem (excluding proofs) -Simple applications involving cubes and rectangular parallelepipeds.

UNIT IV ANALYTIC FUNCTIONS Hrs

Functions of a complex variable - Analytic functions - Necessary conditions, Cauchy - Riemann equation and Sufficient conditions (excluding proofs) – Harmonic and orthogonal properties of analytic function – Harmonic conjugate – Construction of analytic functions – Conformal mapping - bilinear transformation.

UNIT V LAPLACE TRANSFORM Hrs

12

12

12

Laplace transform – Conditions for existence – Transform of elementary functions – Basic properties– Transform of derivatives and integrals – Transform of unit step function and impulse functions –Transform of periodic functions. Definition of Inverse Laplace transforms as contour integral – Convolution theorem (excluding proof) – Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques.

TOTAL: 60

Hours

TEXT BOOK:

1.Bali N. P and Manish Goyal, —Text book of Engineering Mathematics, 3rd Edition, Laxmi Publications (p) Ltd., 2008.

2. Grewal. B.S, -Higher Engineering Mathematics, 40thEdition, Khanna Publications, Delhi, 2007.

REFERENCE BOOKS:

1.Ramana B.V, —Higher Engineering Mathematics, Tata McGraw Hill Publishing Company, NewDelhi, 2007.

2.Glyn James, —Advanced Engineering Mathematics, 3rdEdition, Pearson Education, 2007.

3.Erwin Kreyszig, —Advanced Engineering Mathematics, 7thEdition, Wiley India, 2007.

4.Jain R.K and Iyengar S.R.K, —Advanced Engineering Mathematics, 3rdEdition, Narosa Publishing House Pvt., 2007.

PROGRAM	BE-Naval Architecture & Offshore Engineering Course Name Image: Course Name											
Course Code	Course Name		L	T	Р		C					
UCPHCO2	Engineering Physic	cs - II	3	0	0		3					
Year and Semester	I Year & II Semest	er	Contact hour	s per week	5							
Prerequisite course	Nil		3 Hrs									
Course category	Humanities and Social Sciences	Management courses	Professional	l Core	Profess	sional Elec	tive					
	Basic Science	Engineering Science	Open Electi	tory								
	\checkmark											
Course Objectives	Students should un significance for the	derstand about prop e development of tec	berties of light a chnology	nd sound	waves and	d relate the	eir					
Course Outcomes	After the successfu	l completion of the	course, the stud	lents will b	be able to:	:						
	1. Demor	nstrate the application	ons of sound wa	aves								
	2. Explai	n the principles of l	aser and its app	lications								
	3. Illustra structu	te miller indices an re	s and X-Ray power defraction method to identify crys									
	4. Compa	are the electrical con	l conductivity in semiconductors and superconductors									
	5. Contra	st dielectric and ma	gnetic material	s								
	6. Infer th	ne principles of ligh	ight and sound waves in various applications									

PPOs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
/ COs	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	3	2	3	2	2	-	-	-	-	-	-	2	2	2	2
CO2	2	1	2	3	2	-	-	-	-	-	-	2	2	2	2
CO3	3	2	1	2	2	-	-	-	-	-	-	2	2	2	2
CO4	2	3	3	1	2	-	-	-	-	-	-	2	2	2	2
CO5	3	3	2	3	3	-	-	-	-	-	-	2	2	2	2
CO6	3	3	3	3	3	-	-	-	-	-	-	3	2	2	2
AVERAGE	2.67	2.33	2.33	2.33	2.33	-	-	-	-	-	-	2.17	2	2	2
CORR	ELAT	ION		1. SLIGHT				2	. MO	DERA	TE	3. SUBSTANTIA			
LEVE	LS			(LOW)				(ME	EDIUM	[)	L (HIGH)				

UNIT - I: ACOUSTICS AND ULTRASONICS:

Wave-types of waves-wave motion. Sound- classification of sound – characteristics of musical sound. Loudness – Weber Fechner law – Decibel – Reverberation – Reverberation time – Sound absorption coefficient- Sabine's formula for determining reverberation time (Rate of Growth and Rate of Decay) – determination of sound absorption coefficient – Factors affecting acoustics of buildings (Optimum reverberation time, loudness, focusing, eco, echelon effect, resonance and noise) and their remedies. Ultrasonics- production- piezo-electric method – SONAR-Ultrasonic flaw detector as non-destructive testing technique.

UNIT-II: LASER AND FIBRE OPTICS

Laser-principle-properties – Einstein coefficient (A and B)-Nd-YAG laser – CO_2 laser. Applications of laser – Holography-construction and reconstruction of a hologram – Principle and propagation of light in an optical fibre-types of optical fibres – applications-fibre optic communication system (block diagram) – fibre optic sensors.

UNIT-III: CRYSTAL PHYSICS

Lattice-unit cell – Bravais lattice – lattice planes – Miller indices – 'd' spacing in cubic lattice – calculation of number of atoms per unit cell – atomic radius-coordination number – packing factor for SC, BCC, FCC and HCP structures – Diamond and graphite structures (qualitative treatment) – X-ray - Powder diffraction method to identify crystal structure parameters.

UNIT-IV: SEMICONDUCTORS AND SUPERCONDUCTORS

9 Hrs

9 Hrs

Semiconductors – intrinsic and extrinsic semiconductor. Fermi level –Variation of Fermi level with temperatureelectrical conductivity. Band gap determination-Hall effect – Determination of Hall coefficient – Applications. Superconductivity: Properties – Type I and Type II superconductors – BCS theory of superconductivity-High Tc superconductors-Applications of superconductors – SQUID, cryotron, magnetic levitation.

UNIT-V: DIELECTRIC, MAGNETIC AND NEW ENGINEERING MATERIALS

Electrical susceptibility – dielectric constant – electronic, ionic, orientational and space charge polarizationsfrequency and temperature dependence on polarization-internal field – Claussius-Mosotti relation – uses of dielectric materials. Magnetic properties – diamagnetic – paramagnetic – ferromagnetic materials – super paramagnetism – Transducers. Properties and applications of metallic glasses – nano materials – shape memory alloys – bio materials.

TOTAL: 45 Hours

9 Hrs

TEXT BOOKS

- 1. S. O Pillai "Solid State Physics", New Age International Pvt Ltd; 7th edition, 2015.
- 2. Ajoy Ghatak , "Optics", McGraw-Hill Education; 1st edition 2009.
- 3. Ajoy Ghatak, "Introduction to Fiber optics", Foundation Books, 2002.

REFERENCES BOOKS:

- 1. Charles Kittel," Introduction to Solid state physics", Wiley; Eighth edition 2012.
- 2. Ghatak and Thyagarajan, "Laser Fundamentals and Applications", Springer, 2011.
- 3. Richard Feynmann, Robert Leighton and Matthew Sands,"The Feynmann Lectures on Physics",

Volume 1, Student Edition, Narosa Publishing house, 2003.

4. Richard Feynmann, Robert Leighton and Matthew Sands "The Feynmann Lectures" on Physics,

Volume 2, Student Edition, Narosa Publishing house, 2003.

PROGRAM	BE-Naval Architecture & Offshore Engineering Course Name: I T											
Course Code	Course Name:		L	Т	Р	C						
UBEEC01	Basics of Electrica Engineering	l and Electronics	3	0	0	3						
Year and Semester	I Year & II Semest	er	Contact hour	rs per week	1							
Prerequisite course	Nil		3 Hrs									
Course category	Humanities and Social Sciences	Management courses	Professional	l Core	Professional	Elective						
	Basic Science	Engineering	Onon Flocti	VA	Mandatory							
	Dasie Science	Science	Open Electr	ve								
		\checkmark										
Course Objective	 To familiarize circuits. To understand and moving in 	the basic laws, DC the characteristics on instruments.	and AC theore	ems and the me	thods of analyz	zing electrical Moving coil						
Course Outcome	After the successfu	l completion of the	course, the stu	dents will be ab	ole to:							
	1. Outline KCL, KVL and related methods to solve DC circuits											
	2. Illustrate th	he operation of singl	e phase AC C	ircuits								
	3. Explain the	e principle of operat	ion of three ph	ase AC Circuit	S							
	4. Infer the p	erformance characte	ristics of Semi	iconductor Devi	ices							
	5. Demonstrate the working principle of Electrical instruments											

		6.	Appl appli	ly the k ications	nowled	dge of e	electric	circuit	s and e	lectron	ic devi	ces for	enginee	ering		
PPOs / COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3	
CO1	3	2	3	2	-	-	-	-	-	-	-	3	3	2	3	
CO2	2	3	2	2	-	-	-	-	-	-	-	2	2	2	3	
CO3	2	3	3	2	-	-	-	-	-	-	-	2	2	2	3	
CO4	3	3	2	2	-	-	-	-	-	-	-	3	3	3	3	
CO5	3	2	2	3	-	-	-	-	-	-	-	2	2	2	3	
CO6	3	3	3	2	-	-	-	-	-	-	-	3	3	2	3	
AVERAGE	2.67	2.67	2.50	2.17	-	-	-	-	-	-	-	2.50	2.50	2.17	3.00	
CORRELAT	ION LI	LEVELS			. SLI (LC	GHT OW)		2	. MO (MI	DERA EDIUN	TE 1)	3. SUBSTANTIA L (HIGH)				

UNIT I:DC CIRCUITS

Importance of Electrical Engineering in day-to-day life - Electrical elements and their classifications - KCL and KVL equations - Loop current and node voltage method - Steady state analysis with independent and dependent sources - parallel and series circuits and star delta conversion.

UNIT II: ANALYSING SINGLE PHASE AC CIRCUITS

Common Signals and their Wave Form: RMS Value, Average Value, Form Factor and Peak Factor - Single Phase A.C Series Circuits: Types, Phasor Diagram, Power Factor, Impedance, Power Triangle - Single Phase

A.C Parallel Circuits: Types, Phasor Diagram, Power Factor, Power Triangle – A.C Network Theorem's: Thevinin's and Norton's Theorem– Superposition Theorem– Maximum Power Transfer Theorem - Mesh Current and Node Voltage Method with A.C sources.

UNIT III: ANALYSING THREE PHASE AC CIRCUITS

Three Phase Balanced and Unbalanced Voltage Sources – Analysis of Three Phase 3-Wire and 4-Wire Circuits with Star and Delta Connected Loads, Balanced & Unbalanced – Phasor Diagram of Voltages and Currents – Power and Power Factor Measurements in Three Phase Circuits.

UNIT IV: SEMICONDUCTOR DEVICES

9 Hrs

9 Hrs

9 Hrs

Characteristics of PN Junction Diode-Zener effect-Zener Diode and its Characteristics- Voltage regulation- Bipolar Junction Transistor-CB, CE, CC Configurations and Characteristics- Basic Construction of 'N' channel & 'P' channel JFET-Half wave and Full wave rectifiers.

UNIT V: BASIC ELECTRICAL MEASUREMENTS

Construction and Operating Principles of Moving Coil and Moving Iron Instruments (Ammeter and Voltmeter), Dynamometer Type Wattmeter and Basic Torque Equations, Electro-dynamic frequency meter, Energy Meter and Megger – Measurement Errors.

TOTAL: 45 Hours

TEXT BOOKS:

- 1. Arumugam and Prem Kumar, Electric Circuit Theory, Khanna Publishers, 2002.
- 2. William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits Analysis", Tata McGraw Hill publishers, 6 th edition, New Delhi, 2003
- 3. R.S.Sedha, A Textbook of Applied Electronics, 3rd revised edition Edition,2008.
- 4. A.K.Sawhney-A Course in Electrical and Electronics Measurements and Instrumentation, 19th Revised Edition 2011.

REFERENCE BOOKS:

- 1. Joseph A. Edminister, Mahmood Nahri, "Electric circuits", Schaum's series, Tata McGraw-Hill, New Delhi, 2001.
- 2. Sudhakar A and Shyam Mohan SP, "Circuits and Network Analysis and Synthesis", Tata McGraw-Hill, 2007.
- Charles K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Second Edition, McGraw Hill, 2003.

BE-Naval Architect	ure & Offshore Engin	eering								
Course Name:		L	Т	Р	С					
Engineering Mecha	nics	3	1	0	4					
I Year & II Semeste	r	Contact h	ours per week	I	1					
Nil		4 Hrs								
Humanities and Social Sciences	Management courses	Professio	onal Core	Profess	ional Elective					
Basic Science	Engineering Science	Open El	ective	Mandat	tory					
	N									
 Develop the simple logic Further, he 	e ability to understand cal manner and to solv should understand the	l, formulate ve basic pro e principle	e and analyze a oblems in Engi of work and en	ny engineerin neering Mech ergy	g problem in a anics.					
 After the successful completion of the course, the students will be able to: 1. Explain the engineering principles dealing with force, displacement, velocity and acceleration 2. Build the knowledge on the equilibrium of rigid bodies 3 Determine Friction and its effects 										
	BE-Naval Architect Course Name: Engineering Mechan I Year & II Semeste Nil Humanities and Social Sciences Basic Science 1. Develop the simple logic 2. Further, he After the successful 1. Explain the e acceleration 2. Build the kno 3. Determine Fr	BE-Naval Architecture & Offshore Engine Course Name: Engineering Mechanics I Year & II Semester Nil Humanities and Social Sciences Management courses Basic Science Engineering Science I Develop the ability to understand simple logical manner and to solve 2. Further, he should understand the After the successful completion of the courses 1. Explain the engineering principles acceleration 2. Build the knowledge on the equilities 3.	BE-Naval Architecture & Offshore Engineering Course Name: L Engineering Mechanics 3 I Year & II Semester Contact h Nil 4 Hrs Humanities and Management Social Sciences Engineering Basic Science Engineering Science $$ 1. Develop the ability to understand, formulate simple logical manner and to solve basic processing 2. Further, he should understand the principle of the successful completion of the course, the stute simple logical manner and to solve basic processing 1. Explain the engineering principles dealing with acceleration 2. Build the knowledge on the equilibrium of right acceleration 3. Determine Friction and its effects	BE-Naval Architecture & Offshore Engineering Course Name: L T Engineering Mechanics 3 1 I Year & II Semester Contact hours per week Nil 4 Hrs Humanities and Social Sciences Management courses Professional Core Basic Science Engineering Science Open Elective 1 $$ 1 1 Develop the ability to understand, formulate and analyze a simple logical manner and to solve basic problems in Engi 2 Further, he should understand the principle of work and en After the successful completion of the course, the students will be a acceleration 1. Explain the engineering principles dealing with force, displa acceleration 2 Build the knowledge on the equilibrium of rigid bodies 3 Determine Friction and its effects	BE-Naval Architecture & Offshore Engineering Course Name: L T P Engineering Mechanics 3 1 0 I Year & II Semester Contact hours per week 0 0 Nil 4 Hrs 4 Hrs 9 Humanities and Social Sciences Management courses Professional Core Profess Basic Science Engineering Science 0 4 4 I 0 0 0 0 0 Basic Science Engineering Science Manda 0 0 0 0 1 0 $$ 0 0					

		4. E e	Explain ngineer	the fun	damen oblems	tal con	cepts o	of kinematics and kinetics of particles to solve									
		5. E fe 6. A	Demons or engin Apply th	trate th neering ne conc	e princ applic ept of 1	iples o ations mechar	f work nics for	and en	ergy of eering a	² particl	es App ions	ly the c	oncept	of mec	hanics		
PPOs / COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3		
	-	-	U U		C	Ŭ	,	Ŭ		10			01	~	00		
CO1	3	2	2	2	-	-	-	-	-	-	-	2	2	2	2		
CO2	3	3	3	2	-	-	-	-	-	-	-	2	2	3	3		
CO3	3	2	2	2	-	-	-	-	-	-	-	2	2	3	2		
CO4	3	2	3	2	2	-	-	-	-	-	-	2	2	2	2		
CO5	3	3	2	2	-	-	-	-	-	-	-	2	2	2	2		
CO6	3	3	3	2	2	-	-	-	-	-	-	3	3	2	3		
AVERAGE	3.00	2.50	2.50	2.00	2.00	-	-	-	-	-	-	2.17 2.17 2.33 2.33					
CORRELATION LEVELS				1. SLIGHT (LOW)2. MODERATE (MEDIUM)3. SUBSTANTI L (HIGH)							TIA						

UNIT I BASICS & STATICS OF PARTICLES

Introduction - Units and Dimensions - Forces - System of forces - Resultant forces - Parallelogram law of forces -Triangular law of forces – Polygon law of forces – Resolution and composition of forces – Principles of transmissibility. Single equivalent force - Equilibrium of particles - Moment and couple - Scalar components of moment - Varigon's Theorem.

UNIT II EQUILIBRIUM OF RIGID BODIES

Equilibrium of forces - Law of mechanics - Lami's theorem. - Free body diagram - Requirement of Stable Equilibrium -Equilibrium of rigid bodies in 2D – Examples - Type of supports and their support reactions.

UNIT III FRICTION

Static and Dynamic Friction - Laws of friction - Equilibrium of a body on a rough Horizontal plane, inclined Plane and inclined plane subjected to a force acting along the inclined plane - Applications of friction - Simple contact friction (Ladder friction) – Screw friction – weight lifted by screw jack - Belt friction – Rolling Resistance.

UNIT IV PROPERTIES OF SURFACES AND SOLIDS

Determination of Areas and Volumes-First moments of area and the Centroid of sections- Rectangle, circle, triangle from integration-T section, I section, Angle section, Hollow section using standard formula- Second and product moments of plane area- Rectangle, triangle, circle from integration-T section. I section, Angle section, Hollow section by using standard formula parallel axis theorem and perpendicular axis theorem- Mass moment of Inertia.

12 Hrs

12 Hrs

12 Hrs

UNIT V DYNAMICS OF PARTICLES AND RIGID BODIES

Dynamics of Particles - Displacement, velocity and acceleration, their relationship – Relative motion- Curvilinear motion – Newton's law – work-energy equation of particles - Impulse and Momentum – Law of conservation of momentum – D'Alembert's Principle – Types of collision - Collision of Elastic Bodies – Newton's law of collision of bodies - coefficient of restitution. Dynamics of Rigid Bodies – General plane motion – Velocity and Acceleration – Absolute and relative motion method – Equilibrium of Rigid bodies in Plane motion.

TOTAL : 60 Hours

TEXT BOOKS:

- 1. K.V. Natarajan, "Engineering Mechanics", Dhanalakshmi publications, Revised Edition, 2008.
- 2. R.S Khurmi, -A Textbook of Engineering Mechanics, S. Chand Publishers, 20th Revised Edition, 2014.

REFERENCE BOOKS:

- 1. S.S. Bhavikatti, -Engineering Mechanics, New Age International Publishers, 4th revised edition, 2012.
- Palanichamy & Nagan, —Engineering Mechanics Statics & Dynamics, Tata McGraw-Hill, Latest Edition, 2001.
- 3. S. Rajasekaran, G. Sankara Subramanian, "Fundamentals of Engineering Mechanics", Vikas Publishing House Pvt. Ltd., 2006.
- 4. Beer, F.P and Johnson Jr. E.R, -Vector Mechanics for Engineers, Vol.1 Statics and Vol.2. Dynamics,

Tata McGraw-Hill International Edition, 2001.
PROGRAM	BE-Naval Architecture & Offshore Engineering											
Course Code	Course Name		L	Т	Р	С						
UBMCC11	Thermodynamics		3	0	0	3						
Year and Semester	I Year & II Semester	•	Contac	t Hours Per	Week							
Prerequisite course	Nil		3Hrs									
Course category	Humanities and Social Sciences	Management courses	Profess	sional Core	Prof	essional Elective						
	Basic Science	Engineering Science	Open I	Elective	Man	datory						
Course Objectives	1. This course provid application to various	les basic knowledge a processes.	bout thern	nodynamics	and relat	ion and their						
Course Outcomes	The Students will be	able to										
	1. Understand therr	nodynamics laws and	their appl	ication								
	2. To understand co	oncept of entropy and	availabilit	y								
	3. Know about the	properties of steam ar	d their use	es of steam t	able and	mouier chart						
	4. Understand therr	nodynamics relation										
	5. Understand abou	tt psychometric chart										
	6. Understand about gas mixture											

PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	2	2	2	1	-	-	-	-	2	-	-	-	2	2	-
CO2	2	2	3	2	-	-	-	-	1	2	-	2	3	1	2
CO3	2	2	2	2	1	-	-	-	2	2	2	2	2	2	2
CO4	2	2	2	2	1	-	-	-	1	2	-	1	3	1	2
CO5	2	2	2	2	2	-	-	-	3	1	3	3	3	2	2
CO6	2	2	3	2	3	-	-	-	2	3	3	3	3	1	2
AVERAGE	2	2	2.3	1.8	1.8	-	-	-	1.8	2	2.7	2.2	2.7	1.5	1.7
CORRELATION LEVELS				1. SLIGHT (LOW)			2. MODERATE (MEDIUM)				3. SUBSTANTIA L (HIGH)				

UNIT – I : BASIC CONCEPTS AND FIRST LAW

Basic concepts - concept of continuum, comparison of microscopic and macroscopic Approach.Path and point functions. - Intensive and extensive, total and specific quantities. - System and their types. Thermodynamic Equilibrium State, path and process -Quasi-static, reversible and irreversibleprocesses. - Heat and work transfer, definition and comparison, sign convention - Displacement work and other modes of work - pv diagram.Zeroth law of thermodynamics - concept of temperature and thermal equilibrium- relationship between temperature scales -new temperature scales. First law of thermodynamics – application to closed and open systems – steady and unsteady flow processes

UNIT II:SECOND LAW AND AVAILABILITY ANALYSIS

Heat Reservoir, source and sink.-Heat Engine, Refrigerator, Heat pump. -Statements of second law and its corollaries. -Carnot cycle Reversed Carnot cycle, Performance. -Clausius inequality. - Concept of entropy, t-s diagram, Tds Equations, entropy change for - pure substance, ideal gases – different processes, principle of increase in entropy. Applications of II Law. High and low grade energy. Available and non-available energy of a source and finite body. Energy and irreversibility. Expressions for the energy of a closed system and open systems. Energy balance and entropy generation. Irreversibility. I and II law Efficiency.

UNIT III : PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE

Formation of steam and its thermodynamic properties, p-v, p-T, T-v, T-s, h-s diagrams. p-v-T surface.Use of Steam Table and Mollier Chart. Determination of dryness fraction. Application of I and II law for pure substances. Ideal and actual Rankine cycles, Cycle Improvement Methods - Reheat and Regenerative cycles, Economizer, preheater, Binary and Combined cycles.

UNIT IV : IDEAL AND REAL GASES, THERMODYNAMIC RELATIONS

Properties of Ideal gas- Ideal and real gas comparison- Equations of state for ideal and real gases-Reduced properties-Compressibility factor-.Principle of Corresponding states.Generalized Compressibility Chart and its use-. Maxwell relations, Tds Equations, Difference and ratio of heat

9 Hrs

9 Hrs

9 Hrs

capacities, Energy equation, Joule-Thomson Coefficient, Clausius Clapeyron equation, Phase Change Processes. Simple Calculations.

UNIT V: GAS MIXTURE AND PSYCHROMETRY

Mole and Mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – Molar mass, gas constant, density, change in internal energy, enthalpy, entropy and Gibbs function.Psychometric properties, Psychometric charts. Property calculations of air vapour mixtures by using chart and expressions. Psychometric process – adiabatic saturation, sensible heating and cooling, humidification, dehumidification, evaporative cooling and adiabatic mixing. Simple Applications

TOTAL: 45 Hours

TEXT BOOKS:

- 1. Nag.P.K., -Engineering Thermodynamics, 4thEdition, Tata McGraw-Hill, New Delhi, 2008.
- 2. Cengel. Y and M.Boles, "Thermodynamics An Engineering Approach", 7th Edition, TataMcGraw Hill, 2010

REFERENCE BOOKS:

- 1. Natarajan E., "Engineering Thermodynamics: Fundamentals and Applications", AnuragamPublications, 2012
- 2. Holman.J.P., "Thermodynamics", 3rd Edition, McGraw-Hill
- 3. Rathakrishnan. E., "Fundamentals of Engineering Thermodynamics", 2nd Edition, Prentice-Hall of India Pvt. Ltd
- 4. Chattopadhyay, P, "Engineering Thermodynamics", Oxford University Press, 2010
- 5. Arora C.P, -Thermodynamicsl, Tata McGraw-Hill, New Delhi, 2003

PROGRAM	BE-Naval Architecture & Offshore Engineering												
INCORAM	DL-Ivavai Arcinteet	purse Name: L T P C											
Course Code	Course Name:		L	Т	Р	C							
UBEECPA	Basics of Electrical	and Electronics											
	Engineering Labora	tory	0	0	2	1							
Year and Semester	I Year & II Semeste	r	Contact hour	s per week									
Prerequisite course	Nil		2 Hrs										
Course category	Humanities and	Management	Professional	Core	Professional	Elective							
	Social Sciences	courses											
	Basic Science	Engineering	Open Electiv	ve	Mandatory								
		Science											
		\checkmark											
Course Objective	1. To acquire	knowledge with an ac	dequate work e	xperience in the	e measurement	of different							
	quantities.												
	2. Expertise in	handling the instrum	nents involved.										
Course Outcome	After the successful	completion of the co	ourse, the studer	nts will be able	to:								
	1. Demonstrat	e instruments such as	ich as ammeter and voltmeter for measuring resistance, power										
	and power f	actor											
	2. Compare th	e vector diagrams of	series and para	llel R,L and C	circuits								
	3. Explain how	v to measure power in	nput to three ph	ase induction r	notor using wa	tt meters							
	4. Illustrate the characteristics of PN diode, Zener diode and JFET												

		5.	Contra	st the v	vorking	g princi	ple of h	nalf wa	ve and t	full wa	ve rect	ifier usi	ing CR	0	
		6.	Combi	ne mea	suring	instrun	nents fo	or diffe	rent par	ameter	s in en	gineeri	ng appl	ication	S
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
PPUS/CUS	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
C01	2	3	3	2	1	-	-	-	2	2		3	3	3	2
CO2	2	3	3	2	1	-	-	-	2	2		2	3	3	2
CO3	2	3	3	2	1	-	-	-	2	2		2	3	3	2
CO4	2	3	3	2	1	-	-	-	2	2		2	3	3	2
CO5	2	3	3	2	1	-	-	-	3	3		3	3	3	2
CO6	2	3	3	2	1	-	-	-	3	3		3	3	3	3
AVERAGE	2	3	3	2	1	-	-	-	2.33	2.33	-	2.5	3	3	2.17
CORRELATION LEVELS			1	. SLI (LC	GHT DW)	1	2	. MO (MI	DERA EDIUM	TE I)	3	. SUI L (I	BSTAN HIGH)	TIA	

List of Experiments

1. Measurement of 'Low and High' resistances by Voltmeter and Ammeter method.

2. Obtain the current and voltage distribution in A.C. 'R-L-C' series circuits and draw the vector diagrams.

3. Obtain the current and voltage distribution in AC 'R.L.C' parallel circuits and draws the vector diagrams.

4. Measure the power and power factor of a single-phase load by 3 voltmeter method & ammeter method.

5. Measure the power input to 3-phase induction motor using two watt meters.

- 6. Characteristics of PN Junction Diode.
- 7. Characteristics of Zener Diode
- 8. Characteristics of JFET
- 9. Study of Half wave and Full wave Rectifiers

10.Study of CRO and LISSAJOUS patter

TOTAL: 30 Hours

PROGRAM	BE-Naval Architecture & Offshore Engineering												
Course Code	Course Name:		L	Т	Р	С							
UBWSCPA	Engineering Practic	es Laboratory	0	0	4	2							
Year and Semester	I Year & II Semeste	r	Contact hou	rs per week	1								
Prerequisite course	Nil		4 Hrs										
Course category	Humanities and Social Sciences	Management courses	Professiona	ll Core	Professional	Elective							
	Basic Science	Engineering Science	Open Elect	ive	Mandatory								
Course Objective	To provide exposure oxy – acetylene wel	e to the students with ding and fitting	hands on exp	erience on mach	nining, electric	arc welding							
Course Outcome	After the successful	completion of the co	urse, the stude	ents will be able	e to:								
	1. Outline the	operation of lathes a	nd drilling ma	chines.									
	2. Construct the structures using welding equipments												
	3. Create simp	ple components using	lathe and dri	lling machine									
	4. Develop th	e Process of chipping	, filling, hack	sawing, drilling	g and tapping								
	5. Plan assem	bling and dismantling	g of componen	nts									
	 Construct simple lap, butt and tee joints using arc welding equipments 												

PPOs / COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	-	2	-	2	-	-	-	2	2	-	-	-	-	-
CO2	2	-	2	-	2	-	-	-	2	2	-	-	-	-	-
CO3	2	-	2	-	2	-	-	-	2	2	-	-	-	-	-
CO4	2	-	2	-	2	-	-	-	2	2	-	-	-	-	-
CO5	2	-	2	-	2	-	-	-	2	2	-	2	-	-	-
CO6	2	-	2	-	2	-	-	-	2	2	-	2	-	-	-
AVERAGE	2.00	-	2.00	-	2.00	-	-	-	2.00	2.00	-	2.00	-	-	-
CORRELATION LEVELS			4. SLIGHT (LOW)			5. MODERATE (MEDIUM)				6. SUBSTANTIA L (HIGH)					

MACHINING:

Introduction and familiarization of operation of laths, drilling machines, shaping, milling and grinding machines -Safety- personal, tools, machines and environmental - Measuring tools and methods of measurement, reading of sketches and drawing, cutting tools, tool geometry - setting of tools methods of fixing of jobs on chucks, vices, jigs and fixtures -Speeds and feeds of machines - Operations of machines - Practical exercises on machines to develop and improve hands on skills.

FITTING:

Introduction and familiarization of various hand tools- Measuring, marking, cutting, holding and assembly tools, materials, parts, uses and safety of tools and personal safety - Process and procedures for measuring, Understanding of sketches and drawing - Marking and job holding methods - Process of chipping, filling, hack sawing, drilling, tapping, dieying, assembling and dismantling of components - Practical exercises to develop and improve hands on skills.

ELECRIC ARC WELDING

Introduction, familiarization of different types of welding machines- welding Transformer, functions, tools, and equipment and environmental - Basic procedures of striking the arc - different methods of joining metals- different welding joints in different positions - welding defects - testing of welding joints - Practical exercises of welding of different thickness of metals in different positions to develop and improve hands on skills.

OXY - ACETELENE WELDING

Introduction – familiarization of tools and equipments - Gas cylinders, regulators, hoses and gas welding and gas cutting blow pipes - DS Processors - Procedures for setting up the equipments - Checking for leakage of gases, setting of jobs filler rods, flux, flame setting and controls of flame safety - personal safety protection, safety of cylinders, tool equipments and environmental safety-Procedures for gas welding, brazing and gas cutting - Different methods of joints in different positions and defects of joints, testing of joints - Practical exercises to develop and improve hands on skill of gas welding, brazing and gas cutting.

TOTAL : 60 Hours

PROGRAM	BE-Naval Architecture & Offshore Engineering											
Course Code	Course Name:		L	Т	Р	С						
UCPHCPB	Engineering Physics	s Lab	0	0	2	1						
Year / Semester	I Year & II Semeste	r	Contact hour	s per week	1	1						
Prerequisite course	Nil		2 Hrs									
Course category	Humanities and	Management	Professional	Core	Professional	Elective						
	Social Sciences	courses										
	Basic Science	Engineering Science	Open Electiv	ve	Mandatory							
	\checkmark											
Course Objective	Students should obta	ain the skill to design	experiments to	o demonstrate v	arious							
	concepts of physics	for determination of j	properties of m	aterials								
Course Outcome	After the successful	completion of the co	urse, the studer	nts will be able	to:							
	1. Explain the	calibration of Voltme	eter and Potenti	iometer								
	2. Demonstrate the principles of light through convex lens and calculating its wavelength											
	3. Determine t	he surface tension and	d co-efficient o	of viscosity of v	vater							
	4. Infer modul	us of elasticity of tors	sion pendulum	and Young's m	nodulus of elas	ticity of a bar						
	5. Illustrate ho	w to measure the thic	kness of the w	ire								
	6. Explain the concepts behind measurement of magnetic field along the axis of a coil											

	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
PPOs / COs	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	2	2	2	2	1	-	-	-	1	2	-	2	2	2	3
CO2	2	-	2	2	2	-	-	-	2	1	-	2	2	3	3
CO3	2	2	3	3	1	-	-	-	2	2	-	-	2	-	-
CO4	3	2	2	3	2	-	-	-	2	2	-	2	2	2	2
CO5	3	2	2	2	3	-	-	-	2	3	-	2	2	3	2
CO6	3	3	3	3	3	-	-	-	3	2	-	3	2	3	2
AVERAGE	2.50	2.20	2.33	2.50	2.00	-	-	-	2.00	2.00	-	2.20	2.00	2.60	2.40
CORRELATION LEVELS			7. SLIGHT (LOW)			8	. MO (MF	DERA EDIUM	TE I)	9	. SUB L (H	STAN IIGH)	TIA		

LIST OF EXPERIMENTS

- 1. Calibration of low range voltmeter potentiometer
- 2. Torsion pendulum Rigidity modulus of elasticity
- 3. Spectrometer- Grating wavelength of mercury spectral lines
- 4. Newton's rings Radius of curvature of a convex lens
- 5. Air wedge Thickness of a wire
- 6. Surface tension of water -Capillary rise method
- 7. Uniform bending Young's modulus of elasticity of a bar
- 8. Coefficient of viscosity of water graduated burette
- 9. Non uniform bending -Young's modulus of elasticity of a bar
- 10. Field along the axis of a coil

Total : 30 Hours

PROGRAM	BE-Naval Architecture & Offshore Engineering											
Course Code	Course Name:		L	Т	Р	С						
UCLECPC	Spoken English-II		0	0	3	2						
Year and Semester	I Year & II Semester		Contact	hours per week								
Prerequisite course	-		3 Hrs									
Course category	Humanities and Social Sciences	Management courses	Profess	onal Core	Profess Electiv	sional re						
	\checkmark											
	Basic Science	Engineering Science	Open E	lective	Manda	ntory						
Course Objective	 To help le lectures a To help le To help le Address t Making the importance 	 To help learners develop their listening skills, which will, enable them listen to lectures and comprehend them by asking questions, seek clarifications. To help learners develop their speaking skills and speak fluently in real contexts. Address the interview confidently Making them realize the importance of English as Global language and its importance in today's scenario. 										
Course Outcome	 After the successful completion of the course, the students will be able to: 1. Apply Articles, Prepositions, Pronouns, Adjectives and Adverbs in their speaking and writing skills 2. Infer the knowledge on public speaking and conduct of meetings 											
	2. Inter the 3. Develop	skills on interactive l	speaking ai English	nd conduct of m	eetings							
	 Develop listening and speaking skills for effective presentation 											

			5.]	Develo	p good	attitude	e , beha	viour a	ind con	nmunic	ation s	kills			
			6.	Build ir	nterviev	w skills	and pe	ersonali	ty deve	lopmer	nt				
	PO	PO	PO	PO	PO	PO	PO	РО	РО	РО	РО	PO	PS	PS	PS
1105/008	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1	-	-	-	-	-	2	2	2	2	2	-	-	-	-	-
CO2	-	3 2						2	2	3	-	-	-	-	-
CO3	-	-	-	-	-	3	1	2	2	2	-	2	-	-	-
CO4	-	-	-	-	-	2	2	3	2	3	-	2	-	-	-
CO5	-	-	-	-	-	3	2	1	3	2	-	2	-	-	-
CO6	-	-	2 3						3	3	-	2	-	-	-
AVERAGE	-	2.50 2.00				0 2.00 2.33 2.50 -				2.00	-	-	-		
CORRELATION LEVELS		1. SLIGHT (LOW)			2. MODERATE (MEDIUM)				3. SUBSTANTIA L (HIGH)						

UNIT 1: GRAMMAR AND FOUNDATON

Training the students on second phase of grammar such as Articles, Prepositions, Pronouns, Modal Auxiliaries, Parts of Speech, Adjectives and Adverbs .

UNIT II: INTRO TO PROFESSIONAL ETHICHS Hrs

Stepping the students to advanced learning resource and introducing them about International standards How to conduct meetings, huddle, public speaking, free speech. Dress code.

UNIT III: INTERACTIVE ENGLISH

The main objective is English for International communication. It course contains conversations, snapshots, readings, activities, a greater variety and amount of listening materials and more visuals to introduce vocabulary, more opportunities to build fluency, and up-to-date art and design.

UNIT IV: LISTENING AND SPEAKING

Types of Listening –Introduction to International Standards of listening skills. Presentation skills: delivery (emphasis and phrasing) / making it interesting / body language / referring to visual aids

UNIT V: INTERVIEW SKILLS AND PERSONALITY DEVELOPMENT

Familiarize the students with types of Interviews such as mock interviews, campus Interview, Skype interview, telephonic Interview, Panel Interview,

9 Hrs

9 Hrs

9 Hrs

9 Hrs

9 hrs

TEXT BOOKS:

1. Essential Grammar in use- Raymond Murphy ,Cambridge , New Third Edition

REFERENCE BOOKS:

1. New Interchange (English for International Communication) Jack C. Richards

SEMESTER-III

PROGRAM	BE-Naval Archit	BE-Naval Architecture & Offshore Engineering													
Course Code:	Course N	Name :	L		Т		Р		С						
UDMTC03	Mathematics –	III	3		1		0		4						
			-												
Year and Semester	II Year &	III Semester		Co	ontact he	ours pe	r week								
Prerequisite course	NIL				(4H	lrs)									
Course	Humanities and Social Sciences	Management courses	Profe	ession	al Core		Profe	ssional	Elective						
category	Basic Science	Engineering Science	Open I	Electi	ve		Ma	undatory	ý						
	✓				<u> </u>										
Course Objective	 To introduce the concept of Fourier series in engineering. To impart the knowledge of first order partial differential equations in engineering. To impart the knowledge of method second partial differential equations in engineering. To introduce the notion of sampling distributions and statistical methods. To discuss sampling techniques based on small and large sample data. 														
Course Outcome	 The student will be able to: Tell Fourier series method and its applications. Demonstrate partial differential equations techniques. Make use of method partial differential equations in engineering Outline knowledge how to present data and measures of central tendency and variation Choose a decision about the value of a population parameter based on sample data. Develop knowledge of different techniques of PDE and statistics. 														
POS/COS PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 1														

CO2	1	1	1	1	-	1	-	1	1	-	1	-	2	-	1	
CO3	3	3	2	-	1	1	2	1	1	1	-	-	1	-	2	
CO4	2	2	1	2	1	1	1	1	1	2	-	-	2	-	1	
CO5	3	3	3	3	-	1	1	1	1	2	-	2	2	-	2	
CO6	3	2	2	3	3	1	1	1	1	3	-	2	2	-	2	
AVERAGE	2.16	2	1.5	2.25	3	1	1.25	1	1	2	1	2	1.6	0	1.5	
CORRELATI	CORRELATION LEVELS 1. SLIGHT(LOW))	2. MODERATE(MEDIUM)					3. S	3. SUBSTANTIAL(HIGH)			

UNITI: Fourier series

Definition of Fourier's series - Fourier Coefficients - Expansion of functions in Fourier series -Even and odd functions – Half range Fourier series for the interval (-l, l) - Harmonic analysis – Estimation of Fourier coefficients for given values of functions.

UNITII: Partial Differential Equations

Formation of partial differential equation – Solution of PDE by direct Integration – Lagrange's Linear First order equation- Nonlinear equations of First order – Four types.

UNITIII: Applications of Partial Differential Equations

Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation – One dimensional heat equation (Equation of heat conduction).

UNIT IV: Basic Statistics

Measures of Central tendency: Moments, skewness and Kurtosis - Probability distributions: Binomial, Poisson and Normal (No derivation) - evaluation of statistical parameters for these three Distributions, Correlation and regression – Rank correlation.

UNIT V: Testing of Hypothesis

Hours

Sampling distributions – Testing hypothesis for mean, variance, proportions and difference using normal 't', 'chi square' and F- distributions -Tests for independence of attributes and goodness of fit.

TOTAL: 60 Hours

Text book:

- 1. Veerarajan. T., "Transforms and Partial Differential Equations", Tata McGraw Hill Education Pvt. Ltd., New Delhi, Second reprint, 2012.
- 2. Grewal. B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi, 2012.
- 3. Narayanan.S. ManicavachakamPillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students" Vol. II & III, S.Viswanathan Publishers Pvt Ltd. 1998.

Reference books:

- 1. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2007.
- 2. Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, Wiley India, 2007.
- 3. Ray Wylie. C and Barrett.L.C, "Advanced Engineering Mathematics" Tata Mc Graw Hill Education Pvt Ltd, Sixth Edition, New Delhi, 2012.
- 4. John W Miles Integral Transforms in Applied Mathematics, 1st Edition, Nov 2008, Cambridge University press.

"Department of Naval Architecture & Offshore Engineering" **Designed by**

12

12Hours

12Hours

12Hours

12Hours

PROGRAM	Ν	BE-Naval Architecture & Offshore Engineering Course Name : L T P C DEDEDUCTION TO MALLAR DEDEDUCTION TO MALLAR DEDUCTION TO MALLAR DEDUCTION TO MALLAR																		
Course Co	der		Со	urse N	lame :			L		Т		Р		С						
UDNA3	01	INTR ARCI	ODUC HITEC	TION TURE	TO NA	AVAL		3		0		0		3						
Year an Semeste	ıd er		II Y	ear &	III Sei	mester				Contact	hours p	er weel	ς.							
Prerequis course	site e			Ν	NIL						(3Hrs)								
Course	2	Hun Soci	nanities	s and ences	N	lanagei course	ment es	Pr	ofess	ional Core	e	Profe	essional	Elective						
categor	- V									\checkmark										
categor	y	Bas	sic Scie	ence	E	Inginee Sciend	ring ce	Open Elective Mandatory												
Course Objectiv	e ve	 To understand various types of ships and shipyard process To obtain a good knowledge on ship offset compilation and generation of Lines plan To understand the preliminary concepts behind ship stability 																		
		After	· comp	letion	of the	course	e. the s	student	s wi	1 be able	to	. <u>j</u>								
		1.	Recall	the Di	ifferen	t types	s of shi	ips and	l its r	ules.										
		2. 0	Outlin	e the v	arious	defini	tions a	nd the	term	s used in	naval a	rchitect	ure and	ship bu	ilding					
Course	e	3.	Constr stern p	uct Li rofiles	nes pla	an – fa	iring j	proces	s- tal	ole of of	fsets, V	iews of	lines p	lan, ste	m and					
Outcom	ie	4. l	Develo conditi	op ship ion	o shap	es of c	liffere	nt kind	ls of	ship and	d their f	floating	behavi	or in fl	oating					
		5. (Compa	are stal	bility o	of ship	s at sn	nall an	d lar	ge angles	5									
		6. 1	Develo	op the	shape	e of p	articul	ar shi	o an	d compl	ete hyd	lrostatic	behav	ior incl	uding					
		5	stabilit	y and	trim o	f the sl	hip un	der giv	en fl	oating co	ondition	ı			0					
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3					
CO1	-	-	-	-	-	-	-	1	-	1	-	-	-	1	-					
CO2	-	-	-	-	-	-	-	1	-	1	-	-	-	1	-					
CO3	-								-	1	-	- 1	- 1	1	-					
007					I			1		1		1	1	1						

CO5	1	1	-	-	-	-	-	1	1	1	-	-	1	1	-
CO6	-	1	-	2	2	1	2	1	1	1	1	1	2	1	2
AVERAGE	1	1	-	2	2	1	2	1	1	1	1	1	1.3	1	2
CORRELAT	ION LEV	/ELS		1. SLIGH	IT(LOW)		2. MOD	ERATE(MEDIUM	()	3. S	SUBSTAN	TIAL(HIC	GH)
UNIT I -	SHIP	• ТҮР	PES A	ND T	HEI	R TEI	RMIN	JOLO	GY						9
Hrs Int design feat UNIT II - Hrs	Irs Introduction to the development of the merchant ship in the context of developing world trade, Basic lesign feature and ship terminology, Classification of ship by types and functions. JNIT II - GENERAL ARRANGEMENT FOR DIFFERENT VESSELS														
Ge warships, v	neral vorkbo	arrang bats an	ement d vess	relate	d to t pleas	he shi ure.	p type	e inclu	ding c	argo a	nd pass	enger s	ship, fis	hing ve	essels,
UNIT III	- LIN	IES P	PLAN	AND	INT	EGRA	ATIO	N RU	LES						9
Hrs															

Lines plan - fairing process- table of offsets, Views of lines plan, stem and stern profiles, Forms of coefficients, Interaction rules - Trapezoidal rule, Simpson's rule (1-4-1, 1-3-3-1 and 5, 8,-1 rule), 6 ordinate rule, Tchebycheff's rule

UNIT IV - HYDROSTATIC CALCULATIONS

Calculations of areas, volumes, centroids, moment of inertia and second moment of inertia and other hydrostatic parameters 9

UNIT V - SECTIONAL AREA AND BONJEAN CURVES

Hrs

Freeboard and load line regulation, Bonjean Curves, Sectional Area Curve, Cutting and Mould Loft

Total:	45	Hours
I oture	•••	IIUUID

PROGRAM	BE-Naval Architecture & Offshore Engineering												
Course Code:	Course N	ame :	L	Т	Р		С						
UDNA302	MARINE MATE	RIALS AND INOLOGY	3	0	0		3						
Year and Semester	II Year & I	III Semester		Contact ho	ours per week								
Prerequisite course	N	IL		(3	3Hrs)								
Course	Humanities and Social Sciences	Management courses	Profes	sional Core	Profes	sional Elec	tive						
Course				\checkmark									
category	Basic Science	Engineering Science	Open Elective Mandatory										
Course Objective	 To introduce t To identify va To understand 	he building blocks a rious materials used l the general aspects	and prine in the s of weld	ciples in the s shipping indu ling process	area of shipbui Istry.	lding mate	rials.						
	After completion	of the course, the stu	idents w	vill be able to)								
	1.List various type	es of materials used	in ship	building indu	ustry								
Course	2. Explain the well	ding parameters ass	ociated	with weiding	y.	:Idina							
Outcome	5. Experiment with the different metal joining techniques used in ship building.												
	5 Criticize the dif	ficulty in production	n proces		e and remedy.								
	6 Apply industria	1 practice of standar	d metho	o. ds of weldin	g procedure								
POS/COS PO1	6. Apply industrial practice of standard methods of welding procedure.PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PSO1PSO2PSO3												

CO1	-	-	-	-	-	-	-	1	1	-	-	-	2	1	1	
CO2	-	-	-	1	-	-	-	1	1	-	-	-	2	2	2	
CO3	-	-	-	2	-	-	-	1	1	1	-	-	2	2	2	
CO4	-	-	-	2	2	1	-	1	1	1	-	1	3	3	2	
CO5	-	-	-	2	2	1	-	1	1	1	-	1	3	3	3	
CO6	-	-	-	2	2	1	-	1	1	1	-	1	3	3	3	
AVERAGE	-	-	-	2.25	2	1	-	1	1	1	-	1	2.5	2.3	2.1	
CORRELAT	ION LEV	VELS	1. SLIGHT(LOW)				2. MODERATE(MEDIUM)					3	3. SUBSTANTIAL(HIGH)			

UNIT I-INTRODUCTION TO MARINE MATERIALS

Introduction to Materials of construction and marine environment (Steel, Aluminum and Composites), fiber reinforced composites, Steel and Aluminum alloy in shipbuilding applications.

UNIT II - INTRODUCTION TO WELDING VARIABLES

Welding Parameters, (Current, Arc Voltage, Speed, Feed, speed..etc.), fusion welding power source, types and characteristics, metal transfer mechanism. Numerical problems related to heat generation.

UNIT III- WELDING METHODS IN SHIPBUILDING

Fusion methods MMAW, GMAW, SAW, Electro gas welding, Electro slag welding, single side welding, multi electrode welding, FSW, Heat generation, Introduction to joining techniques used in composites in shipbuilding. Standard welding practices: WPS & PQR P-no, A-no, F-no, PQR – Sample WPS, PQR, WPQT.

UNIT IV- DEFECTS & DISTORTION IN WELDING

Types of welding defects, Residual Stress, Distortion mechanism, distortion control through design, fabrication technique - Case study and remedial measures.

UNIT V - DESTRUCTIVE AND NON-DESTRUCTIVE TESTING

Testing of materials and methods of Destructive testing, Non Destructive Test - Visual Inspection, Liquid Penetration Test, Radiographic Test – Introduction, principle, X-Ray radiography procedure, gamma ray, Magnetic Particle Test, Ultrasonic Test.

TEXT BOOKS

- 1. Nisith R. Mandal Ship Construction and Welding, Springer, Volume 2,
- 2. Thomas Lamb Ship Design and Construction, Volumes 1 and 2, published by Society of Naval Architects and Marine Engineers
- 3. Robert Taggart (1980), "Ship Design and Construction", SNAME, USA.
- 4. George J. Bruce, David J. Eyres (2012), "Ship Construction", Butterworth-Heinemann, 7th edition.
- 5. Ben C. Gerwick Jr. (2007), "Construction of Marine and Offshore Structures", CRC Press, 3rd edition.

REFERENCES

- 1. Richard Little Welding and Welding Technology, McGraw Hill, (2001), 1st edition.
- 2. Richard L. Storch, Colin P. Hammon, Howard M. Bunch (1988), "Ship Production", Cornell Maritime Pr/Tidewater Publication. 1st edition.
- 3. Welding handbook American Welding Society, (1983), 7th edition, volume 1 & 2, USA.

"Department of Naval Architecture & Offshore Engineering" **Designed by**

Total : 45 Hours

9

9 Hrs

9 Hrs

Hrs

Hrs

9

9

PROGRAM	BE-Naval Architecture & Offshore Engineering												
Course Code:	Course Nan	ne :	L	Т	Р	С							
UDNA303	MARINE HYDROI	DYNAMICS	3	1	0	4							
Year and Semester	II Year & III	Semester		Contact he	ours per week								
Prerequisite course	NII	_			(4Hrs)								
Course	Humanities and Social Sciences	Management courses	Pro	ofessional Core	Professio	onal Elective							
category													
entegory	Basic Science	Engineering Science	Open	Elective	Mand	atory							
Course Objective	To obtain a basic understanding of the fluid statics and kinematics To understand the ideal and viscous flow problems and their application in marine sector To learn the concepts behind aerofoil and its theory												
Course	After completion of	the course, the stu	dents w	vill be able to									
Outcome	1. Match the wide application of fluid mechanics in ship and wave hydrodynamics												

		5. A la 6. E	 5. Apply the basic concepts involved in the viscous flow and the importance of boundary layer 5. Estimate different forces on the submerged bodies and the application of marine hydrodynamics in floating structure design 													
DOS/COS	PO1	PO2	$\frac{1}{1} \frac{1}{1} \frac{1}$													
r03/C03	FUI	FU2	FUS	rU4	FUJ	FUU	r0/	FU0	F09	FOID	FOIT	F012	1301	F302	F303	
CO1	-	1	-	-	-	-	-	1	2	2	1	1	2	2	1	
CO2	-	1	-	-	-	-	-	1	2	2	1	1	2	2	1	
CO3	-	1	-	-	-	1	-	1	3	2	1	2	2	3	1	
CO4	-	1	-	-	-	1	-	1	3	2	1	2	2	3	2	
CO5	-	1	2	-	2	1	-	1	3	2	1	2	2	2	2	
CO6	-	1	2	2	2	1	-	1	3	2	1	2	2	3	2	
AVERAGE	-	1	2	2	2	1	-	1	2.6	2	1	1.6	2	2.5	1.5	
CORRE LEV	LATIO	N	1 2 2 2 1 - 1 2.6 2 1 1.6 2 2.5 1.5 1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH) 3. SUBSTANTIAL(HIGH)													

4. Develop the wide application of combination of flows to obtain different arbitrary shapes

2. Classify different types of flows and their characteristics 3. Explain the dynamics involved in fluid flow problems

UNIT I - FLUID STATICS AND KINEMATICS

Fluid and their properties, pressure measurement and manometers, basic principles of hydrostatic forces on surfaces, buoyancy and floatation-Problems

Types of fluid flow; Lagrangian and Eulerian methods of flow description, substantial derivative, flow visualization, continuity equation, circulation and vorticity, velocity potential and stream function-Problems

UNIT II - IDEAL FLOW

Equation of motion – Euler's equation of motion – Bernoulli's equation – Assumptions, problems, practical application – Venturimeter and pitot tube– Problems

Uniform flow, Source, Sink, Doublet, vortex flow -combination of flows - Magnus effect - Problems

UNIT III - VISCOUS FLOW

Viscosity, Bernoulli's equation for real fluids, Flow through a pipe of circular section, Poiseuille law, flow of fluid between parallel plates- Coutte's law, NavierStoke's equation Dimensional and modal analysis, Reynold's and Froude number, Concepts of Boundary layer, Separation of Boundary Layer -Problems

UNIT IV – FLOW THROUGH PIPES

Loss of energy in pipes - major and minor, Darcy-Weisbachequation, Chenzy's formula, pipes in series and parallel, equivalent pipe, concept of siphon, Flow through nozzles, concept of water hammer in pipes – Problems

UNIT V – FLOW PAST SUBMERGED BODIES

Introduction, Force Exerted by a flowing fluid on a stationary body, drag, lift forces – expression, Bluff body, streamlined body, terminal velocity, Karman-Vortex trail, Concept of added mass, Added mass of cylinders; Spheres and Lewis forms, Aerofoils- Flow around an aerofoil, stall point, Application of marine hydrodynamics in floating structure design - Problems.

TEXT BOOKS

- 1. R.K Bansal, A textbook of Fluid Mechanics, Laxmi Publications, 2008
- S.K Som, Gautham Biswas, S Chakraborty, Introduction to Fluid Mechanics and Fluid Machines, Mc 2. Graw Hill, 2011
- 3. G.S. Sawhney, Fundamentals of Fluid Mechanics, I K International Publishing, 2011

REFERENCES

- 1. Marine Hydrodynamics, Newman, J. N., Cambridge, MA: MIT Press, 1977
- Applied Hydrodynamics, Vallentine, Newness Butterworth, 1967. 2.
- 3. Fluid Mechanics, Walther Kaufmann, Tata McGraw-Hill Publishing Co, Ltd., 1963.

(12 Hours)

(12 Hours)

(10Hours)

Total : 60 Hours

(14 Hours)

(12 Hours)

Boundary Layer Th	eory, Schlichting, Springer Verlag, 2001

PROGRAM	BE-Naval Archite	cture & Offshore Er	ngineeri	ng					
Course Code:	Course No		L	Т	Р	С			
UDMCC02	STRENGTH OF N	MATERIALS	3	0	0	3			
Year and Semester	II Year & I	II Semester		Contact ho	ours per week				
Prerequisite course	Engineering	g mechanics			(3Hrs)				
	Humanities and Social Sciences	Management courses	Profes	onal Elective					
Course			\checkmark						
category	Basic Science	Engineering Science	Ope	n Elective		Mandatory			
Course Objective	 To understand To draw the sl To learn about 	l about the concept of hear force and bendi t the theory of simpl	of stress ing mon le bendi	strain relation nent diagram ng	onship s of beams unde	er loads			

	 4. To study about the stresses on shells due to internal pressure 5. To understand about the concept of torsion of shafts 														
	4. To study about the stresses on shells due to internal pressure														
		5. 7	Го und	erstan	d abou	it the c	oncep	t of toı	sion o	f shafts					
		1. 7	Fo calc	ulate	the tor	sion in	spring	gs							
		Δfte	succe	seful (comple	etion o	f the c		the str	idente e	hould b	e able i	to		
		1	Decel	1		f atma		vin mal	ational	hin on	the h		h diff	amont 1	adina
		1.	Kecal	1 COII	cept (JI SUC	58-5112	in lei	ations	mp on	the D	als wi	un unno		Jaumg
			condi	tions.											
Course		2.	Const	ruct s	hear fo	orce ar	d ben	ding n	oment	t diagra	ms of v	arious	beams	under v	arious
Course			load c	conditi	ions.										
Outcom	le	3.	Solve	the b	ending	stress	of var	ious s	ection	of bean	ns.				
		4	Identi	fy the	imnac	t of st	resses	on she	lls due	to inte	rnal nre	esure			
		5	Disou	ing the	movir	num n	ower	and tor	ano tr	nomitt	ad through	ugh Sol	id choft	and L	Iollow
		5.	Discu	iss uie	шалп	num p	ower a		que u	ansmu		ugii 501	iu snan	is and I	lonow
			shafts		_							_			
		6.	Discu	ss the	maxır	num sl	lock a	bsorbi	ng cap	acity of	closed	and op	en coil	springs	•
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	-	-	-	1	1	1	1	1	1	1	2	-	1
CO2	2	2	-	-	-	1	1	1	2	1	1	1	2	-	1
C03	2	2	2	2	-	1	2	1	2	1	1	1	1	- 1	1
C05	2	2	2	2	_	2	2	1	3	1	_	1	1	1	1
CO6	2	2	2	2	-	2	2	1	3	1	-	1	1	1	1
AVERAGE	2	2	2	2	-	1.5	1.5	1	2.1	1	1	1	1	1	1
CORRE		ON 1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH)													
UNIT -1 D	DEFO	RMATION OF METALS 9 HOURS													
Str	ess an	nd strain- Behaviour of mild steel in tension up to rupture – Stress – Strain diagram -Hooke's													
law Simn	le pro	blome	in to	ncion	comn	raccio	n and	choor	force	Droble		nnactin	a linaa	r latar	al and
iaw- Simp	de pro				comp		i anu bainna	lation	loice.				g inica	1, 14101	ai anu
volumetric	defor	nation	-Elas	stic co	nstant	s and t	neir re	lations	mp - I	roblen	is on er	astic co	nstants		
UNIT- II S	HEAR	FOR	CE ANI	D BEN	DING	MOM	ENT I	DIAGF	RAMS	OF BEA	AMS		HOU.	RS	
Cla	assific	ation c	of bean	ns –sh	ear foi	ce and	l Bend	ing mo	oment	-types	of load	ings – I	Relatior	ıship be	etween
load, force	and be	ending	mome	ent at a	a sectio	on – sł	near fo	rce dia	gram	and ben	ding m	oment	diagran	1	
UNIT – II	І ТНЕ	ORY	OF B	ENDI	NG				0		U U		HOU	RS	
Th	eory c	of sim	ole her	ding	- Assi	imptio	ns – N	Jeutral	avis -	– bendi	no stre	ss distr	ibution	_ mom	ent of
racistanco	bond	ling og	unotion		I_f/v_	\mathbf{E}/\mathbf{D}	notion	modu	luo r	ootongu	lor and	l oiroul	r cooti	nioni	ron oth
		ing eq	luation	-1vi/	1 - 1/y - 1	L/K = s		f	1us - 1	cetange	11a1 allu			JIIS – St	length
of beam $-s$	simple	probl	ems in	volvir	ig flex	ural to	rmula	for cal	ntileve	r and si	mple si	apporte	d beam		
UNIT – IV	THI	N ANI	D THI	CK S	HELL	'S							9 HOU	URS	
Th	in and	thick	cylind	rical s	hell –	Failure	e of thi	n cylii	ndrical	shell-l	Hoop ai	nd long	itudinal	stress	simple
problems –	- chang	ge in d	imensi	ons-1	proble	ms –te	nsile s	tress in	nduced	l in a th	in sphe	rical sh	ell– sin	nple pro	blems
– change ir	ı diam	eter ar	nd volu	me of	a thin	spher	ical sh	ell- pr	oblems		1			1 1	
UNIT. V	THEO	RV O	F TO	RSIO	ΝΑΝΙ) SPR	INCS	en pr					0 HUI	IRS	
		ftore			ntiona	JOIN		anatio	• ata	an ath	facid	and he			
111		of tors	1011 - 1	Assun	ipuons	- tor	sion e	quation	1 - su	engun c	n sona		mow si	liants –	power
transmitted	I –Pola	ar mod	ulus –	Torsi	onal ri	gidity	– strer	igth an	d stiff	ness of	shafts -	-Proble	ms. Ty	pes of s	prings
 Laminate 	ed and	l coile	d spri	ngs ar	ıd app	licatio	ns – 1	Гуреs	of coi	led spri	ings –c	losely	coiled 1	helical	spring
subjected t	o an a	xial lo	ad – p	roblei	ms to o	determ	ine sh	ear str	ess, de	eflection	n, stiffr	less and	l resilie	ence of	closed
coiled heli	cal spr	ings	-												
	1	0										то	TAL :	45 H	DURS
												10			JUND
TEXT BO	OKS :														
1. Str	ength	of Ma	terials.	R.K.	Bansa	l, Laxı	ni Pub	licatio	ns Pvt	. Ltd., 1	New De	elhi, 3rd	l Editio	n, 2010	
2 Str	 Strength of materials, S.S. Rattan, Tata McGraw hill New Delhi 2008, ISBN 9780070668959 														
Pafarances															
1 Strongth of Materials RK Sarker I Edition 2002 Tate McGray hill New Dalhi															
1. Strength of Materials, B K Sarkar, I Edition, 2003 Tata McGraw hill, New Delhi.															
2. Str	ength	ot Ma	terials,	S. Ra	ımamr	utham,	, 15 ^m E	an 20	04, Dh	anpatR	ai Pub.	<u>Co., N</u>	ew Dell	n1.	
Designed	by		" De	partm	ent of	i Nav	al Arc	chitect	ure &	Offsh	ore Eng	gineeri	ng"		

PROGRAMME	BE-Na	BE-Naval Architecture & Offshore Engineering												
Course Code	Course	e Name :		L	Т		Р	С						
UDMCC01	MATI	ERIAL SCIE	NCE	2	0		0	2						
(Common for BE (ME, N	A, PE & ME	CH))											
Year and Semester		II Year & II	I Semester	Contact hour	rs per week									
Prerequisite course	NIL			(2 Hrs)										
	Hun Soci	nanities and ial Sciences	Management courses	s Professio	onal Core	Pro	fessional El	ective						
Course category				✓										
	Basic S	cience	Engineering Science	Open Elect	ive		Manda	itory						
Course Objectives	The pi	urpose of this	course is to provid	le comprehen	sive knowl	ledge	e about va	rious						
	materials used in production of engineering applications													
	At the	end of this cou	urse students should	be able to										
Course Outcome	1	Select the m	naterials and their a	lloys phases	through pl	nase	diagram.							

			2	List v	variou	s heat	treatr	nent n	nethoo	is appl	ied on	materia	als				
			3	Dem	onstra	te the	vario	us pro	pertie	s of en	gineeri	ng mat	terials				
			4	Inter	pret th	e beh	aviou	r of m	ateria	ls unde	er force	and th	eir test	ing me	thods		
			5	Inspe	ect the	mech	anism	of co	rrosio	n and f	factors	influe	ncing c	orrosic	on		
			6	List b in ma	basic aspects of advanced engineering materials and their applications narine industry												
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	-	-	-	-	-	1	1	1	2	1	1	1	2	-	-		
CO2	-	-	-	-	-	1	1	1	2	1	1	1	2	-	-		
CO3	-	-	2	2	-	1	1	1	2	1	1	1	1	-	-		
CO4	2	2	2	2	-	1	1	1	2	1	1	1	1	1	-		
CO5	2	2	2	2	-	1	1	1	2	1	1	1	1	1	-		
CO6	2	2	2	2	-	1	1	1	2	1	1	1	1	1	-		
AVERAGE	2	2	2	2 - 1 1 1 2 1 1 1 1.3 1 -													
CORREL	LATIO ELS	N	1	. SLIGH	SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH)												

UNIT 1 - MATERIALS SCIENCE AND ENGINEERING

Introduction, Developments in materials, engineering profession and materials, Classification of materials, criteria for selection of materials for the required application, ferrous materials: Cast iron, Steel, Stainless Steel, Prominent alloy steel. Non-Ferrous materials: Copper, Brass, Bronze, Aluminium, Lead, Tin, Titanium. Materials for High and Low temperature service, classification of heat resistant materials

UNIT 2 - PROPERTIES OF MATERIALS

Mechanical Properties: Hardness, Strength, Toughness, Stiffness, Ductility, Malleability, Harden ability, creep and fatigue Electrical properties: Conduction, Semiconductors and insulators Optical properties: Absorption, Reflection, Transmission and Refraction optical fibres and lasers. Magnetic properties: Various types of magnetic materials, Diamagnetic, Paramagnetic, Ferromagnetic, Ferrites, hard and soft magnetic materials Thermal properties: Thermal expansion, Heat capacity, Thermal conduction, Thermal Stresses.

UNIT 3 - HEAT TREATMENT

Heat treatment - Annealing, Normalizing, Hardening, Tempering Case Hardening – Carburizing, Nitriding, Cyaniding and carbon nitriding, Flame hardening, Induction Hardening

UNIT 4 - MATERIAL TESTING

Study of fractures of engineering materials - Elastic deformation, Plastic deformation, Stress- Strain diagrams; Properties obtained from the tensile test Destructive testing - Tensile testing, compression testing, Impact Testing, Hardness test, Jominy end quench test for harden ability of steel. Nondestructive testing - Visual Inspection, Hammer test, Radiography, Magnetic particle inspection, Liquid Dye penetration test, Ultrasonic inspection test

UNIT 5 - MATERIALS ENVIRONMENT INTERACTIONS

Principles of corrosion, factors influencing corrosion, Basic Mechanism of corrosion, Electrochemical corrosion, direct dissolution mechanisms, Dry and wet corrosion, galvanic corrosion. Methods of corrosion control, cathodic and anodic protection, corrosion inhibitors. Surface coatings, corrosion monitoring.

Total: 30 Hours

6Hrs

6Hrs

6Hrs

6Hrs

TEXT BOOKS

1 Callister william D.Jr, "Material Science and Engineering an Introduction", John Wiley & sons inc.

2 O.P.Khanna, "Material Science and Metallurgy", Dhanpat Rai Publications, 2014 edition.

REFERENCES

1 Schaeffer J.P: Saxena A, Antolovich S.D, Sanders T.H. Jr., Warner S.B., "The Science & Design of Engineering Materials", McGraw-Hill International

2 Askeland Donald R. and Phule P.P., "The science and engineering materials", Thomson learning.

Designed by "Department of Mechanical Engineering"

PROGRAM	BE-Naval Architecture & Offshore Engineering												
Course Code	Course Na	ime :	L	Т	Р	С							
UDNA3PA	STRENGTH OF M. LABORATORY	ATERIALS	0	0	2	1							
Year and Semester	II Year & I	II Year & III Semester Contact hours per week											
Prerequisite			(2Hrs)										
course													
Course	Humanities and Social Sciences	Management courses	Profes	sional Core	Professio	onal Elective							
Course				\checkmark									
category	Basic Science	Engineering Science	Oper	n Elective		Mandatory							
Course	1. To learn about	different types of t	esting me	ethods of me	tals.								
Objective	2. To evaluate ma	terial testing on ela	asticity										

		3. To evaluate material testing on hardness													
		4. T	o eval	uate m	aterial	testin	g on s	hear st	rength						
		5. T	o Dete	rmine	modu	lus of	rigidit	v of or	en spr	ing and	closed	coil sp	rings.		
		After	· succe	essful d	comple	etion o	of the c	ourse	the str	idents s	hould b	e able i	to		
		1 Fr	valuate	the	values	of vi	eld str	ress h	reakin	σ stress	and u	iltimate	stress	of the	given
		1. 1.	anima	n unde	values	ion too	+	0.005, 0.	Cuxin	5 54 65	, and a	intillate	50055	or the	Siven
		sp 2 D								~ 4.0.04 .0		line he	uduaaa		
Course	e	2. D	various specimens												
Outcom	ne	va	various specimens 2. Experiment with Deflection test on Mild Steel, Aluminium to find the second standard												
		3. Ez	3. Experiment with Deflection test on Mild Steel, Aluminium to find the young's modulus.												
		4. Es	4. Estimate the modulus of rigidity of Mild steel using torsion test												
		5. Es	stimate	e the st	tiffnes	s of th	e open	coil a	nd clos	sed coil	spring	and gra	ide then	n.	
		6. Ez	xperim	nent w	ith giv	en spe	ecimer	n to fir	d the	compre	ssion s	trength	and fat	tigue st	rength
		an	id imp	act str	ength o	of mat	erials.			ľ		C		C	U
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	-	-	3	-	1	3	3	-	3	3	1	1
CO2	3	3	3	-	-	3	-	1	3	3	-	3	2	1	1
CO3	3	2	2	-	-	3	-	1	3	3	-	3	2	1	1
CO4	3	3	3	-	-	3	-	1	3	3	-	3	3	1	1
<u> </u>	3	3	3	-	-	3	-	1	3	3	-	3	3	1	1
	3	2	2	-	-	3	-	1	3	3	-	3	2 2 5	1	1
CORRELATI		Z.I	2.1	- SUIGE	TI OW		-	2 MOD	FRATE	MEDIUM	-	3 5	LIBSTAN	TIAI (HIC	TH)
LIST OF I	FXPF	RIME	INTS	I. DEIGI	II(LO II)		2. 1100		MEDICIN)	5.0	00001111	TI IL(III	511)
1 Test on	Ductil	A Mat	oriale	Findia		ing's I	Modul	us of F	lastici	ty viel	d noint	nerce	ntage	longatio	on and
1. Test off	Ducti	le iviat		T IIIuii	ig i ot	ing 51	viouui	1 a 44 i m a		ty, yich	a pointa 1 ata a 1	s, perce	mage e	iongan	m and
percenta	ige rec	luction	1 in are	a, stre	ess stra	in diag	gram p	nouing	, tests	on mile	i steet.				
2. Hardnes	s lest	Test: Determination of Rockwell's Hardness Number for various materials like mild steel, high													
carbon s	carbon steel, brass, copper and aluminium.														
3.Beam D	eflecti	ion Te	st: Def	flectio	n test o	on Mil	d steel	and A	lumin	ium– re	lation b	between	i load ai	nd defle	ection.
4. Impact t	test: Fi	inding	the real	sistanc	e of m	ateria	ls to ir	npact 1	oads b	y Izod	test and	l Charp	y test.		
5 Tests or	est. Finding the resistance of materials to impact loads by izou test and Charpy lest.														

- 5. Tests on springs of circular section: Determination of modulus of rigidity, strain energy, shear stress and stiffness by load deflection method (Open / Closed coil spring)
- 6. Shear test: Single or double shear test on M.S. bar to finding the resistance of material to shear load.
- 7. Cupping Test: Testing the deformability of a sheet and Finding the Cupping number.

TOTAL: 30 HOURS

Designed by

"Department of Naval Architecture & Offshore Engineering"

PROGRAM	BE-Naval Architecture & Offshore Engineering										
Course Code	Course Name :		L	Т	Р	С					
UCLECPD	Spoken English II	Ι	0	0	2	1					
Year and Semester	II Year & I	III Semester	Contact hours per week								
Prerequisite course	Basic Language Ski	ills	(2 Hrs)								
	Humanities and Social Sciences	Management courses	Professiona	l Core	Profess Elective	ional e					

Course cat	egory	r	Basi	c Scie	nce		Engine	ering	Scienc	e Op	en Elec	tive		Mand	atory
				۷											
Course Ob	ojectiv	'e		I. Le	earn va	arious	saspec	cts of	differe	ent cult	ures ar	nd the r	need fo	or the ef	fective
				111	upen	conar	ommu	nicati	on						
			,	2. U be	nderst tween	andin mem	g the bers	techn	iques	of cor	nmunic	cation	betwee	en frien	ds and
						i	n grou	ıp							
				3. U to	se of la avoid	angua conf	ige eff lict nd ten	ective	ely at i	nterpe	rsonal o	commu	inicatio	onal sit	uations
			4	4 M	ould f	he ne	rsonal	itv so	as to	reduce	and re	nair co	onflicts		
				5. Le	earn th	ie nee	d for	social	izatio	1. 1.	una re	pun ee	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Course Out	tcome)	At th	At the end of the course, the student should be able to:											
				1. R	ecogn	ize a	aspect	ts of	vario	ous cu	iltures	and	the n	eed fo	r
				in	terper	sona	l com	muni	catio	n. Giv	e prese	entatio	n with	out an	У
				in	hibiti	on									
			,	2. D	emon	strate	e the r	need f	for ef	fective	e comr	nunica	ation b	betwee	n
				tv	vo pec	ple/g	group	s.			• . •				
				3. M	lake u	ise of	t effe	ctive	and a	approp	oriate	langua	ige at	variou	S
				111 D	terper	sona	l situa n dah	ations	s to av		onflict	, tensi	on and	1 stress	S.
				Гi ar	a ucip	suaci	n uet velv	bates	and c	iiscus	sions t	o argi		ectiver	У
				a	ia per	Suasi	very.								
			4	4. Pi	actice	e the	IP pr	incip	les so	as to	reduc	e and	repair	confli	ct in
				in	terper	sona	l relat	tionsh	nips.						
			:	5. E	xplain	i fai	mily	and	SOC	ial re	elation	ships	and	need	for
				SC	cializ	ation	l.				IDO				
	1	1	(5. D	iscuss	s case	studi	ies in	relati	on to	IPC		1	1	DCO
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
C01								2	2	2				1	1
CO2 CO3								2		2				1	1
CO4								2	2	2				1	1
CO5 CO6								2	2					1	1
AVERAGE								2	2	2				1	1
CORRELAT	ION LE	VELS	1	. SLIGH	IT(LOW	<i>(</i>)	2	. MOD	ERATE(MEDIU	M)	3. S	UBSTAN	JTIAL(HI	GH)
Unit I: PR	ESEN	NTAT	ION	SKIL	LS									(6 H	lours)

Axioms of interpersonal Communication - One minute presentation – Extempore - Formal Presentation on the chosen topics - Greeting and Introducing - Offering Help.

Unit II: APPREHENSION AND ASSERTIVENESS

(6 Hours)

Group Discussion - Aggressiveness and assertiveness - perception in interpersonal communication-Making Requests - Telephonic Conversation

Unit III: VERBAL AND NON VERBAL MESSAGES

Word Stress - Sentence Stress and Intonation-Body language-signs- gestures- postures- kinesicsparalinguistic features (accent, pronunciation, volume, pause, and pitch).

Unit IV: POWER IN INTERPERSONAL RELATIONSHIP

Conflict in interpersonal relationships - Conflict Resolution - Relationship maintenance and repair-Asking and Giving Permission-Giving Instructions and Directions

Unit V: SOCIALIZATION

Benefits of socialization- Effect of social media - Case studies (common /domestic /academic /work situations).

Reference Books

1. *DeVito, Joseph,* The *Interpersonal Communication* Book, 13th Edition, Published by *Longman* Pub Group, Updated in its 13th edition, 2000.

PROGRAM	BE-Naval Architecture & Offshore Engineering										
Course Code:	Course Nam	ie:	L	Т	Р	С					
UDNA3PC	SHIP DRAWING- I	LINES PLAN	0	0	3	2					
Year and Semester	II Year & III	Semester		Contact ho	urs per week						
Prerequisite course	NII	_		(31	Hrs)						
Course	Humanities and Social Sciences	Management courses	Profe	ssional Core	Professi	onal Elective					
course				\checkmark							
category	Basic Science	Engineering Science	Ope	en Elective		Mandatory					

Total: 30 Hours

(6 Hours)

(6 Hours)

(6 Hours)

Course Objectiv	e ve	1.To	1.To draw lines plan of a vessel manually and initiate in CAD software													
		After	comp	letion	of the	course	e, the s	tudents	s will b	be able	to					
		1.	Desig	n the c	omple	te line	s plan	of the	given	vessel	manual	ly				
C		2.	Devel	op Off	fset tab	ole mai	nually		0			2				
Course	e	3.	Create	e CAD	drawi	ng of	lines p	lan								
Outcom	ne	4.	4. Develop the Bonjean Curves manually													
		5	5. Predict different views of the ship and draw manually													
		6	6 Design faired sets of lines plan including the faired offset table which can be directly used													
		0.	hv the	CNC	machi	ne for	the fa	bricati	on Of	the hull	11501 14	.010 1111	en eun	e unee	uy useu	
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	-	-	3	3	1	-	1	-	-	-	1	3	3	3	
CO2	-	-	-	2	2	-	-	2	-	-	-	1	3	3	3	
CO3	-	-	-	3	1	1	-	1	-	-	-	1	3	3	3	
CO4	-	-	-	3	2	1	-	1	-	-	-	1	3	3	3	
CO5	-	-	-	3	3	2	-	1	-	-	-	1	3	3	3	
CO6	-	-	-	3	3	3	-	-	-	-	-	1	3	3	3	
AVERAGE	-	-	- 2.8 2.3 1.6 - 1.2 1 3 3 3													
CORRELAT	ION LE	VELS	1	I. SLIGH	IT(LOW)		2. MOD	ERATE(MEDIUM)	3.	SUBSTA	NTIAL(H	IGH)	
I INFO DI	ANT															

LINES PLAN

Drawing lines plan manually using the derived offset table.

OFFSET

Deriving the Faired, Offset table

CAD DRAFTING

Basic CAD commands, drawing of lines plan in CAD software

BONJEAN CURVES

Calculation of Bonjean curves & plotting it manually and in CAD software

Total: 45 Hours

TEXT BOOKS:

1. The Society of Naval Architecture & Marine Engineers, 1980

- 2. Eric c. Tupper, Introduction to Naval Architecture
- 3. Principle of Naval Architecture by Edward V.Lewis, Volume- I.

REFERENCES:

1. Robert Taggard, Ship Design & Construction.

Designed by "Department of Naval Architecture & Offshore Engineering"

SEMESTER-IV

PROGRAM	BE-Naval Architecture & Offshore Engineering										
Course Code:	Course N	lame :	L	Т	Р	С					
UDNA401	THERMODYNAMI MACHINERY	CS AND MARINE	3	0	0	3					
Year and	II Voor &	W Somestor									
Semester	II Teal &	IV Semester									
Prerequisite	N	T H									
course	ľ	NIL									
Course	Humanities and	Management	Professio	onal Core	Professional El	ective					
course	Social Sciences courses										
category				\checkmark							

		Basic	c Scien	ce	Engi: Scier	neering nce	g	Open	Electi	ve						
		4 551					-			-						
		1. Tł	ns cou	irse pr	ovides	basic	know	ledge ab	out the	ermody	namics	•				
Course	e	2. To	o unde	rstand	about	conce	epts of	heat trai	nsfer.							
Objectiv	ve	3. To	. To understand the heat flow direction.													
		4. Pr	Provide the knowledge about marine engines.													
		After	r com	oletion	of the	e cours	se, the	students	will b	e able t	0					
		1. D	efine t	hermo	dynar	nics la	ws and	d their a	oplicat	ion						
Course	e	2. E:	xplain	the kr	nowled	lge on	conce	pt of ent	ropy a	nd avai	lability	,				
Outcom	ie	3. III	lustrat	e the t	hermo	dynan	nics cy	cles and	their a	applicat	tions					
		4. W	hat is	enthal	pv. re	versib	le and	irreversi	bility	TT						
		5 D	istinoi	iish va	rious	machi	nes us	ed in ma	rine ve	hicles						
		6. D	iscuss	the co	ncept	of hea	t flow									
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	1	-	2	-	1	-	-	1	1	2	-	1	1	2	2	
CO2	1	-	2	-	1	-	-	1	1	2	-	1	1	2	2	
CO3	1	1	2	-	1	-	-	1	2	2	-	1	1	2	2	
CO4	1	1	1 2 - 1 - 1 2 2 - 1 1 2 2													
CO5	1	1	2	-	1	-	-	1	2	2	-	1	1	2	2	
CO6	1	1	1	-	1	-	-	1	2	2	-	1	1	2	2	
AVERAGE	1	1	1 1.8 - 1 1 1.7 2 - 1 1 2 2													
CORRELAT	ON LEV	VELS	1	. SLIGH	IT(LOW)		2. MODE	RATE(N	(IEDIUM)		3. S	UBSTAN	TIAL(HI	GH)	

Unit I:Basic Concepts

Concept of Continuum, Comparison of microscopic and macroscopic approach, Path and point functions; intensive and extensive properties, specific quantities, Systems, Quasi static Process, reversible and irreversible Processes; Heat and work transfer; Zeroth law of thermodynamics - concept of temperature and thermal equilibrium.

Unit II: First law of Thermodynamics

Concept of energy and various forms of energy; specific heats; first law applied to elementary processes, closed systems and control volumes, steady and unsteady flow processes, internal energy, enthalpy.

Unit III :Second Law of Thermodynamics

Heat reservoir, Source and Sink; Heat Engine, Refrigerator and Heat Pump; Statement of second laws, Carnot cycle and Reversed Carnot cycle, Clausius inequality, concept of entropy, entropy change for - pure substance, ideal gases, T-s diagrams; third law of thermodynamics, Available and non-available energy of a source

Unit IV: Thermodynamics cycles

Air-standard Brayton cycle, Carnot vapor cycle, Rankine reheat cycle, ideal Rankine cycle, air-standard Otto cycle, air-standard Diesel cycle, vapor-compression refrigeration cycle.

Unit V:Marine Machineries

Diesel Engines, Marine Auxiliary machineries and controls, Naval Architecture and Marine electrical machineries.

TEXT BOOKS

- 1. Nag.P.K., "Engineering Thermodynamics", 5thEdition, Tata McGraw-Hill, New Delhi, 2008
- 2. Cengel. Y and M.Boles, "Thermodynamics An Engineering Approach", 7th Edition, Tata McGraw Hill, 2010
- 3. DrSavithri, Mukesh, Sakthivel, "Engineering Thermodynamics", 1st Edition, ARS Publications, 2017
- 4. HDMcGeorge,"MarineAuxiliary Machinery"7thedition, Butter Worths, London, 2001.

REFERENCES

9Hrs

9Hrs

9Hrs

9Hrs

9Hrs

Total hours:45 Hours

- 1. Natarajan E., "Engineering Thermodynamics: Fundamentals and Applications", Anuragam Publications, 2012
- 2. Holman.J.P., "Thermodynamics", 3rd Edition, McGraw-Hill
- 3. Rathakrishnan. E., "Fundamentals of Engineering Thermodynamics", 2nd Edition, Prentice-Hall of India Pvt. Ltd
- 4. Chattopadhyay, P, "Engineering Thermodynamics", Oxford University Press, 2010
- 5. DW Smith "Marine Auxiliary Machinery", 6th edition, Butter Worths, London, 1987.

Designed by	"Department of Naval Architecture & Offshore F	Engineering"
	1	0 0

PROGRAM	BE-Naval Architecture & Offshore Engineering										
	Course Na	ame :	L	Т	Р	С					
Course Code: UDNA402	MARINE PRODUCT TECHNOLOGY	ION	3 0 0 3								
Year and	II Voor & I	V Somestor									
Semester		v Semester									
Prerequisite course	N	IL		(3Hrs)						
Course	Humanities and Social Sciences	Management courses	Profess	sional Core	Professio	nal Elective					
category				\checkmark							

		Bas	sic Scie	ence	E	Enginee Scien	ering ce	0	pen El	ective		Mandatory				
		1. 7	This co	ourse p	orovid	es basi	ic kno	wledge a	bout s	hipyarc	ls.					
Course	_	2. 7	Fo pro	vide tl	ne clas	sificat	tion an	d functio	ons va	rious sł	nip stru	ctures.				
Objectiv	ve	3 1	Drovid	o tho l	moule	dae al	hout c	lassificat	ion so	ciety	np su u					
objecti	ve	J. 1		e uie r		uge a	oout c.		.1011 50	ciety.						
			To understand the testing methods of ship structures.													
		1. I	List the ship terms and shipyard functions													
		2. (. Compare the knowledge about basic ship structures													
Course	e	3 (Compare the knowledge about various classification societies and their responsibilities													
Outcom	ne		- ,	·	KIIO W	1	··	various	c1u5511.	cation	societi	25 and t		sponsio	mues	
		4. 3	summ	arize S	shipya	rd pra	ctices									
		5. I	Elabor	ate ab	out the	e latest	t techn	ologies i	in ship	buildin	g					
		6. (Compa	are the	testin	g metł	nods o	f ship str	ructure	S						
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	-	-	1	1	1	-	1	1	1	1	-	1	2	2	
CO2	-	-	-	1	1	1	-	1	1	1	1	-	1	2	2	
CO3	-	-	-	1	1	1	-	1	1	1	1	-	1	2	2	
CO4	-	-	1 1 1 - 1 1 1 - 1 2 2													
CO5	-	-	-	2	1	1	-	1	2	2	2	-	1	2	2	
CO6	-	-	-	2	1	1	-	1	2	2	2	-	1	2	2	
AVERAGE	-	-	<u>1.3</u> <u>1</u> <u>1</u> <u>-</u> <u>1</u> <u>1.3</u> <u>1.3</u> <u>-</u> <u>1</u> <u>2</u> <u>2</u>													
CORRELAT	ION I FY	VELS	1 1	SI IGE	IT(LOW	0		2 MODE	R ΔΤΕ(Λ	(FDILM)		3 5	URSTAN	ΙΤΙΔΙ (ΗΙ	GH)	

Unit I:Introduction

Ship Terms; Classification of ships; Shipyard facilities, Shipyard layout, Steel stockyard - material preparation - straightening of plates, sand blasting and their standards; Rule requirements - Stresses in Ship's structure: Hogging - Sagging - Racking - Pounding - Panting 9Hrs

Unit II:Ship Structures

Basic Structures – Double Bottom, Side Shell or Side Tanks, Main Deck Structures, Bulkheads, Fore Peak and Aft peak, Super Structures - Accommodation decks and Forecastle Deck; Rudder and their types; Propeller and their types: 9Hrs

Unit III: Classification Societies

Classification societies, Steel Standards - Steel Grades, Inspections; Hull fabrication; IACS new building standards; Periodical Surveys; Surveys During Fabrication **Unit IV:Shipyard Practices** 9Hrs

Plate preparation, Prefabricaton – Nesting, lofting, bending – cold bending, heat line bending; Fabrication - assembly of structural panels, units and blocks, inspections during production, Erection of ship's hull and their problems; Launching

Unit V:Advanced Technologies 9Hrs

Robotic Welding; Ship lift, group technology, Laser application.

Total hours:45 Hours

TEXT BOOKS

- 1. George J. Bruce, David J. Eyres (2012), "Ship Construction", Butterworth-Heinemann, 7th edition.
- 2. Robert Taggart, "Ship Design and Construction", SNAME, USA.
- Stokoe, E.A., "Reed's Ship Construction for Marine Engineers", 1st Edition, Thomas Reed Publication, 3. London, 2000.

REFERENCES

- 1. Richard Lee Storch, Colin P. Hammon, Howard McRaven Bunch, and Richard C. Moore, "Ship Production, 1st Ed., SNAME,1995
- 2. H.J. Pursey, "Merchant Ship Construction", 7th Edition, Brown Son & Ferguson Ltd. Glasgow Great Britain, 1994.

Designed by "Department of Naval Architecture & Offshore Engineering"

PROGRAM	BE-Naval Architecture & Offshore E	ngineeri	ng		
Course Code:	Course Name :	L	Т	Р	С
UDNA403	ELEMENTS OF OFFSHORE ENGINEERING	3	1	0	4
Year and	II Voor & IV Somestor				
Semester	II Tear & IV Semester		Contact ho	urs per week	
Prerequisite course	NIL		(4Hrs)	

		Humanities and Social SciencesManagement coursesProfessional CoreProfessional Elective												ctive	
Course	e	\checkmark													
categor	у	Basic Science			E	Engineering			Open Elective			Mandatory			
						Scienc									
		1. This course provides basic knowledge about water waves.													
Course		2. To provide the classification and functions various Offshore structures.													
Course	5	3. To understand the installation methods of offshore structures.													
Objectiv	ve	4. Pr	ovide	the kn	owledg	ge abo	ut con	structi	on mat	erials.					
		5 To understand the testing methods of offshore structures													
		After completion of the course, the students will be able to													
		1 Define the water wave mechanics													
		 Define the water wave incentations. Distinguish the different types of effective structures and their and listing. 													
Course	2	2. Distinguish the different types of offshore structures and their applications													
Outcom	ne Ne	3. Distinguish the elements and installation methods of offshore structures													
outcon		4. Predict material for offshore structures													
		5. Choose Inspection and maintenance of offshore structures													
		6. C	6. Criticize different types of offshore structures elements, material used for structures and												
		installation methods													
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	1	-	-	1	-	-	2	1	1	2	2
CO2	-	-	-	-	1	-	-	1	-	-	2	1	1	2	2
CO3	-	-	-	-	1	-	-	1	-	-	2	1	1	2	2
<u>CO4</u>	-	-	-	-	1	-	-	1	-	-	2	1	1	2	2
C05	-	-	-	-	1	-	-	1	-	-	2	1	1	2	2
AVERAGE	-	-	-	-	1	-	-	1	-	-	2	1	1	2	2
CORRELAT	ION LEV	VELS	1	. SLIGH	T(LOW)		2. MOD	ERATE(MEDIUM	[)	3. 5	SUBSTAN	TIAL(HI	GH)
UNITI-IN	NITI-INTRODUCTION TO WATER WAVE MECHANICS 12 Hours														

CTION TO WATER WAVE MECHANICS

Ocean Waves - Types, Regular and Random wave description, waves and their properties, Irregular Sea – Analysis methods, Regular waves - Linear wave theory, Boundary conditions, assumptions, Governing Equations,- Dispersion relation, water particle kinematics, orbital motion; Group velocity and its dynamical significance, waves behaviour in deep water and shallow water, wave pressure, energy and power; Wave deformation basics - Problems.

UNIT II -CLASSIFICATION OF OFFSHORE STRUCTURES

Ocean energy and fundamental principles of energy extractions from sea water, Deepwater challenges Introduction to Offshore Structures: Functions of Offshore Structures

Types of Offshore structures, Sub Sea systems and pipe lines. Various environmental loads acting on offshore structures

UNIT III –OFFSHORE STRUCTURE ELEMENTS AND INSTALLATION

Regulations and codes of practice. Topsides and General layout Considerations of offshore platforms. Foundation systems for offshore structures, Towing, launching and installation of offshore structures and pipe lines. Fundamentals of mooring system and mooring cables, Riser – different types of risers, Dredging methods and equipments.

UNIT IV -MATERIAL FOR OFFSHORE CONSTRUCTION

Materials for marine applications, Different types of materials and their applications in marine environment, Properties and selection of materials for marine environment, Corrosion and corrosion protection methods, Introduction to composites for marine environment, Codes of practice for materials in marine environment

UNIT V-INSPECTION AND MAINTENANCE OF OFFSHORE STRUCTURES

12 Hours

12 Hours

12 Hours

12 Hours

Inspection and testing of offshore structures- methods and equipments- non-destructive methods. Structural health monitoring and Repair of offshore structures.

Case study on existing offshore renewable energy systems

TEXT BOOKS

- 1. Subrata K Ckakrabarti., Handbook of Offshore Engineering Vol
- 2. Dawson, T.H., Offshore Structural Engineering Prentice Hall, 1983
- 3. Water wave mechanics for engineers and scientists by Robert G Dean and Robert ADalrymple
- 4. Coastal Hydrodynamics Mani J.S (2011) PHI Learning Pvt. Ltd
- 5. Water waves and ship hydrodynamics by Hermans, A.J.
- 6. ChakrabartiS.K. 1987. "Hydrodynamics of offshore structures ". WIT Press, Southampton, ,UK.

REFERENCE BOOKS

1.Graff, W.J., Introduction to Offshore Structures, Gulf Publ. Co. 1981

Designed by "Department of Naval Architecture & Offshore Engineering"

PROGRAM	BE-Naval Architecture & Offshore Engineering										
Course Code: UDNA404	Course Name :	L	Т	Р	С						
	Theory of Ships	2	1	0	3						
Year and	II Voor & IV Somostor										
Semester	II Tear & IV Semester	Contact hours per week									
Prerequisite	NII	(3Hrs)									
course	INIL										

Total: 60 Hours

Course		Hui	nanities	and nces	Mana	igement	courses	P1	rofessio	nal Core		Prof	essional	Elective	
categor		200								\checkmark					
categor	y	Basic Science Engineering Science Open Elective Mandat								ndatory					
Course		1. This course provides basic knowledge about ship.													
Course	e vo	2. To provide the concept of vessel stability.													
Objecti	ve	3. Functions of classification society.													
		After	After completion of the course, the students will be able to												
		1 Tell basic knowledge on type of ships and its parts													
Course	ב	2 Explain about Shinyard process and its production													
Outcom		2. Design lines plan of a ship and its hydrostatic calculation													
Outcon	le	A Discuss the basis superstant of Chinests Little													
		4. L	4. Discuss the basic concepts of Smp stability												
		5. D	5. Discuss about the Transverse and Longitudinal Stability												
		6. Summarize Stability of ship in damage condition													
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	-	-	1	-	-	1	1	2	2	1	1	2	2
CO2	2										2				
CO3	2	2	-	-	1	-	-	1	1	2	2	1	1	2	2
CO4	2	2	-	1	1	-	-	1	1	2	2	1	1	2	2
CO5	2	2	-	1	1	-	-	1	1	2	2	1	1	2	2
CO6	2	2	-	1	1	-	-	1	1	2	2	1	1	2	2
AVERAGE	2	2	-	1	1	-	-	1	1	2	2	1	1	2	2
CORRELAT	VELS	LS 1. SLIGHT(LOW)					2. MODERATE(MEDIUM)					3. SUBSTANTIAL(HIGH)			

UNIT

I-INTRODUCTION 9Hr

S

Historical developments of ships and shipping transport, Ship Terms, Role of Classification and other regulatory bodies, Type of ships. Ships for transport, Ships for Defence, Main particulars and form coefficients.

UNIT II-CARGO EFFECT ON STABILITY

Effect of weights on C.O.G (shifting, lifting, loading & unloading); Equivolume inclinations - shift of C.O.B. due to inclinations; Moments due to wind, shift of cargo, passengers, turning and non-symmetrical accumulation of ice; Effect of superstructure on stability

UNIT III-TRANSVERSE STABILITY

Initial stability GM, GZ at small angles of inclinations, wall sided ships; Free Surface effects, Effect of grain on Cargo; inclining experiment; MCH (Moment Changing Heel).

Large angle stability - Diagram of statically stability (GZ - curve), Characteristics of GZ - curve, static equilibrium criteria; Methods for calculating the GZ - curve, Cross curves of stability; Dynamical stability diagram of Dynamical stability, Dynamical stability criteria. Stiff/ Tender ship, Wind and heeling effect, IMO criteria

UNIT IV-LONGITUDINAL STABILITY

Trim, longitudinal metacentre, longitudinal centre of flotation; Moment to change trim, Trimming moment; Trim calculations - addition, removal and transference of weight, change of density of water, ballasting, launching

Stability while docking and grounding

UNIT V-DAMAGE STABILITY

Damage stability - Deterministic and Probabilistic approach; Recommendations of classification societies and governmental authorities - Intact and damage stability rules, Bilging of compartment

Flooding calculation, Floodable length

Practical: Stability check of M. V. HINDSHIP – Trim and Stability Booklet and launching calculations Total:45 Hours

9Hrs

9Hrs

9Hrs

TEXT BOOK

- 1.Edward V Lewis, Principle of Naval Architecture, Vol-1, III EDITION, The Society of Naval Architects and Marine Engineers, 1988
- 2.K. J. Rawson & E. C. Tupper, Basic Ship Theory, V Edition, Butterworth Heinmann, 2001

REFERENCES

- 1.E. C. Tupper, Introduction to Naval Architecture, III Edition, Butterworth Heinmann, 2002
- 2. C. B. Barrass and Captain D. R. Derrett, Ship Stability for Masters and Mates, Elsevier, 2006.

Designed by	"Department of Naval Architecture & Offshore Engineering"
-------------	---

PROGRAM	BE-Naval Architecture & Offshore Engineering											
Course Code:	Course Name :	L	Т	Р	С							
UDVCC04	Ethics and Values	3	0	0	3							
Year and	II Voor & IV Somostor	Contact hours per week										
Semester	II Teal & IV Semester	(3Hrs)										

Prerequis course	site e	NIL														
Course	a	Humanities and Social SciencesManagement coursesProfessional CoreProfessional Elective														
category				\checkmark												
	У	Basic Science Engineering Science Open Elective										Mandatory				
Course	e	1.To understand the importance of engineering ethics2.To learn the various steps and ways to resolve the ethical issues indesign and practice														
	ve	3. profe	3.To inculcate the importance of human values and practice them in personal and professional life													
Course Outcom	e ne	 After the completion of the course, the students will be able to 1. Define ethics, its types and importance in engineering course 2. Explain ethical dilemmas, code of ethics of professional engineering societies 3. Identify various ethical theories and know the applications to engineering situations 4. Examine issues surrounding the engineer's duty and understand how computers have been used unethically 5. Classify dimensions of human values and its practice in personal and professiona life. 										s nations nputers ssional				
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	-	-	-	-	1	-	3	-	-	1	-	1	-	1	
CO2	-	-	-	-	-	3	-	3	2	1	2	-	1	2	1	
CO3	-	-	-	-	-	-	-	3	-	2	2	-	1	2	1	
CO4	-	-	-	-	-	1	-	3	2	3	2	-	1	2	1	
<u>CO5</u>	-	-	-	-	-	2	-	3	1	3	2	-	1	1	1	
CO6	-	-	-	-	-	2	-	3	1	2	1	-	1	-	1	
AVERAGE	-	-	-	-	-	1.5	-	3	1	1.8	1.6	-	1	1.1	1	

UNIT I–Introduction to professional ethics

Definition of profession, engineering and professionalism, dimension of engineering, definition of ethics and moral values, types of ethics - business, personal and professional ethics. Engineering ethics preventive ethics and aspirational ethics, aspirational ethics and professional characters of a good engineer-Case study: Space shuttle challenger and Columbia accidents

UNIT II – Moral reasoning and code of ethics

Moral choices and ethical dilemmas, steps in resolving ethical dilemmas, right-wrong or better-worse, moral decision making as design Code of ethics-engineering standards, importance of codes, abuse of codes, limitations of codes, ethical relativism, justification of codes

UNIT III – Moral frameworks and workplace responsibilities

Determining the facts - known and unknown facts, weighing the importance of facts, rights ethics, duty ethics and utilitarianism. Utilitarian thinking-the cost-benefit approach, the act-utilitarian approach, the ruleutilitarian approach, virtue ethics, self-realization ethics, ethical egoism Professional responsibilities and rights, confidentiality and conflicts of interests, whistle blowing, honesty and research integrity

UNIT IV -Ethical issues in engineering practice hours

Analysis of issues in ethical problems - line drawing, flow charting, conflict problems, environmental ethics – engineering, ecology and economics, environmental moral frameworks, computer ethics – the internet and free speech, property, privacy and additional issues-An application of problem solving methods; Bribery/Acceptance of gifts

UNITV – Human values

Human Life: Concept of a successful life, happy life and a meaningful life. Harmony in Personal and Social Life, Creating a value based work culture, Human values: Character, Humility, Righteousness, Purity,

8 hours

8 hours

9 hours

10 hours

10
Truthfulness, Integrity, Self-restraint, Self-control, and Sense of responsibility, Empathy, Love, Compassion, Cooperation and Tolerance. New dimension of Global Harmony: Democracy, Equality and Social Justice **Total: 45 Hours**

TEXT BOOKS

- Mike W Martin, Introduction to engineering ethics, 2nd edition, McGraw Hill Higher Education, New York, 2010
- 2. Charles B Fleddermann, Engineering ethics, 4th edition, Prentice Hall, NJ, 2012
- 3. Charles E Harris, Michael S Pritchard, Michael J Rabins, Engineering ethics Concepts and Cases, 4th edition, Wadsworth, USA, 2009
- 4. R.R Gaur, R Sangal, G P Bagaria, A foundation course in human values and professional ethics, Excel books, New Delhi, 2010

REFERENCES

1. Caroline White back, Ethics in Engineering Practice and Research, 2nd edition, Cambridge University Press, New York, 2011.

Designed by	"Department of Naval Architecture & Offshore Engineering"
-------------	---

PROGRAM	BE-Naval Architecture & Offshore Engineering				
Course Code	Course Name :	L	Т	Р	С
UDNAO01	BASIC PRINCIPLES OF MARINE VESSEL				
	DESIGN	3	0	0	3

Year and Sem	lester	II	Year (SI	EMES	TER V	T)			Con	tact ho	ours per	week				
Prerequisite c	ourse								(3 H	lrs)						
Course este	~~~~	Hu	manities Scie	and S nces	locial	Mar	nagem	ent co	urses	s Pr	ofession	nal Core	e	Profes	sional E	Elective
Course categ	gory										\checkmark					
			Bas	sic Sci	ence	Engi	neerin	g Scie	nce	O	pen Elec	ctive		Mandat	tory	
Aim / Purpo	se of	То	undersi	tand a	nd ap	ply the	e vario	ous ste	eps i	nvolv	ed in th	e vario	ous pro	cess of i	marine	vehicle
the course		des	rign		11				1				1	0		
Instructional		Stu	dents wi	ents will be able to efining the Marine Environment												
objective of the	ne	1	Definir	fining the Marine Environment ustrating the design process of a Marine Vessel Design												
course		2	Illustra	Illustrating the design process of a Marine Vessel Design												
		3	Identify the stability of floating structure													
		4	Analys	e the s	ship re	esistan	ce and	d pow	verin	g						
		5	Assess	ship r	notior	ns and	hull f	form d	lesig	<u>g</u> n						
		6	Adapt	the ma	arine v	vehicle	e struc	tural	desi	gn ph	ilosoph	y				
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	1	1		1	1	-	1	1	-	1
CO2	-	1	2	1	- 1	1	1	1		1	1	1	1	1	1	1
CO4	-	2	2	1	-	2	1	- 1		1	1	1	1	1	1	1
CO5	-	2	2	1	-	1	1	1		1	1	1	1	1	1	1
CO6	-	-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
AVERAGE	-	1.5	1.5 1.6 1 1 1.2 1 1 1 1 1 1 1 1 1 1													
CORREL LEVI	LATION ELS	N	1.5 1.6 1 1 1.2 1 </td													

UNIT I - MARINE ENVIRONMENT

Ocean Waves, Regular waves, Irregular waves, Beaufort scale, Sea state conditions - Ocean data collection

UNIT II – DESIGN PROCESS

Market Study, Mission requirement, , Identifying the customer needs, System design, System Integration, Design process, Design spiral, Design Stages, Vehicle parameter estimation

UNIT III – STABILITY OF MARINE VESSELS

Hydrostatics, Intact stability, Initial stability, Stability at large angles, Trim, Damage Stability

UNIT IV - HYDRODYNAMIC DESIGN

Ship Resistance components, Estimation of ship resistance, Propulsion characteristics, Ship powering, model tests, Ship Motions, Ship maneuvering, Hullform design

UNIT V - STRUCTURAL DESIGN

Ship building materials, Ship structural components and scantlings, Midship section design, Longitudinal strength, Typical midship sections of bulk carrier, oiltanker and container ships

Total: 45 Hours

TEXT BOOKS

1. Ship Design Methodologies of Preliminary Design by ApostolosPapanikolaou

9Hrs

9Hrs

9Hrs

9Hrs

- 2. Practical Ship Design by D.G.M Watson
- 3. Ship Design for Efficiency and Economy byH. Schneekluth and V. Bertram
- 4. Ship Design and Construction by R.Taggart

REFERENCES

- 1. Basic Ship Theory, Vol.1 & 2 by K.J.Rawson and E.C.Tupper
- 2. Principles of Naval Architecture, Vol. 1,2&3 by Ed.V. Lewis

PROGRAM	3E-Naval Architecture & Offshore Engineering											
Course Code	Course Name:		L	Т	Р	С						
UDNAO02	MARINE POLLUTION REGULATION	S	3	0	0	3						
Year and Semester II Year (SEMESTER IV) Contact hours per week												

Prerequisite c	ourse	NIL	IL (3 Hrs)													
Course este	~~~~	Hun	nanities Scie	s and S ences	ocial	Mar	ageme	ent course	s Pr	ofession	nal Core	e	Profes	sional E	Elective	
Course cate	gory													\checkmark		
		Basi	c Scier	nce		Engi	neerin	g Science	0	pen Elec	ctive		Mandat	tory		
Aim / Purpos the course	se of	Stuc	lents in	nculca	te the	measu	ures a	nd standa	rd to j	prevent	the ma	arine po	ollution	•		
		Stud	ents wi	ill be a	ble to											
		1 I	Definir	efining the nature of pollution and its possible sources.												
	2 Demonstrate the law of the sea key provisions.															
Instructional objectives of	f the	$3 \begin{bmatrix} A \\ S \end{bmatrix}$	Apply measures and understand the requirement of pollution from oil and harmful substances.													
course		4 <i>A</i>	Assess the prevention of pollution from sewage and garbage.													
		5 F	Evalua	te the	air po	llutior	n from	ships du	ring tl	he initia	al phase	e of des	sign.			
		6 I	mprov	the	learni	ng for	a safe	and sour	nd des	ign of s	ships.		0			
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1		-	-	-	-	1	-	-	-	-	-	2	-	1	-	
CO2	-	-	-	-	-	1	1	1	1	2	2	2	-	1	-	
CO3	-	-	1	1	1	1	1	2	1	-	1	2	-	1	1	
CO4	1	-	1	1	-	1	2	-	1	-	2	2	-	1	1	
CO5	-	I	1	1	-	1	2	-	1	-	2	2	-	1	1	
AVERAGE	- 1	- 1	1	- 1	- 1	1	1	1.4	1	- 2	1	2	2	1	1	
CORREL	.ATIOI ELS	N	$\begin{array}{c c c c c c c c c c c c c c c c c c c $													

UNIT I – INTRODUCTION

The oceans – Maritime zones; Need for marine environment protection; Sources of marine pollution.

UNIT II -THE LAW OF THE SEA

The law of the sea and marine pollution – Navigation, exclusive economic zone, continental shelf, deep seabed mining, exploitation regime, marine scientific research.

UNIT III – POLLUTION FROM OIL & HARMFUL SUBSTANCES

Prevention of pollution by oil – operational measures and accidental discharges; Double hulls standards.

Control of pollution by noxious liquid substances in bulk – discharge criteria and measures; Types of substances; residues discharge concentrations and conditions.

Prevention of pollution by harmful substances Carried by Sea in Packaged Form – requirements of standards on packing, marking, labelling, documentation, stowage, quantity limitations, exceptions and notifications; Introduction to International Maritime Dangerous Goods Code (IMDG code).

UNIT IV - POLLUTION BY SEWAGE AND GARBAGE FROM SHIP

Need for pollution control by sewage/garbage; Measures for dumping the garbage; Disinfected sewage disposal and measures.

Types of garbage onboard ships; Measures for dumping the garbage; Disposal of all form of plastics into sea.

UNIT V –PREVENTION OF AIR POLLUTION FROM SHIPS

9Hrs

9Hrs

9Hrs

9Hrs

Limits on Sulphur oxide and Nitrogen oxide emissions from ship exhausts; Designated emission control areas; Stringent standards for SOx, NOx and particulate matter; Mandatory technical and operational energy efficiency measures.

Total:45 hrs

TEXT BOOKS:

- 1. International Maritime Organization (IMO) conventions, International Convention for the Prevention of Pollution from Ships (MARPOL), United Kingdom, 2005.
- 2. United Nations, United Nations Convention on the Law of the Sea, New York.
- 3. J.W. Doerffer, Oil Spill Response in the Marine Environment, Pergamon Press, 1992, ISBN 0-08-041000-6.

REFERENCES:

- 1. John H. Bates, UK Marine Pollution Law, Lloyd's of London Press, 1985, ISBN 1-85044-028-X.
- 2. Ricardo Beiras, Marine Pollution–Sources, Fate and Effects of Pollutants in Coastal Ecosystems, Elsevier, 2018.
- 3. R.B. Clark, C. Frid and M Atttrill, Marine Pollution, 4th Edition, Oxford Science Publications, 1997, ISBN 0-19-850069-6.

Designed by	"Department of Naval Architecture & Offshore Engineering"	

PROGRAM	BE-Naval Architecture & Offshore Engineering

Course Code	Course Name :		L	Т	Р	С				
UDLECPD	English Laboratory	- IV								
			0	0	2	1				
Year and Semester	II Year & I	V Semester	Contact hours	s per week						
Prerequisite course	Basic Language Ski	lls	(2 Hrs)							
	Humanities and Social Sciences	Management courses	Professional	Core	Professional Elective					
Course category										
	Basic Science	Engineering Science	Open Electiv	e	Mandatory					
	\checkmark									
Course Objective	 Enhance the Em Enlighten the st Prepare themsel Deliver short sp Prepare effectiv 	ployability and Care udents towards effect ves for interviews an eeches in front of an e and impressive CV	er Skills of stud ive skills for ca d develop their audience and Cover Lett	lents treer developm confidence ters	ent					
Course Outcome	At the end of the co	urse, the student shou	ild be able to:							
	1. Prepare hov	v to face an interview								
	2. Present effe	ctive speeches using	verbal and non	verbal techniq	ues					
	3. Use appropriate the second se	riate vocabulary in fo	rmal communio	cation						
	4. Write CVs e	effectively and persua	persuasively							
	5. Comprehen	d different genres of	speech and the	implied meani	ngs effectively					
	6. Participate i	n Group discussions	and debates eff	ectively						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO_1	-	-	-	-	-	-	-	1	-	3	-	-
CO ₂	-	-	-	-	-	-	-	1		3		
CO ₃		-	-	-	-	-	-	1		3		
CO ₄	-	-	-	-	-	-	-	1		3		
CO ₅	-	-	-	-	-	-	-	1		3		
CO ₆	-	-	-	-	-	-	-	1	2	3		
AVERAGE	-	-	-	-	-	-	-	1	2	3		
CORRELATION LEVELS			1.SLIGHT(LOW) 2			2.MO	DERAT	E(MED	3.SUBS	3.SUBSTANTIAL(HIGH)		

UNIT I

Introduction to Professional communication – importance of Soft Skills – Hard skills – employability and career Skills – Grooming as a professional with values - Time Management.

UNIT II

Presentation Skills – Self-Introduction – Individual presentation on current affairs - technical presentations – role play.

UNIT III

Planning a Resume'- writing a resume- writing application letters - understanding the interview process -common types of interview- Preparing for a job interview - mock Interviews.

UNIT IV

Group Discussion - Aggressiveness and assertiveness - perception in professional communication

UNIT V

Planning for the interview - types of interviews (one to one interview, panel interview telephonic and Skype interview) - interview etiquettes - dress code for interview – frequently asked questions (FAQ).

Total: 30 Hours

Text Books:

- 1. How to Write a CV That Really Works: A Concise, Clear and Comprehensive Guide to Writing an Effective CV, Paul McGee Hachette UK, 2014
- 2. Essentials of Business Communication, Mary Ellen Guffey, Dana Loewy, Cengage Learning, 2012
- 3. **Interview Skills that win the job**: Simple techniques for answering all the tough questions, Michael Spiropoulos, Allen & Unwin, 2005

(6 Hours)

(6 Hours)

(6 Hours)

(6 Hours)

(6 Hours)

4. Effective Interviewing and Interrogation Techniques, William L. Fleisher, Nathan J. Gordon, Academic Press, 2010

References:

- 1. http://www.utsa.edu/careercenter/PDFs/Interviewing/Types%20of%20Interviews.pdf
- 2. <u>http://www.amu.apus.edu/career-services/interviewing/types.htm</u>
- 3. http://www.careerthinker.com/interviewing/types-of-interview/

PROGRAM	N	BE-Naval Architecture & Offshore Engineering													
Course Co	de:		Co	urse N	lame :			L	<i>,</i>	Т		Р		С	
UDNA4	PA	HYDF	ROSTA	TICS &	STAB	ILITY		0		0		3		1	
021011		LABC	RATO	RY				ů		0		0		-	
Veener		1													
Y ear an	ia		IIΥ	ear &	IV Sea	mester				7	1	1			
Dramagui	er								C	ontact	nours p	er week	2		
Prerequis	site			Ν	NIL					(SHIS)				
course	;	Lun	anitia	and	N	Ionogo	mont	De	ofossic	nal Cor		T	Professi	onal Ela	ativo
		Hull Soci	al Scie	nces	IV			PI	oressic	onal Core	2	r lotessional Elective			
Course	e	5001		nees		cours	05		~	/	_				
categor	У	Bas	sic Scie	ence	F	Enginee	ring	(Open F	lective			Ma	ndatory	
						Scien	ce		- r					j	
G		1. To	perfo	rm hy	drosta	tic cal	culatio	ons & I	Bonjea	ans, initi	ial stabi	ility cal	culation	ns and s	urface
Course	e	area o	calcula	ation					5			2			
Objectiv	ve	2. Pro	ovide t	the kno	owled	ge abo	ut IM) requ	ireme	nt for ve	essel sta	bility.			
		1	. Per	form	variou	s hvdr	ostatic	calcul	ations	for the	given S	Ship			
		2	. De	velop	hvdro	static c	offset y	with ta	ble		0	Γ			
Course	e	3	De	velon	hvdro	static t	able u	sing m	anual	calculat	ion				
Outcom	ne	ے ا	Fxi	nlain i	nitial	stahilit	v crite	eria	unuun	eureuru					
		5	· En	mulat	e initi	al stah	ility ca	alculati	ons						
		6	 Formulate initial stability calculations Estimate Wetted surface Area and painting surface area. 												
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7		PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	1	-	-	-	1	3	2	1	-	1	2	2
CO2	2	1	1	1	-	-	-	1	3	2	1	-	1	2	2
C03	2	1	1	1	-	-	-	1	1	-	-	-	-	-	-
CO5	2	1	1	1	1	-	-	1	1	-	-	-	-	-	-
CO6	2	1	1	1	1	-	-	1	1	- 2	- 1	-	- 1	- 2	- 2
CORRE	LATIO	N	1			U D						2 61			2
LEV	'ELS		1.	SLIGE	11(LOV	v)	2	. MODI	ERATE	(MEDIU	M)	3. 50	JESTAN	HIAL(H	IGH)
HYDROS'	TATI	C CAI	LCUL	ATIO	NS A	ND CU	URVE	S						2	0 Hrs
Ca	louloti	on of h	audroa	tation	nortio	lora a	nd nla	tting	fbude	octotio r	ortioul	ora nain	a coftu	10*0	
Ca	iculati	011 01 1	iyuros	tatics	partici		nu pio	ung o	i iiyui	ostatic j	Jarticul	ars usin	g sonw	are.	
STARII IT			ати	ONG										2	1) Hrs
STADILI				0110											0 1115
Cre	oss Cu	irves of	f Stabi	lity ar	nd GZ	curve	and IN	AO cri	teria c	heck					
WETTED	SUR	FACE	AREA	4											5 Hrs
We	etted s	urface	Area o	calcula	ation a	nd pai	nting s	surface	area	estimati	on.				
						· I ··	0								
													To	tal : 45	
Hours															
REFERENCES															
1. Introduc	ction to	o Nava	l Arch	itectu	re by l	Eric C	Tuppe	er							
D	1 ()	T 1			,	1 •	7 T	• • • •	1						
Princip	ne of I	Naval A	Archite	ecture	by Ed	ward	v Lew	18, VO	.1		<u>cc.1</u>	D '			
Designed l	рy			" L	Jeparti	ment o	i Nav	al Arc	nitecti	ıre & O	itshore	Engine	ering"		

PROGRAM	M	BE-N	BE-Naval Architecture & Offshore Engineering														
Course Co	dar		Co	urse N	lame :			L	, Ū	Т		Р		С			
	DP	Surfa	ace M	odelli	ng an	d Ana	alysis -			0		n		1			
UDINA4	ГD	Softv	ware L	aborat	ory			0		0		2		1			
Year ar	nd		пv	oor &	IV So	mactar											
Semest	er		11 1		10.50	mester			(Contact	hours p	er weel	ς.				
Prerequis	site			N	JII .						(2Hrs))					
course	e			-													
		Huma	anities	and	Man	agemer	nt	Pro	fessior	nal Core		Professi	onal Ele	ective			
Course	e	Socia	I Scien	ces	cour	ses		_		/							
categor	y	Rasio	Scien	20	Engi	nooring	x	On	v on Eloc	tivo		M	ndator	7			
		Dasic	Scient		Scie	nce	3	Op		live		1010	indatory				
Course	e	1. To	study	the su	irface	genera	tion ar	and modelling techniques using appropriate Softwar									
Objecti	ve	2. Pi	rovide	the kr	nowled	lge abo	out hyd	rostat	ics cal	culation	using	softwar	e.				
		1	. Lis	st vario	ous typ	bes of s	ship an	d diffe	erent h	ull forn	ns						
		2	2. Lis	st vario	ous shi	ip curv	res and	its op	eratio	nal uses							
Course	e	3	B. Ex	plain t	he wo	rking v	with co	ntrol	points	and hyd	drostati	c calcul	ations				
Outcom	ne	4	L. Ex	amine	surfa	ce of	the gi	ven r	nodel	using	approp	riate to	ols ava	ailable	in the		
			So	ftware													
		5	5. De	velop	Hull f	orm hy	drosta	tatic curves									
	1	6	6. Est	timate	the ar	ea calc	culation	ı.		r	n	1	1	1	1		
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
C01 C02	-	-	-	-	-	-	-	1	3	2	1	-	1	1	1		
CO3	-	-	-	2		-	-	1	2	2	1	-	1	1	1		
CO4	-	-	-	2	-	-	-	1	-	-	-	-	-	1	1		
CO6	-	1	2	2	-	-	-	1	-	-	-	-	-	1	1		
AVERAGE	-	1	2	2	-	-	-	1	2.7	2	1	-	1	1	1		
CORRE	LATIO	N	1	. SLIGH	IT(LOV	V)	2.	MODI	ERATE	(MEDIU	M)	3. SU	UBSTAN	TIAL(H	IGH)		
	ELS																
In	troduc	rtion to	the so	oftwar	e and i	its can	ahilitie	s Fan	niliaria	vation w	vith the	GUL ei	ntering	importi	nσ		
acordinata	a for t				rlzing	us cap					rotiona	and pr	nering/	mporti	ng		
	s 101 u			ci, wu	n King	with ti		es, cu	rve tyj	Jes, ope		and pro	speries	, WOIKI	ng		
$\begin{bmatrix} w_{1}(n) & surfac \\ \cdot & \cdot \end{bmatrix}$	2es, su	nace t	ypes a	na pro	perues	s, rend		ie sur	lace, s			ms, sur	ace cre	auons,			
trimming a	ind bo	nding	surface	es, wo	rking v	with co	ontrol p	oints,	calcu	lations -	– Hydro	ostatics,	, Girth a	and Are	as.		
													T	lotal : 3	0 Hrs		

REFERENCES

Software manual **Designed by**

SEMESTER-V

PROGRAM	M	BE-N	Vaval A	Archite	cture a	& Offs	shore I	Engine	ering						
Course Co	de:		Co	urse N	ame :			L		Т		Р		С	
UDBTC	202		Bic	ology fo	or Eng	ineer		2		0		0		2	
	-			0,	0					-		-			
Year ar Semest	nd er		III Y	lear &	V Ser	nester			С	ontact l	nours p	er week			
Prerequis course	site e	A	ny Uno Engi	ler Grac ineering	duate d g backg	egree v round	vith			(2	2 Hrs)				
Course	e	Huma Socia	anities 1 Scien	and ces	Mana cours	igemen es	t	Prof	ession	al Core]	Professio	onal Elec	ctive	
categor	y	Basic	Scienc	ce	Engir Scien	neering .ce		Ope	n Elec	tive		Ma	ndatory		
			\checkmark										\checkmark		
Course Objecti Course Outcon	e ve e ne	1. 16 2. T back, 3. T persp At th 1. 2. 3. 4. 5. 6.	o prov ground o prov <u>bective</u> e end Outlin Expla inforr Classi Expan Elabo	vide fu l, biolo vide ba <u>a</u> of the s in about nation. ify on e ify the ad the l rate aw	e subj indamo ogical i sic kn course structu: ut the enzymo microo knowle	the sture and law of corganise edge of so of the sture and law of corganise edge of so of the sture and the sture and corganise edge of the sture and the st	knowle les, m lge ab udent charac f Meno princi sms ar n indu he imp	will be cterizated and the sector of the sec	able t clogy able t clogy able t clon of geneti cobial pplica e of b	classific etc ication o : Cell, c cs, Gen gy trans human tion fro iology f	of livi of livi ell theo letic co actions disease om the l	ory and de and biologic	anisms cell cyc the tran	in an i	genetic ndustry genetic
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
<u>CO1</u>	-	-	1	1	1	-	-	2	2	2	-	1	-	-	-
CO2	-	-	1	1	1	-	-	2	2	2	-	1	-	-	-
C04	-	-	1	1	1	-	-	2	2	2	-	2	-	-	-
C05	-	-	1	1	1	-	-	2	2	2	-	2	-	-	-
CO6	-	-	1	1	1	-	-	2	2	2	-	2	-	-	-
AVERAGE	-	-	1	1	1	-	-	2	2	2	-	1.6	-	-	-
CORRE	LATIO	N	- 1 1 - - 2 2 2 - 1.6 -											IGH)	

Unit I: Introduction and Classification

Introduction to Biology, Hierarchy of life forms, Cell – Cell Structure and Function, Cell theory, Cell growth, cell cycle, reproduction and differentiation. Classification, Cellularity, Ultra structure, energy and carbon utilization and Molecular taxonomy.

Unit II: Genetics and Bio molecules

Introduction of Genetics, Mendelian Genetics, Genetic code, transfer of genetic information, Genetic disorders, human genetics, Structure and Characterization of Biomolecules Carbohydrates, Protein, lipids, Nucleotides and DNA/RNA

6 Hrs

Unit III: Enzymes and Metabolism

Introduction to Enzymology, Mechanism of enzyme action, Classification of enzymes, Enzyme catalysis and inhibition, Enzyme kinetics; Principles of energy transactions, Thermodynamics, ATP as source of energy, Glycolysis, Krebs Cycles, Photosynthesis

Unit IV: Microbiology

Introduction to Microbiology, Normal flora, Identification and Classification of Microorganisms, Microscopy, Microbial human diseases

Unit V: Biology and Industrial Applications

Single cell protein, Bio fertilizer, Biopolymer, Bioremediation, Bio Sensors, Antibiotics and Vaccine, Transgenic plants and animals.

Total Hrs: 30

TEXT BOOKS

1. Biology for Engineers, Arthur T. Johnson, CRC Press, Taylor and Francis, 2011

REFERENCE BOOKS

- 1. Biology for Engineers. S.Thyagarajan, N. Selvamurugan, M.P.Rajesh, R.A..Nazeer, Richard.W.Thilagaraj, S. Bharathi and M.K..Jaganathan, Tata McGraw Hill, New Delhi 2012
- 2. Cell Biology and Genetics (Biology: The unity and diversity of life volume I) Cecie Starr, Ralph Taggart, Christine Evers and Lisa Starr, Cengage Learning 2008
- Biological Science, N.P.O.green, G.W.Shtout, D.J.Taylor, Cambridge University Press, 1985
 Industrial Micrology, A.H.Patel, Trinity Press, 2015.

Designed by "Department of Naval Architecture & Offshore Engineering"		
	Designed by	"Department of Naval Architecture & Offshore Engineering"

6 Hrs

6 Hrs

PROGRAM	BE-Naval Archite	ecture & Offsh	ore E	Ingine	ering										
Course Code:	Course Name : S	TRENGTH O	F	L	,	Т		Р		C	1				
UDNA501	SHIPS			3		1		0		4					
Year and Semester Prerequisite	III Year & 1. Strength of Ma	v V Semester		_	(Contact	hours p 4Hrs)	er weel	X						
course	2. Marine Produc	tion technology													
Course	Humanities and Social Sciences	Management courses		Pro	fessior	al Core		Pro	ofession	al Electiv	ve				
category	Basic Science	Engineering Science		Ope	en Elec	tive		Ma	andatory	7					
Course Objective	To understand an strength to withst	d evaluate the applied	e var 1 loac	ious 1 ls.	loads	acting	on ship	structu	ires and	d to stu	dy ships				
Course Outcome	After completion 1. Estimate of 2. Experiment 3. Explain Ba 4. Explain van 5. Explain van 6. Choose the	 Estimate of various loads and framing arrangement of ship Experiment with the section modulus and scantling calculations Explain Basics of ship structural analysis Explain various structural design methods Explain various ship structural responses Choose the Various limit states and structural failure modes PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 2 2 1 1 3 1 1 2 -													
POS/COS PO1	O. Choose the Various limit states and structural failure modes PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 2 2 1 1 3 1 1 2 - - 2 1 3														
CO1 1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 2 2 1 1 3 1 1 2 - - 2 1 3 2 2 1 1 3 1 1 2 - - 2 1 3														
CO2 1 CO3 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 5	2	2	1	-	-	- 2	-	1	3 1				
CO4 3	3 2 2	2 1	2	1	-	-	-	-	1	1	2				
CO5 1 CO6 1	1 - 1 1 - 1	1 -	1	1	1	-	-	2	- 2	1	1				
AVERAGE 2	1.66 1 1	1.3 1.5	2	1.66	1.16	-	-	1	1.16	1.33	1.33				
CORRELATION LE	VELS 1. SLIGH	IT(LOW)	2	2. MOD	ERATE(MEDIUN	1)	3	. SUBSTA	NTIAL(H	IGH)				
Structura Loads, Weight a bending moment UNIT 2 - STRE	I design concept an nd Weight distribu curve, and deflecti NGTH OF HULL	d philosophy, v tion, Buoyancy on curve, wave	varion y and e ben	us for l Buo ding c	ces act yancy curve	ting on distrib	ship stru ution. I	ictures Load Cu	in still v urve, sh	water an near foro	12 Hrs d waves: ce curve, 12 Hrs				
Longitud	ling) strongthy Un	11 og o gindom		11 ~in	dan a	otion	modulu	aa	lation	Dondin	a atraca				
calculation, Shea	r stress distribution	i in cross section	, Hu on, In MPO	frodu trodu NEN	ction t	o shear	centre	and tors	sion of	hull	12 Hrs				
Bulk hea	d analysis, Grillag	e analysis, stiff	fened	l plate	panel	s as op	en and c	closed g	grillage						
UNIT 4 - SHIP	HIP STRUCTURAL DESIGN CONCEPTS12 Hrs														
Specializa design procedure stress design (W	ation of ship structu , design from first J SD), Load and resi	re, General con principles, struc stance factor c	nside ctural design	ration design (LF	is of ex gn acco RFD).	xternal fording t	loads, d to classi	esign cr ficatior	riteria s 1 society	teps in s y rules,	structural Working				
UNIT 5 – ADV. Introduct	ANCED METHO	DS FOR SHII nts methods, ap	P STI	RUC ation of	FURA of finit	L ANA	LYSIS ent metl	5 hod, fin	ite strip	o metho	12 Hrs d				
									То	otal: 60	Hours				

TEXT BOOKS

- 1. Muckle .W Strength of Ships
- 2. Lewis, E U. Principles of Naval Architecture (2nd Rev) Vol II 1989 SNAME, New York,
- 3. Taggart R, Ship Design and Construction, SNAME, New York, 1980

REFERENCES

- 1. Mechanics of Materials, James M. Gere, Stephon P. Temoshenko
- 2. Ship Construction by D.J.Eyres Merchant Ship Construction by D.A.Taylor
- 3. Alaa Mansour, Don Liu, Principles of Naval Architecture Series: Strength of ships and ocean structures, SNAME, New Jersey, 2008.
- 4. Owen. F. Hughes and JeomKee Paik Ship Structural Analysis and Design, SNAME, New York. 2008.
- 5. Mohammed Shama Torsion and Shear Stresses in Ships, Springer Verlag, 2010.

Designed by	"Department of	Naval Architecture &	2 Offshore Engineering	g"
				_

PROGRAM	M	BE-Naval Architecture & Offshore Engineering Course Name : L T P C													
Course Co	de:		Co	urse N	lame :			L		Т		Р		С	
UDNA5	02	Ship	Resist	ance a	and Pro	opulsic	n	3		1		0		4	
									•				•		
Year ar	nd		TTT X	7 0	V.C										
Semest	er			a ear &	z v Sei	mester			(Contact	hours p	er weel	K		
Prerequis	site			,	TTT					(4Hrs)				
course				ľ	NIL										
		Hun	nanities	s and	Μ	lanage	ment	Pr	ofessio	nal Core	e	I	Professio	onal Ele	ctive
Course	`	Soci	ial Scie	ences		cours	es								
Course	÷								\checkmark	·					
categor	y	Bas	ic Scie	ence	E	Inginee	ring	(Open E	lective			Ma	ndatory	
						Scien	ce		- -						
Course	e	ч	Fo und	oraton	d tha f	undor	ontole	of the	chine						
Objectiv	ve		l o una	erstan	u ille i	unuan	lentais	or the	smps						
		After	comp	oletion	of the	course	e, the	student	s will	be able	to				
		1	. De	fine ba	asic kn	owled	ge on	Fluid a	und Sh	ip inter	action				
Course	e	2	2. Compare different types of resistance, comparison laws and Model testing of ship												
Outcom	ne	3. Construct ship-model resistance using different methodical series													•
4. Compare concepts of ship propulsion															
		5. Explain various types of ship propulsion system.													
		6	5. Inte	erpret	knowl	edge i	n desi	oning (of pror	eller. c	avitatio	n's and	its calc	ulation	S.
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	1	1	1	-	1	1	1	1	-	1	3	3	3
CO2	1	1	-	1	1	-	1	1	1	1	-	1	3	3	3
C04	1	2	5	2	2	-	1	1	1	1	-	1	3	3	3
CO5	1	1	-	1	1	-	2	1	1	1	-	1	3	3	3
CO6	3	3	3	1	2	1	1	1	1	1	-	1	3	3	3
AVERAGE	1.3	2	2	1.16	1.16	1	1.16	1	1	1	-	1	3	3	3
	LATIO VFI S	N	1.	SLIGH	IT(LOV	V)	2	. MODI	ERATE	MEDIU	M)	3. SU	JBSTAN	TIAL(H	IGH)
	LLD														
UNIT I-IN	TRO	DUCT	ION											1	2 Hrs
Ba	sic of	fluid	mecha	anics,	Laws	of Sir	nilarit	y, Fro	ude's	Hypoth	iesis, L	aminar	and tu	rbulent	flow,
Componen	ts of sl	hip res	istance	e											
UNIT II-C	COMP	ONE	NTS O	F RE	SISTA	NCE								1	2 Hrs
Ef	fect of	Free of roughness Friction lines Form resistance Wave resistance Kelvin wave pattern & wave													
generated b	ov a sh	ip. Ai	resist	ance.	Appen	dage r	esistai	ice. Re	sistan	ce pred	iction n	nethods	1		
		Г ·													.
UNIT III-	DETH	CRMI	NATIO	\mathbf{ON}	F RES	SISTA	NCE .	AND I	OWE	C R				1	2 Hrs
Es	timatio	on of t	otal re	esistan	ce. M	odel e	xperin	nent fo	r resis	stance e	estimati	on of a	ship.	Estimat	ion of
effective p	ower.				,		r					•	·····r,		
UNIT IV_	INTR	ορια	TIO	от и	PROP	III.SI	ON							1	2 Hrs

Types of propulsion, Screw propeller geometry, Propeller theories, Circulation theory, Blade elements theory. Laws of Similarity for propellers, Propeller in (open) water, Propeller coefficient and design charts, B_p -S diagrams, K_T - K_Q -J diagrams.

UNIT V – DESIGN OF PROPELLER

Hull propeller interaction – wake, thrust deduction and relative rotative efficiency; propulsive efficiency and its components; propeller cavitation; propeller blade strength; Propeller design.

Total: 60 Hours

TEXT BOOKS

- 1. Lewis, E.U.; "Principles of Naval Architecture", (2nd Rev.), SNAME, New Jersey, U.S.A.
- 2. Rawson & Tupper; Basic Ship Theory.
- 3. Tupper, E.C.: Introduction to Naval Architecture, Butterworth-Heinemann, UK, 1998.
- 4. Ghose, J.P and Gokarn, R.P, "Basic Ship Propulsion", Allied Publishers, 2004
- 5. Carlton J, Marine Propellers and Propulsion, Elsevier 2007.

REFERENCES

1. Harvald S.A., "Resistance and propulsion of Ships", John Wiley & Son.

Designed by	"Department of Naval Architecture & Offshore Engineering"	
		-

PROGRAM	N	BE-Naval Architecture & Offshore Engineering Course Name : L T P C													
Course Co	dar		Со	urse N	lame :			L	r	Т		Р		С	
UDITC	03		OB	JECT	ORIEN	NTED		3		0		0		3	
			P	RUGR	AMM	ING									
Voor or	d														
Semest	er		III Y	Year &	z V Sei	mester			C	Contact	hours n	er week	5		
Prerequis	site									(3 Hrs)	01 11 001	•		
course))			1	NIL					(,				
		Huma	anities	and	Man	agemer	nt	D	C	1.0	D	C			
Course		Socia	l Scien	ces	cours	ses		Pro	fession	al Core	Pro	tessional	Electiv	e	
catagor															
Categor	y	Basic	Scienc	re.	Engi	neering	ç.	On	en Elec	tive			Ma	ndatory	
		Dusie	berein		Scier	nce		Op		uve				ildutor y	
							✓								
		1	. To	learn	the bas	sic cor	ncepts	of Obj	ect Or	iented F	Program	ıming.			
Course	a	2	2. To	learn	the bas	sics of	C++1	anguag	ge.						
Objectio	-	3	3. То	know	about	C++ f	unctio	ns, cla	sses ar	nd objec	ets.				
Objecti	ve	4	I. To	work	on ide	ntifyir	ng the 1	relation	nship t	between	classes	s.			
		5	5. То	define	e excep	ption a	nd I/O	strear	ns						
		After	comp	letion	of the	cours	e, the s	student	s will	be able	to				
		1	. De	fine of	bject o	oriente	d appr	oach te	o prog	rammin	g and i	dentify	potenti	al bene	fits of
Course			obj	ect-or	iented	progra	ammin	g to so	olve en	gineeri	ng prob	lems	-		
Course	÷	2. Relate real world object into entity.													
Outcom	le	3. Recall the code and write the classes which work like built-in types													
		4	l. Dis	scuss t	he con	cept o	f inher	itance	•						
		5	5. De	sign a	pplicat	ions w	which a	ire easi	er to d	lebug ai	nd mair	ntain			
		6	5. Dis	scuss o	object	oriente	ed cond	cepts in	n real v	world a	pplicati	ons			
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	2	-	2	1	-	-	1	-	-	-	-	-	-	-
CO2	2	3	2	-	-	-	-	1	-	-	-	-	-	-	-
CO4	2	1	3	3	2	-	-	1	-	-	-	-	-	-	-
CO5	3	2	1	1	1	-	-	1	-	-	-	-	-	-	-
AVERAGE	2.3	1.8	1.8	1.8	1.3	-	-	1	-	-		-	-	-	-
CORRE	LATIO	N	1	SLICI			2	MODI		MEDIU	M)	2 61	IDCTAN		
LEV	'ELS		1	. SLIGF	11(LUV	v)	2	. MODI	CKAIE	MEDIU	VI)	5. 50	JDSTAN	TIAL(HI	.Оп)
UNITI-INI	RODU	JCTIC	N TO	OBJE	CT OI	RIENT	'ED PF	ROGR	AMMI	NG WI	ГН С+-	F	9 Ho	ours	
Pri	inciple	s of C)bject	Orient	ed Pro	ogrami	ming (OOP),	Basic	concep	ts of O	OP - A	dvantag	ges of (- AOC
Application	ns of C)OP -	Introd	uction	to C+	+, Tok	ens, K	eywor	ds, Ide	entifiers	, data t	ypes, In	put/out	put fund	ctions,
variables, l	Refere	nces, (Operat	ors, Ez	xpressi	ions.									
UNIT II-C	CONT	NTROL STRUCTURES AND FUNCTIONS 9 Hours													
	Co	ntrol S	Structu	res: if	– if el	se - ne	ested if	f – else	e if lad	der - sv	vitch ca	ise - Re	petitive	Statem	ients –
for – while	e - do	while	, Poin	ters a	nd arra	ays, H	Functio	ons in	C++ -	Main	Functio	on - Fu	nction 1	Prototy	ping –
Parameters	Passi	ng in F	Functio	ons - V	alues	Returi	ı by Fı	unctior	ns - inl	ine Fun	ctions -	- Functi	on Ove	rloading	g.
UNIT III -	-CLAS	SSES .	AND	OB.IE	CTS		2						9 H	ours	5
Cl	asses	and O	biects	friend	l funct	ion C	onstrue	ctors a	nd De	structor	s - Tvn	e of Co	nstruct	ors $-D$	efault
constructo	r - P	arame	erized	cons	tructo	r - C	onv co	onstrue	ctor (Derato	r Over	loading	= Un	arv on	erator
overloadin	$\sigma = Ri$	Binary operator overloading													
		DITA	NCE			^{ъ.} МОВ	рис	м					0 11	ours	
	-III TIC		UUL	AND			1112	TAT TAT					7 П	.0 u15	

Inheritance: Access specifiers - Single Inheritance - Multiple inheritances - Multilevel inheritance - Hierarchical Inheritance - Hybrid Inheritance, Polymorphism – Virtual Functions, pure virtual function, Abstract Class.

UNIT V-FILES AND EXCEPTION HANDLING

9 Hours

Working with Files: Classes for File Stream Operations –File pointer - Opening and Closing a File - Endof-File detection –Exception handling: Need of Exceptions – keywords - Simple and Multiple Exceptions. **TOTAL :45 Hours**

TEXTBOOKS:

1. Paul J Deitel, Harvey M. Deitel, "C++ How to program", eight edition, Pearson, 2011.

2. E. Balaguruswamy, "Object Oriented Programming with C++", Seventh Edition, Tata McGraw-Hill, 2017.

REFERENCES:

 Herbert Schildt, "C++: The Complete Reference", Tata McGraw publication, 2003. Ashok N.Kamthane, "Object Oriented Programming with ANSI & Turbo C ++", First Edition, Pearson Education, 2012.

PROGRAM		BE - Naval Architecture & Offshore EngineeringCourse Name:LTPC														
Course Code		Cour	se Nar	ne:							L]	7	Р		С
UDNAP01		NUN	AERIC	AL	A	ANAL	YSIS		AND		2		、 、	0		2
		PRO	GRAM	4MIN0					3	()	0		3		
												1			I	
Year and Sem	ester		III	Year	& V S	emeste	er	(Contac	ct ho	ours per	week				
Prerequisite co	ourse	ENG	G. MA	THE	MATIO	CS		(3 Hrs)						
-		Huma	anities a	and Soc	cial	Mono	aaman	t course		Dre	ofossion	ol Coro		Drofossi	onal Ela	otivo
		Scien	ices			Ivrana	gemen	t course	8	PI	oressiona	al Core		Professi		cuve
Course catego	ory														\checkmark	
C C		Basic	c Scienc	e		Engin	neering	Science	e	Op	en Elect	ive			Man	datory
Aim / Purpos	e of	Stud	Students understand the basis of numerical methods and programming in engineering													neering
the course		appl	applications.													U
		Students will be able to														
		1 I	ist the	e inhei	rent de	eficits	of the	nume	rical	and	progra	mming	errors			
Instructional		2 F	Explain	the v	variou	s meth	ods to	o solve	the a	lge	braic ed	Juation	S.	-		
objectives of	f the	3 T)evelo	n an 1	inders	tandin	g of c	urve fi	itting	and	lintern	olation	in eng	ineering	applic	ations
course	the	4 A	nalvz	e the	variou	s met	hods o	of num	erical	dif	ferenti	ation a	nd its a	nnlicati	ons	unono
		5 A	A ccecc	the ve	rious	metho	ds of	numer	rical i	nte	ration	and its	annlic	ations	0115.	
		6 L	mprov	the vi	ovoral	1 knox	vloda	numer	mori	$\frac{100}{201}$	philippi	tions of	appile	rommi	20	
POS/COS	PO1						PO7			$\frac{1}{00}$					1g. PSO2	PSO3
CO1	-	-	-	-	105	1	2	-	1	1	-	1	1	-	1302	-
CO2	1	1	-	-	1	1	2	-		1	1	1	1	1	1	1
CO3	1	1	1	1	1	1	2	1		1	1	1	1	1	1	1
CO4 CO5	1	1	-	- 1	-	- 1	1	2		1	<u> </u>	1	1	1	1	1
CO6	1	1	_	-	1	1	2	2		1	1	1	1	1	1	1
AVERAGE	1	1	1 1 1 1.6 1.7 1 <td>1</td>											1		
CORREL	ATIO	$\frac{1}{1} = \frac{1}{1} = \frac{1}$											IGH)			
LEVE	ELS		1.	SLIUI		W) 2. MODERATE(MEDIUM) 5. SOBSTANTIAL(IIIOIT						1011)				

UNIT I – ERROR ANALYSIS

Types of errors, Propagation of errors, Correct and Significant digits, Examples and exercises. Programming: Basic commands of C++.

UNIT II – SOLUTION OF SYSTEM OF LINEAR ALGEBRAIC EQUATIONS

Exact methods: LU-decomposition, Gauss-elimination methods without and with partial pivoting.

Iterative methods: Gauss-Jacobi and Gauss-Seidal methods, Matrix norm, Condition number and ill - conditioning. Programming: Gauss – Siedel iteration method.

UNIT III – CURVE FITTING & INTERPOLATION

Curve fitting – linear and nonlinear regression analysis.

Interpolation Formulae: Newton's forward, backward, Newton's divided difference and Lagrange's formulae, Errors in various interpolation formulae. Programming: Error calculation.

UNIT IV – NUMERICAL DIFFERENTIATION

Various formulae for first and second derivative with errors, Examples and Exercises. Programming: Comparison of different methods.

9 Hrs

9 Hrs

9 Hrs

UNIT V – NUMERICAL INTEGRATION

Newton-Cotes formulae, General quadrature formula for equidistant ordinates, Trapezoidal, Simpson's 1/3 and 3/8 rules with their geometrical interpretations and errors, Romberg integration and Gaussian quadrature formulae, Examples and Exercises. Programming: Comparison of different methods.

TEXT BOOKS:

- 4. Shastry, S.S., Numerical Methods, Prentice Hall Inc., India, 1998.
- 5. Noble Ben, Numerical Methods, New York International Publications, New York, 1964.
- 6. Stanton Ralph G., Numerical Methods for Engineering, Englewood cliffs, N.J., Prentice Hall Inc., 1961.
- 7. Buckingham R.A., Numerical Methods, Sir Isaac Pitman Sons. Ltd., London, 1957.

REFERENCES:

- 4. James Scarborough, Numerical Mathematical Analysis, Oxford & IBH Publishing Co. Pvt. Ltd (1950), ISBN 10: 0009780021, ISBN-13:978-0009780021.
- 5. M. K. Jain, SRK Iyengar and R.K. Jain, Numerical Methods For Scientific & Engg. 5e, New Age International (P) Ltd (2008), ISBN-13:978-8122420012.
- 6. C.F. Gerald and O.P. Wheatley, Applied Numerical Analysis, Addison Wesley; 7 edition (2003), ISBN-13:978-0321133045.
- 7. NPTEL lectures: Numerical Analysis and Computer Programming (video): Web Address: http://nptel.ac.in/courses/122106033/
- 8. NPTEL lectures: Numerical Analysis (Web): Web Address: http://nptel.ac.in/courses/111107062/

Designed by "Department of Naval Architecture & Offshore Engineering"

Total Hrs: 45

PROGRAM	Λ	BE-Naval Architecture & Offshore Engineering Course Name : L														
Course Cod	e	Co	ourse N	lame	:					L		Т		Ρ	С	
UDNAP02		W	ave me	echani	ics											
										3		0		0	3	
										·						
Year Semester	and		Ι	II Yea	ır & V	Seme	ster		Conta (3Hrs	ct hour	s per	week				
Prerequisite course		N	IL													
		Hu Sc	manitie iences	s and S	Social	Ma	nagen	ent cour	ses	Profes	sional	Core	Pr El	ofession ective	al	
Course cate	egory	Do	sia Saia			En		na Caiar		Onen I	✓ Deen Elective Mandatory					
		Da	sic Scie	nce		EII	gmeen	ing Scier	ice	Open I	Liectivo	2	IVI	andatory	/	
Aim / Purp the course	ose of	Ta of	o under surfac	stand e ship	the m the in c	otion alm w	chard paters	acterist	ics in w	vaves ar	nd to e	valuate	the ste	ering f	eatures	
Instructiona	.1	St	udents	will t	be able	e to										
objective of	the	1	Defin	es a b	asic k	nowle	edge 1	egardii	ng mec	hanics	of wa	ter wave	es			
course		2	Expla applic	in co cation	oncept in Na	s bel val A	nind rchite	wave lecture a	kinema nd Off	tics using linear wave theory and its shore Engineering						
		3	Identi physic	fy the	e fun incipl	damei es to t	ntal u he oc	ndersta ean and	nding 1 coast	of water waves and to apply the basic al environments.						
		4	Class	ify fin	nite an	nplitu	de wa	ves and	d its the	eories						
		5	Asses	s the	wave	defor	matio	ns and	Define	real se	a state	e and wa	ave loa	ds		
		6	Elabo applic	rate ation	the co in Na	oncep wal A	ts be rchite	hind wecture a	vave k nd Off	inemati shore E	cs us ngine	ing wa ering	we the	eories	and its	
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1 CO2	1	- 1	-	-	-	-	- 1	-	-	-	-	1	1	1	-	
CO3	1	1	-	-	1	1	1	1	-	1	1	1	1	1	1	
<u>CO4</u>	1	1	2	2	1	2	2	1	1	1	1	1	1	1	1	
CO5 CO6	1	-	- 2	2	-	2	2	1 2	1	2	1	1	1	1	1	
AVERAGE	1	1	2	2	1	1.5	1.6	1.2	1	1.2 1 1 1 1 1						
CORREI LEV	LATI <mark>O</mark> ELS	1 2 2 1											HIGH)			

UNIT I – WATER WAVES

Fluid mechanics basics, Wave s- Definition of wave parameters, classification of water waves, the sinusoidal wave profile, some useful functions and numerical methods, Two dimensional wave equation and wave characteristics, Introduction to Wave theories

UNIT II – SMALL AMPLITUDE WAVES

Velocity potential, wave dispersion ,wave table ,water particle kinematics, water particle, displacements ,group celerity, wave energy and power, Sub surface pressure

UNIT III -: FINITE AMPLITUDE WAVES

Non linear waves –Wave steepness, Non linear wave theory - Stoke's wave theory , Cnoidal wave theory, Solitary wave theory, Stream function wave theory ,validity of wave theories

9 Hrs

9 Hrs

UNIT IV – WAVE DEFORMATIONS AND CURRENTS

Wave deformation – Wave Refraction, Wave diffraction, Reflection, and breaking of Waves. Water Currents, Classification, Wave current interaction, effects of currents

UNIT V – IRREGULAR WAVES AND FORCES

Irregular waves- Introduction, ocean wave analysis methods, spectral method, statistical methods and parameters, sea state, Wave forces: – Morison equation – Wave load on vertical, inclined and horizontal cylinders, Diffraction theory – Wave slamming and slapping

Total: 45 Hrs

Designed by	"Department of Naval Architecture & Offshore Engineering"

9 Hrs

DDOCDAM		BE-Naval Architecture & Offshore Engineering															
PROGRAM		BE-I	Naval A	Archite	clure	& OHS	snore F	ingin	eerin	g			-			~	
Course Code		Cou	rse Nar	ne :		~ _ ~ -			_		L	1	ſ	Р		C	
UDNAP03		LIF	ΓING	SURF	ACE	S FOF	R MAI	RINE	3								
		APF	PLICA	TION	S						3	()	0		3	
															•		
Year and Sem	nester		III	Year	& V S	emeste	er		Con	tact ho	ours per	week					
Prerequisite c	ourse	Mari	ine Hyd	drodyn	amics				(3H	Irs)							
		Hum	anities a	and Soc	cial	Mone	aaman	t cour	28.0.8	Dr	ofossion	al Cora		Drofossi	onal Ela	otivo	
		Scier	nces			Ivialia	igemen	t cour	303	r i	010551011			1010551		cuve	
Course categ	ory														\checkmark		
C C		Basic	c Scienc	e		Engir	neering	Scien	nce	OI	pen Elec	tive		Mandate	ory		
Aim / Purpo	ose of	Тои	nders	tand ti	he Imp	oortan	ce of	the li	ifting	surfa	ice desi	gn and	its mai	rine app	olicatio	ns	
the course					-		,			ě		-					
Instructional		At t	At the end of the course the students should be able to Tell the importance of fluid mechanics in lifting surface design														
objective of the	he	1 7	Cell the	e impo	ortance	e of fl	uid m	ng surf	face des	sign							
course				mp	1 (4110)	0 01 11	<i>wiw iii</i>	cerrai			ing suit		,-B.i				
		2 I	Demon	strate	the co	oncept	s of h	ydro	dyna	mics i	in deve	loping	the con	trol sur	faces		
		3 N	Model	the pr	opelle	er desi	gn for	the g	giver	n vess	el						
		4 (lassif	v diffe	erent t	vnes (of rude	lers a	and f	heir a	pplicat	ions					
			-1 u 5511	y anno		JPest)1 1 u u u		una t	nen u	ppnear	ions					
		5 I	nfluen	ce of :	ruddei	r desig	gn for	the g	given	vesse	el						
		6 I	mprov	e the	unde	rstand	l of c	once	pts i	nvolv	red in	the des	sign pr	ocedure	e for fi	ins and	
		ł	vdrop	lanes					1				0 1				
200/000	DOI				201	DOI	202		20	200	2010	2011	2010	DCO1	DECA	DCOA	
POS/COS	POI 1	PO2 1	PO3	PO4	PO5	PO6 2	PO7	PC 1	J8 1	PO9 1	PO10	1 POTT	PO12	PSOI	PSO2 1	PSO3	
CO2	-	-	-	-	1	1	1	1	1	1	1	1	-	-	1	1	
CO3	-	-	-	-	-	-	-	2	2	2	1	1	-	-	2	2	
<u>CO4</u>	1	1	2	1	2	2	2	1	1	2	2	1	2	2	2	1	
C05	1	1	2	- 1	2	2	2		2	1	2	1	1	2	2	1	
AVERAGE	1	1	1.7	1	1.6	1.8	1.8	1.	.3	1.5	1.5	1	1.6	1.6	1.6	1.1	
CORREI	LATIO	N	1	at tot		T <i>T</i>)		0 MC				<u></u>	2.01	ID OT AN			
LEV	ELS		1.	SLIGE	11(LO)	W)		2. MC	JDER	ATE(N	VIEDIUN	(1)	3. SU	JR2LAN	IIAL(H	IGH)	

UNIT I – HYDRODYNAMIC CONCEPTS

Recapitulation of concepts in Marine Hydrodynamics – Uniform flow, Streamlines, pressure velocity changes in a moving fluid, stagnation point, vortex flow, Reynold's number, boundary layer, flow separation

UNIT II – LIFTING SURFACES FOR MARINE APPLICATIONS

Lifting foils and its properties, Geometry of a lifting foil; Induced drag – Aero foils of infinite and finite span, different types of lifting surfaces for marine applications – fixed and movable, Lift and drag, Lifting line theory **UNIT III – PROPELLER** 9 Hrs

Concepts of conformal mapping, propeller geometry, actuator disk, propeller lifting line theory, potential flow around a circle, Kutta condition, vortex lines, vortex lattice method, cavitation, propeller design procedure, *Project* – *Design of propeller for the given vessel* 9 Hrs

UNIT IV – RUDDER

Rudder types, rudder action, single screw and twin screw arrangements, rudder-propeller interaction, influence of hull on rudder-propeller performance, rudder design strategy, hydrodynamics characteristics, Free surface effects - rudder submerged condition, surface piercing condition, cavitation, high-lift rudders Project – Design of rudder for the given vessel

9 Hrs

UNIT V – OTHER LIFTING SURFACES

Fin stabilizers – applications, design procedure, section design, cavitation, operation, roll stabilization; Hydroplanes – applications, design procedure and data, operation; Pitch damping fins – applications, design procedure and data, operations

Total Hrs: 45

TEXT BOOKS

- 1. Anthony F Molland and Stephen R Turnock, Marine Rudders and Control Surfaces Principles, Data, Design and Applications, Elsevier, 2007
- 2. *Lewis, E.V.Principles of Naval Architecture Vol III Motions in Waves and Controllability*, 2nd edition, The Society of Naval Architecture and Marine Engineers, Jersy City, NJ, 1989
- 3. R.K Bansal, A Textbook of Fluid Mechanics and Hydraulic Machines, Laxmi Publications, 2008
- 4. Volker Bertram, Practical Ship Hydrodynamics, Butterworth Heinemann, 2000

REFERENCES

- 5. Abbott, I.H. and Doenhoff, A.E.V. Theory of wing sections, New York: Dover publications, 1958.
- 6. S.K Som, Gautham Biswas, S Chakraborty, *Introduction to Fluid Mechanics and Fluid Machines*, Mc Graw Hill, 2011
- 7. **Perez, T.***Ship Motion Control Course keeping and roll stabilization using rudder and fins*, Springer-Verlag London Limited, 2005.

PROGRAM	BE - Naval Architecture & Offshore Engineering Course Name: L T P C													
Course Code	Course Na	me:							L]	Γ	Р		С
UDNAO03	OCEAN E	NERG	Y						3	()	0		3
Year and Semester	III Year (S	EMES	TER V	<i>'</i>)			Con	tact h	ours per	week				
Prerequisite course	NIL						(3 E	Irs)						
	Humanities Sciences	and So	cial	Mana	gemen	t coui	rses	Pr	ofession	al Core		Professi	onal Elec	ctive
Course category														
	Basic Scien	ce		Engir	leering	Scier	nce	0	pen Elect	tive		Mandato	ory	
									\checkmark					
Aim / Purpose of	Students	formu	late th	ne kno	owled	ge o	n va	riety	of avai	ilable o	ocean e	energy	resourc	es and
the course	statutory	require	ments											
	Students will be able to													
1 List the available resources of ocean energy worldwide.														
	2 Illustr	ate the	wave	enero	v svst	em d	lesio	<u><i>8,</i>, </u>						
Instructional	3 Organ	iso tho	vario	us das	<u>y byst</u> ian ac	nact	$\frac{100161}{0000}$	idal a	nd curr	ont ono	raveve	tom		
objectives of the			vario	$\frac{us}{v}$	<u>1911 as</u>	<u>1 0</u>	5 01 1	iuai a			<u>1 gy sys</u>	atem.		
course	4 Classi	ty the	necess	ity of	therm	al &	c osm	iotic e	nergy s	system	design.			
	5 Evalua	te the	vario	us eco	onomi	cs ai	nd po	olicies	of the	state/c	country	to supp	port the	e ocean
	energy	devel	opmei	nt.										
	6 Adapt	the oc	ean er	iergy i	nto th	e de	velop	oment	of ener	rgy sys	tems.			
POS/COS PO1	PO2 PO3	PO4	PO5	PO6	PO7	P	08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
<u>- CO1</u>		-	-	2	2		-	-	1	-	-	-	-	-
$\begin{array}{c c} CO2 & 1 \\ \hline CO3 & 1 \end{array}$	1 2 1 2	2	-	1	1		-	1	-	-	1	1	2	1
CO4 1	1 2	1	-	1	1		-	1	-	-	1	1	2	1
CO5 -		-	2	-	1		-	2	2	1	2	1	1	2
<u> </u>	1 1	1	-	1	2		2	1	-	1	2	1	2	2
AVERAGE	1 1.7	1.2	2	1.5	1.3		2	1.2	1.5	1	1.4	1	1.8	1.4
	1	. SLIGH	IT(LOV	W)		2. MQ	ODER	RATE(N	MEDIUN	/)	3. SU	JBSTAN	TIAL(H	IGH)

UNIT I – OCEAN ENERGY RESOURCES

Introduction to ocean environment – ocean circulation and stratification, ocean habitat, ocean economy; Various ocean energy resources worldwide; Site selection and characterization; Present development and future need; Energy routes.

UNIT II – WAVE ENERGY

Ocean surface waves - wave measurements, wave theories, existing resources in India; System working principle; Various design concept, design challenges; Case study – reliability of the design and lifespan.

UNIT III – TIDAL & CURRENT ENERGY

Current measurements, current turbulence and energy resources; Existing resources in India, working principle; Various design concept, design challenges; Material selection; Case study – future requirement and any existing design.

UNIT IV – THERMAL & OSMOTIC ENERGY

Introduction – Existing resources in India, working principle; Various design concept, design challenges; Case study - efficiency calculation of various system components.

UNIT V – ECONOMICS, POLICY AND ENVIRONMENT

9 Hrs

9 Hrs

9 Hrs

Basic economic analysis of ocean energy systems – cost and financing; Policy issues regarding ocean energy system in India – Socio-economic impact, licensing and permitting procedures; Environmental impact; Case study – any existing ocean energy system.

Total 45 hrs

TEXT BOOKS:

- 8. Sørensen, Bent. Renewable Energy, Second Edition. San Diego: Academic Press, 2000, 911 pp. ISBN 0-12-656152-4.
- 9. Vining, J., Muetze, G. A., Economic Factors and Incentives for Ocean Wave Energy Conversion.
- 10. Karimirad, Madjid, Offshore Energy Structures For Wind Power, Wave Energy and Hybrid Marine Platforms, Springer International Publishing, Switzerland, 2014.
- 11. Markian M. W. Melnyk, Robert M. Andersen, Offshore Power: Building Renewable Energy Projects in U.S. Waters, PennWell Books, 2009.
- 12. Iea-Retd (Stichting Foundation Renewable), Offshore Renewable Energy: Accelerating the Deployment of Offshore Wind, Tidal, and Wave Technologies, Routledge, 2012.

REFERENCES:

- 9. J W Twidell & A D Weir, Renewable Energy Resources, ELBS, 2006.
- 10. Vining, J., Muetze, G. A., Economic and Legal aspects of Ocean Wave Energy Conversion, EC 999: Advanced Independent Study Report, May 2006.
- 11. Bent Sorensen, Renewable Energy, Elsevier, Academic Press, 2011.
- 12. NPTEL lectures: Elements of Ocean Engineering (video): Web Address: http://nptel.ac.in/syllabus/114105002/

		DE Novel Architecture & Offshore Engineering														
PROGRAM		BE-Naval Architecture & Offshore Engineering Course Name : L T P C														
Course Code		Course Name : L T P C QUALITY HEALTH SAFETY AND													С	
UDNAO04		OU	ALITY	C H	EALT	TH S	SAFE	ΤY	AN	D						
		ĒN	VIRON	IMEN	JTAL	MAN	AGE	MEN	Т		3	()	0		3
		·							_		-	1	-	-	1	-
Year and Sem	nester	III	(ear (S	EMES	TER V	7)			Cont	tact ho	ours per	week				
Prerequisite c	ourse	NIL				/			(3H	rs)	P					
		Hun	anities	and So	cial				、 -			1.0		D ()	1.51	
Course categ	orv	Scie	nces			Mana	igemen	t cours	ses	Pr	ofessiona	al Core		Professi	onal Ele	ctive
8	,)															
		Basi	c Scienc	ce		Engir	neering	Scien	ice	O	pen Elect	ive		Mandate	ory	
											\checkmark					
Aim / Purpo	ose of	To	unders	tand t	he im	portan	ce of	the q	ualit	y con	trol, as	suranc	e and n	nanagei	nent sy	stem in
the course		shir	build	ing an	d to le	earn th	he nec	essit	v of I	SO				U		
x		1	1		11				/ J							
Instructional		Students will be able to														
objective of the	he	1 Define different quality concepts														
course		2	Demor	strate	OA &	k OC i	in Shi	p Bui	ilding	σ						
		-			<u></u>	• • •		P		>						
		3	Organi	ze the	differ	ent Er	iviron	ment	al ma	anage	ment sy	/stems	and Oc	cupatio	nal He	alth and
			Safety	Series	s Syste	em										
		4	Classif	v the i	imnor	tance	of ISN	A cod	les							
		5	[mport	$\frac{y}{2}$	f ISO			ty mo	200	mont	austom	150	14000	6 OUS	AS 190	00
		6			aliana	9000	quan		inage		System	, 150	14000 (AS 100	00.
POS/COS	PO1	DO2	Adapt	line qu	anty I	neasu	res in	snipp	bing	Indus	BUTY	PO11	DO12	DSO1	DSO3	DSO2
CO1	-	-	-	2	-	2	-	2	2	-	-	1	1	-	1	-
CO2	-	1	-	2	1	2	-	2	2	-	-	1	1	1	2	2
CO3	-	-	2	1	1	2	2	2	2	2	2	2	2	1	2	2
C04 C05	-	-	-	1	-	- 2	-	2	2		-	2	2	1	1	-
CO6	-	1	1 1 2 1 2 1 2 - 2 2 2 2 2 2												2	
AVERAGE	-	1	1 1.5 1.5 1 2 1.5 2 2 2 1.5 1.6 1.2 1.5 2													
CORREI	LATIOI ELS	1 1.5 1.5 1 2 1.5 2 2 2 1.5 1.6 1.2 1.5 2 ON 1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH)											IGH)			

UNIT I - INTRODUCTION TO QUALITY CONCEPTS

Definitions of Quality, Quality control, Quality Assurance, Quality Management, Quality Management system, Total Quality Management (TQM).Four principles of TQM, Quality costs, Quality statements- Vision, Mission, Quality policy, Quality Objectives and Targets.

UNIT II - APPLICATION OF QA & QC IN SHIP BUILDING INDUSTRY

Identification of customer requirements, QA/QC Documentation requirements, Quality Planning, skilled Labour, Competency/Training and Awareness; Design and Development; control on vendors and purchased products, operational control including control on welding processes; monitoring and measurement of processes, inspection and testing on

- Raw material, in-process and final product;
- Pre-delivery inspection including Dry surveys I & II, Different methods of NDT Testing; Dock trials and sea Trials

UNIT III - ISO 9000 QUALITY MANAGEMENT SYSTEM

9 Hrs

9 Hrs

Need for ISO 9000 Quality Management system and Description of its elements, Major steps in achieving ISO 9000 certification – Awareness / Training, Documentation, Implementation Internal Audit, Audit methodology and auditor qualities External certification audit, Certification and annual verification audits, Quality awards – international quality awards and National quality awards

UNIT IV - INTRODUCTION TO ISO 14000 & OHSAS 18000

Introduction to the basic concepts of

- a) Environmental management system (ISO 14001:2004 EMS)
- b) Occupational Health and safety series system (OHSAS 18001:2007).

Environmental aspects and impact assessment in and determining controls in EMS, Hazard identification and risk assessment and determining controls in OHSAS, Operational control and Emergency Preparedness and Response (common to both EMS and OHSAS), Performance measurement including audit and management review and external certification. (Common to both EMS and OHSAS)

UNIT V - INTRODUCTION TO ISM CODE

ISM code (international safety management for safe operation of ships and for pollution prevention), Introduction to ISM code -Background and purpose, Documentation, planning for shipboard operations and implementation of operations including emergency preparedness and Response, Audit and certification (Interim and final).Certification of Both DOC (Document of compliance for company) and SMC (Safety Management certificate for ship); Periodical verification of the maintenance of ISM code

Total 45 hrs

9 Hrs

9 Hrs

TEXT BOOKS

- 1. Total Quality Management by Dale. H.Besterfield and Others PEARSON Education Inc (Indian Reprint 2010)
- 2. Total Quality Management by Dr. D.D.Sharma. Sultan chand and sons New Delhi (Reprint 2005).
- 3. Implementing ISO 9000 QMS by pradeepkumar. Mathur Vikas publishing House, New Delhi
- 4. A Text Book of Total Quality Management (for B.E.,/ B.Tech VIII semester Anna University) By Prof. R.Ramakrishnan by Dhanam publications Chennai

REFERENCES

- 1. International standard ISO 9001 Quality Management system –Requirements ISO 9001:2008(E) Bureau of Indian standards Publications-Chennai
- 2. IS/ISO 14001: 2004 Environmental management system Requirements with Guidance for use Bureau of Indian standards Chennai
- 3. Occupational health and safety managements- Requirements (OHSAS 18001:2007) Bureau of Indian standards publications Chennai
- International standard ISO 19011: 2011 Guide lines for Auditing Management systems Bureau of Indian standards Publications, Chennai
- 5. ISM code Amended up to 2010 (IMO Publication, London).

PROGRAM	Λ	BE-Naval Architecture & Offshore Engineering															
Course Co	٩٥٠		Co	urse N	lame :			L	,	Т		Р		С			
UDITCH	PB	OBJ	ECT C	RIEN	FED P LAB	ROGR	AMMIN	NG 0		0		2		1			
Year an Semester	ld er		II	l Year	(sem	ester V	7)		Contact hours per week								
Prerequis course	site				NIL				(2 Hrs)								
		Hum	anities	s and	M	anage	ment	Pro	ofessi	onal	Pro	ofession	al Elec	tive			
Course	e	5001		nees		Juises		0									
categor	У	Basic	c Scier	nce	Ei So	Engineering Science			Open Elective			Mandatory					
✓																	
Course	e	1. T	fo get	clear ı	inders	tandin	g of ob	ject-orie	nted c	concepts							
Objective 2. To understand object oriented programming through C++ To get familiarized in file operations																	
After completion of the course, the students will be able																	
		1. I	Define	basics	s of pr	ogram	ming la	inguage.									
Course 2. Inspect object oriented concepts.																	
Outcome 3. Determine the significance of constructor and destructor.																	
4. Determine file handling operations.																	
		5. L	Determ	nne th	e way	s to tes	st and d	ebug err	ors.	ants to	ooluo r		ld nrohl	ama			
POS/COS	PO1	Original control of the sector of t								PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	2	1	2	2	2	-	-	-	-	-	-	-	-	-	-		
CO2 CO3	3	2	3	3	3	-	-			-	-	-	-	-	-		
CO4	1	2	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO5	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-		
AVERAGE	2.1	2	2.4	2.2	2.2	-	-	-	-	-	-	-	-	-	-		
CORRE	LATIO	N	1	SUIGE		W)	2	MODER			M)	3 51	RSTAN		IGH)		
LEV	ELS		1.	SLIGI		•••)	2.	MODEN		MLDIUI	v1)	5.50	DSTAN		lion)		
1. Sim	ple C-	++ pro	grams	to imp	pleme	nt vari	ous con	trol strue	ctures								
2. Prog	grams	to imp	lemen	it the c	oncep	t of cla	asses ai	nd object	s.								
3. Pros	grams	to imp	lemen	it the c	tion	t of ar	rays of	object.									
4. F10	gram t	o impl	omont	opera	tor ov	orload	ung ing										
6 Pros	gram t	o impi	ement	Const	tructor	and d	estruct	or									
7. Pro	prams	to imp	lemen	t the c	concen	t of in	heritan	ce									
8. Pro	grams	to und	erstan	d frie	nd fun	ction a	and frie	and class									
9. Prog	grams	to han	dle the	e error	using	excep	tion ha	ndling									
10. Prog	grams	to perf	form f	ile ope	eration			C									
11. Exe	rcises	applyi	ng on	the re	levant	discip	line.										
												Τ	OTAL	: 30 HO	OURS		
D (-						0.3.2	1 .		6		. .	•					
Designed	by		" De	partm	ent of	t Nav	al Arc	hitecture	e & C	Offshore	e Engii	neering	77				

Course Code: Course Name : L T P SHIP STRENGTH 0 0 0 0		С												
SHIP STRENGTH														
		1												
LABORATORY 0 0 2		1												
Year and														
Semester III Year (semester V) Contact hours per week	Contact hours per week													
Prerequisite (4Hrs)	(4Hre)													
NIL (4113)														
Humanitias and Managamant Professional Cora Pro	Desfrontenet Come Desfrontenet Dia di													
Futurialities and Management Floressional Core Flo	nessi		cuve											
Course Social Sciences Courses														
category Decis Science Engineering Open Elective	Ма	ndatom												
Science Eligineering Open Elective	Ivia	indatory												
Science														
Course To perform the General Arrangement and Strength of the Ship														
Objective														
After completion of the course, the students will be able to														
1. Develop General arrangement of ship.														
Course 2. Evaluate the longitudinal strength of ship and weight.	2. Evaluate the longitudinal strength of ship and weight.													
Outcome 3. Explain various ship strength	3. Explain various ship strength													
4. Construct a Mid ship and find section modulus	4. Construct a Mid ship and find section modulus													
5. Criticize the concepts of sheer force and bending moment	5. Criticize the concepts of sheer force and bending moment													
6 Estimate Mid ship Scantling calculation	6 Estimate Mid shin Scantling calculation													
POS/COS POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 I	SO1	PSO2	PSO3											
CO1 1 2 3 1 1 - 1 1	3	3	3											
CO2 3 2 3 1 - 1 1 -	3	3	3											
<u>CO3</u> - <u>1</u> <u>3</u> <u>2</u> <u>2</u> - <u>3</u> <u>1</u>	3	3	3											
	3	3	3											
CO6 - - - - 1 -	3	3	3											
AVERAGE 2 1.6 3 1 1.5 - 2 1	3	3	3											
CORRELATION 1 SLIGHT(LOW) 2 MODERATE(MEDILIM) 3 SLIB	STAN		ICH)											
LEVELS 1. SEIGHT(LOW) 2. MODERATE(MEDICM) 5. SOB	SIAN		1011)											
GENERAL ARRANGEMENT OF SHIP														
 General arrangement of ship as per the classification society rules and other 	rule	S												
• Drawing in CAD Software: Arrangement of cargo holds														
	• Arrangement of Engine Room													
• Arrangement of Engine Room														
 Arrangement of Engine Room Capacity calculations 														

- Arrangement of accommodation
- Arrangement of Superstructure

LONGITUDINAL SHIP STRENGTH

Ship in calm water, wave bending, stresses due to bending. Weight curve, buoyancy curve, shear force & bending moment calculations and diagram.

SCANTLING

Scantling calculations and Drawing of Mid ship Section , Section Modulus Calculations of the ship as per Classification Rules

Total: 30 Hours

REFERENCES

- 1. Classification Rules
- 2. Principle of Naval Architecture by Edward V Lewis
- 3. Robert Taggard, Ship Design & Construction

PROGRAM	N	BE-Naval Architecture & Offshore Engineering															
Course Co	da		Co	ourse N	Name :			Ľ	,	Т		Р		С			
UDNA5	de: PB	STR		RALN	IODEI	LING	-	0)	0		2		1			
		SOL	IWAK	E LAE	OKAL	I OK I											
Year ar	nd																
Semest	er		III	Year (semes	ster V))	Contact hours per week									
Prerequis	site								(2Hrs)								
course	, ,			1	NIL						,,						
		Hum	anities	and	Man	agemei	nt	Pro	fessior	nal Core		Ι	Professio	onal Ele	ctive		
Course	ב	Socia	al Scier	nces	cour	ses											
category										\checkmark							
cutegor	y	Basic	c Scien	ce	Engi	Engineering			en Elec	ctive			Ma	ndatory			
					Sciei	nce		_									
Course																	
Objectiv	5 Ve	, r	To perform the General Arrangement and Strength of the Ship														
objecti	ve	Afte	r com	oletior	of the	e cours	se the	studen	ts will	be able	e to						
		1110	l Li	st the l	hackg	ound o	of the	softwa	re								
Course	e		$2 D\epsilon$	evelop	Gene	ral arra	angem	ent of s	ship.								
Outcom	ne		3. De	evelop	a mid	-ship s	section	of the	ship u	ising so	ftware.						
		4. Evaluate the longitudinal strength of ship and weight															
		5. List ship structural terminology.															
		(5. Co	mpos	e Mid-	-ship S	cantli	ng calc	ulatio	n.							
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
C01	1	2	3	1	1	-	1	1	1	1	-	-	3	3	3		
CO2	3	1	3	2	2	1	3	1	-	-	-	-	3	3	3		
CO4	-	-	-	-	-	-	-	1	-	-	-	-	3	3	3		
CO5	-	-	-	-	-			1	-	-	-	-	3	3	3		
AVERAGE	2.3	1.3	3	1.6	1.6	1	1.66	1	1	1	-	-	3	3	3		
CORRE	LATIO	N	1	. SLIGH	IT(LOV	V)	2	2. MODE	MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH)								
	ELS				<u> </u>			and in	1	` 		ai da			,		
	111111 	ve cre		i – pia	ne, bio	эск, ру	/ramid	, cyline	1 er, co	one, spn	ere, tor	010S.	1	• ,	1 / 1		
• 0	irved	SUL	ace cr	eatioi	$\mathbf{n} - sw$	ept ex	truded	, rotate	d, skir	ined sur	faces, s	3 or 4 b	oundary	y interp	olated		
	tcnes,	tube.		1	1	1	1		11:								
	irve j	primi	uves -	– pory	nnes,	spines	s, nnes	s, arc, e	mpse,	NACA		ns.	•		1.1		
• Su		e oper		IS — SI	afleat	t, unite	e solic	1 inters	ection	, interse	ect, imp	brint, jo	oin, cor	nbine,	blend,		
- 20	lie, mo	ove, ro	nale, a	ingn, r	eneci,	copy,	COLCE	llenale,	and c	ontroi f	bonnt ed	ning.					
			IS — JO	0111; U11		ss, on	set, III	iei.	fta (7	. :1	hataa d			1: -1-4-		
• VI	suan		I — pi nt and	rincipa	u curv	vature,	curva	ature ti	inis, C	Jaussia	n, isopi	notes, i	ranspa	rency,	ngnts.		
	tomat	ve pon	ni anu	ing on	d data	g roduo	tion										
- Au	uomai 11 fori	n hydr	ve tall	nig an	u uata	reduc	uon										
- 110 • Lin	nes nle	ii iiyui ang ang	d loft l	books													
	mnart	menta	tion	JUUKS													
■ Str	nctur	al Stre	noth ir	ı diffe	rent lo	ading	condi	tion									
	acture			i unite		aanng	contan	lion					Tota	1:30]	Hours		
REFERE	NCE	S															
1.Softv	vare n	nanual															
2.Robe	rt Tag	gard, S	Ship D	Design	& Co	nstruct	tion										
3.Princ	3.Principle of Naval Architecture by Edward V Lewis																

Designed	by		" De	partm	nent o	f Nav	al Ar	chitect	ure &	Offsh	ore En	gineer	ing"					
PROGRAM	N	BE-N	Naval .	Archit	ecture	& Of	fshore	Engine	eering									
Course Coo	de:		Co	urse N	lame :			L	r	Т		Р		С				
UDNA5	PC			Intern	nship ·	- I		0		0		0		1				
Year an Semester	ıd er		III	Year (semes	ter V)			Contact hours per week									
Prerequis course	site			1	NIL				(N/A)									
		Hum	anities	s and	Man	ageme	ent	Pro	Professional D f i I DI i									
Course		Soci	al Scie	ences	cour	ses		Co	re		PIO	ression	al Elect	live				
cotegor										\checkmark								
category		Basi	c Sciei	nce	Engi Scie	ineerir nce	ıg	Ор	Open Elective			Mandatory						
Course Objectiv	e ve	1. (I	Comprehending the classroom learning by practicing real time in industry. Learning how things could be executed within time.															
Course Outcom	e ne	After 1. (2. I 3. I 4. I 5. (i 6 I	 Create completion of the course, the students will be able to: Create correlation between what is taught during the classes and the industry prace Explain procedural aspects of the project being undertaken in the industry. Explain the experience of their own. Explain the importance of the stay/work in the industry. Compare gained in the classroom-based learning to fulfill the tasks given durin internship. 											ctices.				
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	-	-	-	-	-	-	-	2	-	-	-	-	3	3	3			
CO2 CO3	-	-	-	-	-	-	-	2	-	-	-	-	3	3	3			
CO4	-	-	-	-	-	-	-	2	-	-	-	-	3	3	3			
CO5	-	-	-	-	-	-	-	2	-	-	-	-	3	3	3			
AVERAGE	-	-	-	-	-	-	-	2	-	-	-	-	2.5	2.5	2.5			
CORREI LEV	LATIO	N	1.	SLIGH	IT(LOV	V)	2	. MODE	ERATE(MEDIUI	M)	3. SU	JBSTAN	TIAL(H	IGH)			
A s relevant fie	studen eld of l	t mus Naval	t unde Archit	rgo an tecture	intern or Of	nship f ffshore	for a n Engin	ninimui neering	n peri	od as p	rescribe	ed by tl	ne depa	rtment	in the			
ТЕХТВО	OKS:	N/A											1018	1. 1N/A				
(no	ot limi	ted to	any to	pics)														
REFEREN	NCES	N/A	<i>i</i>															
(no	ot limi	ted to	any to	pics)		C NT	1 .	1 .	<u> </u>	0001		•	• •,•					
Designed by "Department of Naval Architecture & Offshore Engineering"									ore En	gineer								

SEMESTER-VI

PROGRAM	M	BE-N	BE-Naval Architecture & Offshore Engineering															
Course Co	dar		Co	urse N	lame :			L		Т		Р		С				
UDNA6	01	DES STR	IGN (UCTL	OF OF	FSHO	RE		3		0		0		3				
		•																
Year an Semest	nd er		III	Year (VI sen	nester)		Contact hours per week										
Prerequis course	site e			1	NIL					(1	3Hrs)							
		Hun	nanitie	s and	N	Ianage	ment	Pro	fession	al Core		Profe	ssional	Elective	;			
Course		Soci	ial Scie	ences		cours	es											
categor	·v		. ~ .					-		✓								
eutogory		Bas	sic Scie	ence	E	Scien	ering ce	0	pen El	ective			Ma	indatory				
		1	. To u	nderst	and th	e prino	ciple in	nvolved	in the	design	procedu	ure of o	ffshore	e structu	ires			
Course	e	2. To understand and evaluate static and dynamic loads on the offshore structures using																
Objectiv	ve	s	tanda	d rul	es.													
		3.	. To de	esign f	loating	g and t	fixed of	offshore s	structu	ires and	l desigr	n of sub	marine	pipelin	ies			
		After completion of the course, the students will be able to																
		1. Summarize design of an offshore platform.																
C		2.	Estin	nate pi	inchin	g shea	r and	joint cap	acity c	alculat	ions ind	cluding		fati	gue			
Course	e	analy	vsis.	•		0		· ·	•			U			C			
Outcom	ne	3. Design structure against accidental loading																
		4	Anal	vse the	e stabil	litv of	subma	arine pip	elines.									
		5	Desig	n of f	loating	struc	tures a	and semi	floati	ng struc	ctures.							
		6	Desig	on an c	offshor	e stru	cture											
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	1	1	2	-	1	1	2	1	1	2	2	2	2	2	2			
CO2	2	2	2	-	2	1	1	1	1	2	-	2	2	2	2			
CO3	2	2	3	-	2	1	1	2	1	1	-	2	2	2	2			
C04 C05	2	2	3	- 1	2	2	1	2	2	1	-	2	2	2	2			
C05	2	3	2	1	2	1	2	2	2	2	2	2	2	2	2			
AVERAGE	1.8	2.1	2.3	1	1.8	1.3	1.3	1.16	1.3	1.6	2	2.0	2.0	2.0	2.0			
CORRE LEV	N	1.	SLIGH	IT(LOV	V)		2. MODEI	MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH)										

UNIT I-DESIGN PRINCIPLES AND METHODS

10 Hours

Introduction - Types of offshore structures and structural components, Planning of Offshore Structures; Design criteria and procedures, Design requirements. Loads on offshore structures, Static and dynamic loads -Wind Loads, Wave loads – Morison equation, Current Load. Design methods and Principles of Steel Tubular Members.

UNIT II – DESIGN FOR STATIC AND DYNAMIC LOADS

Design of jacket structure against static loading - Allowable stresses and Partial Safety Factors; Design for combined stresses- as per API RP 2A guidelines. Design for Cyclic Loads- Design Wave approach. Simple tubular joints, design using allowable loads; Fatigue -stress concentration factors; S-N curves and fatigue damage calculations.

UNIT III-DESIGN FOR ACCIDENT ALLOADING

8 Hours

Design against accidental loading (Fire, blast and collision), Plastic design method, Lifting and Transportation analysis, Redundant framing arrangement; Launch and Lift jackets; Simple Deck configurations for Lift.

UNIT IV-DESIGN OF SUBMARINE PIPELINES	5 Hours
Design of submarine pipe line and Risers, Route selection and Diameter / wall	thickness calculations;
Pipeline stability, free span calculations; Concrete coated pipelines and pipe-in-pipe ins	ulated pipelines.
UNIT V- DESIGN OF FLOATING STRUCTURES	12 Hours
Design criteria, Column stabilized structures; design of pontoons; Tension	leg platforms; Tethers
selection and design; Spar hulls; classic, truss and cell spar; Spar hull compartmen	ts and design of shell
structures; offshore wind turbine support structures. Overview on decommissioning of	offshore platforms.
Case Study : 1.Case Study on Failures of offshore structure	
Assignment : 2. Numerical modeling and analysis of offshore structure	
	Total :45 Hours
TEXT BOOKS	
1. Dawson, T. H., Offshore Structural Engineering, Prentice Hall, 1983.	
2. API RP 2A. Planning, Designing and Constructing Fixed Offshore Platforms, A	API.
3. McClelland, B & Reifel, M. D., Planning & Design of fixed Offshore Platforms	, VanNostrand, 1986.
4. Graff, W. J., Introduction to Offshore Structures, Gulf Publ. Co.1981.	
5. Reddy, D. V & Arockiasamy, M., Offshore Structures Vol.1 & 2, Kreiger Publ.	Co.1991.
6. Morgan, N., Marine Technology Reference Book, Butterworths, 1990.	
7. B.C Gerwick, Jr. Construction of Marine and Offshore Structures, CRC Press, J	Florida, 2000.
REFERENCE BOOKS	
1. Hand book of Offshore Engineering – S.K. Chakrabarti, Elsevier Publications 2	2005.
2. API RP 2A(WSD or ASD)	
3. API RP 2A (LRFD)	
4. Offshore structures design, construction and Maintenance by Mohamed A. El-	Reedy
Designed by "Department of Naval Architecture & Offshore Enginee	ring"

PROGRAM	N	BE-1	BE-Naval Architecture & Offshore Engineering														
Course Co	de:		Co	urse N	lame :			L		Т		Р		С			
UDNA6	02	SHI	P MOT	TIONS	AND	CON	TROL	. 3		1		0		4			
Year an Semeste	ıd er		III	Year (VI sen	nester))		Co	ontact h	ours pe	ber week					
Prerequis course	site			1	NIL						((4Hrs)					
Course category		Hum Socia	anities 11 Scier	and ices	Mana cours	agemei ses	nt	Profe	essiona	l Core		Η	Professio	onal Ele	ctive		
								\checkmark									
		Basic	c Scien	ce	Engin Scier	neering nce	3	Open	Electi	ve			Ma	ndatory			
Course Objectiv	e ve	 a 1.To understand the motion characteristics in waves b 2. To evaluate the steering features of surface ships in calm waters c 3. To analyses the performance of floating vessels 															
Course Outcom	e ie	Afte: 1. E 2. E 3. E 4. Ir 5. H	r comp valuat stimat stimat terpre Examin lerivat	e analy e the s e the c t beha ne stat ives.	of the ytically hip resonant control viour ndard	y the S sponse fixed of line mano	se, the Sea kee spect stabili ear hyd euvres	students eping an rum in r ity of sur lrodynan s and ex	will b alysis andom face s nic den sperim	be able for 1-D for 1-D n waves hips. rivative hents for	to OF. s in ma or deter	noeuvr rmining	ing. g the h	ydrody	namic		
Deglara	501	6. D	iscuss	the hy	ydrody	namic	cs asso	clated w	1th ruc	dder sel	ection a	and its	design	aspect.	5000		
PUS/CUS	1 POI	2	PO3	PO4	2	PO6	PO/	P08 1	P09	PO10	2	P012	PSOI	2	2		
CO2	2	2	2	2	2	1	-	-	2	2	2	-	2	2	2		
CO3	2	2	2	2	2	1	-	-	2	2	2	-	2	2	2		
CO4	2	2	2	2	2	2	2	2	2	2	2	-	2	2	2		
CO5	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		
CO6	2	2	2	2	2	1	2	2	2	2	2	2	2	2	2		
AVERAGE	1.16	2.0	2.0	2.0	2.0	1.6	2.0	1.75	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
LEV	N	1.	SLIGH	IT(LOV	V)		2. MODEI	RATE(I	MEDIUM	1)	3. SU	JBSTAN	TIAL(H	IGH)			
UNIT I – I Re	UNIT I – MARINE ENVIRONMENT Regular surface waves and their properties, Irregular Waves – statistical representation, Sea State																

spectrum, Beaufort scale. Introduction to sea keeping, Ship in waves, Frequency of encounter

12

UNIT II – MOTION CHARACTERISTICS IN REGULAR WAVES Hrs

Ship motions in regular waves – Heave, Pitch and Roll - Equations of motion (uncoupled), Dynamic response curve, Determination of hydrodynamic coefficients using Strip theory – added mass and damping coefficients, coupled motions – heave and pitch

UNIT III -MOTION CHARACTERISTICS IN IRREGULAR WAVES AND DYNAMIC EFFECTS 12 Hrs

Ship motions in irregular waves, Response spectra, Dynamic effects; deck wetness, slamming, relative motions, motion sickness, Added resistance and loss of ship speed in seaway, Polar diagram, Design considerations for sea keeping, Motion stabilizers.

UNIT IV – MANEUVERING CHARACTERISTICS OF SURFACE SHIP Hrs

12

Introduction to maneuverability, Types of directional stability, linear equations of motions in horizontal plane, hydrodynamic and control derivatives, stability index, standard maneuvers; turning circle, zigzag, pullout and spiral maneuvers, heel during turn

UNIT V – MANEUVERING STANDARDS AND RUDDER CHARACTERISTICS 12 Hrs

Experimental determination of hydrodynamic derivatives; straight-line, rotating arm and PMM experiments, IMO Guidelines, Estimation of maneuverability in ship design, standards for ship maneuverability, Maneuvering in shallow water; Squat, Bank Cushion effect, Interaction between ships, Control surface – Rudder and their types.

Total: 60 Hours

TEXT BOOKS

- 1. Dynamics of Marine Vehicles, R Bhattacharya, 1978
- 2. Principles of Naval Architecture, Vol III, edited by Edward V Lewis
- 3. B.C Gerwick, Jr. Construction of Marine and Offshore Structures, CRC Press, Florida, 2000.

REFERENCES

- 1. Introduction in Ship Hydrodynamics, by J M J Journee & Jacob Pinkster, Delft University of Technology
- 2. Sea keeping : Ship Behavior in Rough Weather , by A R J M Lloyd
| PROGRAM | N | BE-1 | Naval | Archit | ecture | & Of | fshore | Engine | ering | | | | | | |
|---|----------|--------|----------|---------|----------|----------|----------|-----------|--------------|----------|----------|----------|-----------|----------|---------|
| Course Co | de: | | Co | ourse N | Vame : | | | L | | Т | | Р | | С | |
| UDNA6 | 03 | | SH | IP DE | SIGN | | | 3 | | 1 | | 0 | | 4 | |
| | | | | | | | | | | | | | | | |
| Year an | nd | | | Vaar | | | \
\ | | | | | | | | |
| Semeste | er | | 111 | rear (| vi sen | lester |) | | Co | ontact h | ours pe | er week | | | |
| Prerequis | site | 1. | Ship T | heory | | | | | | | (4 | Hrs) | | | |
| course | • | Sł | nip Re | sistanc | e and | Propu | lsion | | | | | | | | |
| | | Hum | anities | and | Mana | ageme | nt | Profe | essiona | l Core | Pro | fessiona | 1 Electiv | ve | |
| Course | ב | Socia | al Scier | nces | cours | ses | | | | | | | | | |
| categor | | | | | | | | | \checkmark | | | | | | |
| cutegor | y | Basic | c Scien | ce | Engi | neering | 5 | Oper | n Electi | ive | Ma | ndatory | | | |
| | | | | | Scier | nce | | | | | | | | | |
| | | 1 | | | | | | | | | <u> </u> | | | | |
| ~ | | 1. To | o unde | erstand | the sh | np des | sign pr | ocess to | r ship | hull for | m desi | gn. | 11.0 | | |
| Course | e | 2. To | o apply | y the v | arious | steps | involv | red in th | e vario | ous proc | cess for | ship hu | all for | | |
| Objectiv | ve | D | esign. | | | | | | | | | | | | |
| 3. To evaluate design problems and evaluate the overall design. | | | | | | | | | | | | | | | |
| | | Afte | r comp | oletion | of the | e cours | se, the | students | s will t | be able | to | | | | |
| | | 1. D | efine | the co | ncept | of shi | p desig | gn as an | overvi | iew | | | | | |
| Course | a. | 2. E | xplain | the cr | iteria f | for sele | ection | of vario | us hull | form re | equiren | nents fo | r differ | ent ship | o types |
| Outcom | -
1e | 3. D | evelop | p lines | s plan | and ge | eneral | arrangei | nent re | equirem | nents ar | nd solve | e proble | ems | |
| Outcom | | 4. D | iscuss | the op | otimiza | ation o | of exis | ting ship | o with | numerio | cal app | roach | | | |
| | | 5.Se | elect st | em an | d sterr | n hull : | forms | | | | | | | | |
| | | 6.D | esign p | proced | ures ai | nd pra | ctice fo | or estima | ating p | rincipal | l dimen | sions, h | ull forr | n paran | neters, |
| | | light | ships a | and de | adwei | ght co | mpone | ents | | _ | - | | _ | | |
| POS/COS | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| C01
C02 | 1 | 1 | 2 | - | 1 | 1 | 1 | 1 | 1 | 1 | - | 2 | 2 | 3 | 2 |
| CO3 | 2 | 2 | 3 | - | 2 | 1 | 1 | 1 | 1 | 1 | - | 2 | 2 | 3 | 2 |
| CO4 | 2 | 2 | 3 | - | 2 | 1 | 1 | 1 | 1 | 1 | - | 2 | 2 | 3 | 2 |
| CO5 | 2 | 3 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | - | 2 | 2 | 3 | 2 |
| AVERAGE | 1.8 | 2.1 | 2.3 | 1 | 1.8 | 1 | 1 | 1 | 1 | 1 | - | 2.0 | 2.0 | 3 | 2.0 |
| CORRELAT | ION LEV | VELS | 1 | . SLIGH | T(LOW |) | | 2. MODE | ERATE(N | MEDIUM) | | 3. S | UBSTAN | TIAL(HI | GH) |
| UNIT I - I | DESIC | GN PH | IILOS | SOPH | Y | | | | | | | | 12 Hou | irs | |
| Sh | ip des | ign as | a scie | ence ar | nd as a | n art; | Manu | facturing | g and | operatio | onal co | nsiderat | tions in | Ship d | esign, |

Technological and economical factors, National and Global priorities. **12 Hours**

UNIT II - DESIGN CONSIDERATION OF SHIPS

Owner's requirements, Technical specification and ship building contract procedures, shipyard production facilities and operational constraints to be considered in the design process, Ship design method using basis ship, design spiral.

UNIT III -SELECTION OF DIMENSIONS AND COEFFICIENTS **12 Hours** Selection of main dimensions -Initial Sizing, Selection of Hull Form Coefficients, Determination of the main dimensions – Methods, Rationalization of dimensions

UNIT IV – DESIGN OF HULL FORMS

12 Hours

Sectional Area Curve and factors affecting sectional area curve, Section Shape, midship section, Stem and Stern profiles, Types of bow, bulbous bow, parabolic bow, Form of stern; Elliptical, Cruiser Stern, Transom Stern, Hull forms of ships (Bulk Carrier, Tanker, Container ships, etc)

UNIT V – GENERAL ARRANGEMENT AND DISPOSITION OF WEIGHTS 12 Hours

Preliminary General arrangement, calculations of weight, volume and capacity using empirical formulae

Total - 60 Hours

TEXT BOOKS

- 5. Ship Design Methodologies of Preliminary Design by ApostolosPapanikolaou
- 6. Practical Ship Design by D.G.M Watson
- 7. Ship Design for Efficiency and EconomybyH. Schneekluth and V. Bertram
- 8. Ship Design and Construction by R.Taggart.

REFERENCES

- 3. Basic Ship Theory, Vol.1 & 2 by K.J.Rawson and E.C.Tupper
- 4. Principles of Naval Architecture, Vol. 1, 2&3 by Ed.V. Lewis

Designed by "Department of Naval Architecture & Offshore Engineering"

PROGRAM	IME	BE-	Nava	Arch	itectu	re & (Offsho	ore H	Engir	neerin	g					
Course Code	e	Cou	rse Na	me :							0		L	Т	Р	С
UDNAP04		CA	D/CA	M IN	SHI	PBUI	LDIN	IG					3	0	0	3
CDI III OI		011	0/011										5	Ŭ	Ŭ	5
Year Semester	and	III Y	(ear (VI Se	meste	r)			Cor (3F	ntact l Hrs)	nours p	er weel	ĸ			
Prerequisite course		NIL														
		Hum Scier	nanities nces	and S	ocial	Man	ageme	nt co	urses	P	rofessio	nal Core	e	Profess	sional El	lective
Course cate	gory														\checkmark	
		Basi	c Scier	ice		Engi	neerin	g Sci	ence	0	pen Ele	ctive		Manda	itory	
											-					
Course Objectives		The geo: volu	e course introduces to the mathematics and programming implementation of ometric design, required to generate smooth and fair curves, surfaces and lumes for marine applications (form design) the end of the course the students should be able to													
		At t	he en	d of t	he co	urse t	he stu	ıden	ts sh	ould	be abl	e to				
		1	Rela	te the	math	nemat	ical i	nterr	oreta	tion	around	comp	uter gr	aphic		
		2	Expl	ain the	e tech	niques	s used	in fa	irino		rve des	ion for	shin	upine.		
Course Outo	ome	2	Dov	$\frac{1}{100}$	o oroi	nto pr	ogran	$\frac{111}{2}$	tho	moth	omotic		otiona	of our	240	
Course Oute	lonic	3	Deve	<u></u>				1101	ule	mau		ai equ		or cur	ve	
		4	Exar	nine (ne va	iriadie		mer		urve	s and c	intere	nce of	constr		
		5	Evalu	late th	ne nun	nerica	l codi	ng te	chni	ques	underst	ood by	conver	ntional	machin	es
		6	Adap	ot the o	contex	kt in m	nathen	natic	al pro	ogran	n behin	d a con	nputer j	program	n	
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	D8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
<u>CO1</u>	-	1	-	-	1	1	1		-	-	-	-	-	-	1	1
C02	-	1	-	-	1	1	1		-	- 1	- 1	-	- 1	- 1	1	1
CO4	-	1	-	1	1	1	1		1	-	-	1	1	1	1	1
CO5	-	1	-	1	1	1	1		1	-	-	1	1	1	1	1
CO6	-	1	-	1	1	1	1		-	1	1	1	1	1	1	1
AVERAGE	-	1	-	1	1	1	1		1	1	1	1	1	1	1	1
CORREI LEV	LATIO ELS	N	1. 5	SLIGH	IT(LO	W)	2.	MO	DER	ATE(MEDIU	M)	3. SU	BSTAN	NTIAL(F	HIGH)

UNIT 1 – INTRODCUTION

Introduction and classification of geometric modeling forms for curves, surfaces and volumes; differential geometry of curves and surfaces; introduction to spline curves; Bezier splines; Uniform/non-uniform Rational B-splines; and fitting, fairing and generalized cylinders.

UNIT 2 – SURFACE GENERATION

9 Hrs

Curve generation, Ship Curve design, Integration and fairing techniques for curves, Surface representation, Analytical and parametric representation of surfaces, Differential geometry of surfaces

UNIT 3 – SOFTWARE GENERATION AND TESTING

Programming and checking for accuracy of area, volumes and various geometrical forms using appropriate programming software.

UNIT 4 – COMPUTER AIDED DESIGN

Introduction to blending surfaces; intersection problems in geometric design; offsets of parametric curves, Generation of surfaces and volumes; constructive solid geometry

UNIT 5 – APPLICATION OF CNC

Introduction to CNC programming and application, Principles of numerical control, Manual programming, Introduction about preparatory codes (G & M codes)

Total 45 Hrs

Text books

[1] D. F. Rogers and J. A. Adams (1989), Mathematical Elements for Computer Graphics, 2nd edition, Tata McGraw-Hill, India.

[2] G. Farin (2001), Curves and Surfaces for CAGD: A Practical Guide, The Morgan Kaufmann Series in Computer Graphics, 5th edition, Morgan Kaufmann, USA.[3] Computational Geometry for Ships Edited by: H Nowacki (Technical University of Berlin),

M I G Bloor (University of Leeds), B Oleksiewicz (Technical University of Gdansk)

Reference books

[1] N. M. Patrikalakis and T. Maekawa (2010), Shape Interrogation for Computer Aided Design and Manufacturing, Springer.

Designed by "Department of Naval Architecture & Offshore Engineering"

9 Hrs

PROGRAM		BE-	Naval A	Archite	ecture	& Offs	hore E	Ingineerii	ng							
Course Code		Cou	rse Nai	me:						L	ſ	7	Р		С	
UDNAP05		AD	VANCI	ED OF	FSHO	RE EN	IGINE	ERING		3	()	0		3	
									•		•			•		
Year and Seme	ester	III	lear (V	/I Sem	ester)			Co	ntact h	ours per	week					
Prerequisite co	ourse	Eler	nents o	f Offsl	nore En	nginee	ring	(3]	Hrs)	_						
-		Hun	nanities	and Soc	cial	Mana	gemen	t courses	Pr	ofession	al Core		Professi	onal Ele	ctive	
Course estado	117 7	Scie	nces											\checkmark		
Course catego	лу	Basi	c Scienc	ce		Engin	eering	Science	O	oen Elect	tive		Mandate	orv		
		2401				2								,		
Aim / Purpose the course	e of	Stu	dents b	ouild u	pon th	neir kn	owled	lge of of	fshore	engine	ering.					
		Stuc	Students will be able to													
		1	1 Define the necessary design challenges in offshore system design.													
			Explair	n the h	oasis o	f offsl	nore e	ngineeri	ng app	lied to	the des	ign of r	enewał	ole ener	·gv	
Instructional		2	system	s.				0	<i>8</i>			0			01	
objectives of	the	3	Make u	ise of	an api	oropria	ate de	sign of r	sers a	nd moo	ring lin	es for t	he offs	hore sy	stems.	
course		4	Disting	uish t	he pro	s and	cons	of the vo	rtex in	duced	vibratic	ons in n	narine a	pplicat	ions.	
		5	[mport	ance o	of the l	earnir	ng of i	inderwat	er veh	icles in	design	projec	t.	<u> </u>		
		6	Adapt	the lea	rning	in dev	veloni	ng the of	fshore	design	projec	ts				
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	-	-	-	-	-	1	1	1	1	-	1	1	-	1	
CO2	-	1	2	1	-	1	1	1	1	1	1	1	1	1	1	
CO3	-	2	1	1	1	1	1	- 1	1	1	1	1	1	1	1	
CO5	_	2	2	1	_	1	1	1	1	1	1	1	1	1	1	
CO6	-	-	1	1	-	1	1	1	1	1	1	1	1	1	1	
AVERAGE	-	1.5	1.6	1	1	1.2	1	1	1	1	1	1	1	1	1	
CORREL. LEVE	ATION ELS	N	1.	SLIGH	IT(LOV	W)		2. MODE	RATE(I	MEDIUN	()	3. SU	JBSTAN	TIAL(H	IGH)	

UNIT I -CHALLENGES IN OFFSHORE DESIGN

Introduction to ocean environment; Evolution in offshore engineering; Current design trends and challenges; Deepwater exploration and challenges; Subsea field development; Arctic design challenges.

UNIT II –OFFSHORE RENEWABLE ENERGY

General – Introduction to ocean energy – wind, wave and current/tides; Offshore wind energy – evolution of design concept, types of foundations and its rigid body motions, design requirements, construction and material;

9 Hrs

Wave energy converter - various design concepts and its requirements, material selection; Tidal energy converter – various design concepts and its requirements, material selection. Case study: anyone existing design.

UNIT III – RISER AND MOORING LINES

Riser systems: flexible pipe structure and material, typical configurations, top tensioned vertical risers, hybrid risers.

Mooring lines: typical mooring configuration, material and construction, anchors and ancillary equipment, static mooring analysis. Case study: design of anyone type of mooring system.

UNIT IV – VORTEX INDUCED VIBRATION

Concept of lift and drag force, parameters influencing the hydrodynamics forces; Flow around a circular cylinder; Vortex formation and associated Vortex Induced Vibration (VIV), vortex shedding, effect of surface roughness; Non-dimensional numbers, selection of Strouhal number; VIV assessment and experimental setup; VIV suppression mechanism; VIV fatigue life calculation; VIV as a fruitful phenomenon.

UNIT V – UNDERWATER VEHICLES

Remotely operated vehicles (ROVs): Applications and various design concept, ROV handling systems, construction and materials, navigation and control.

Autonomous underwater vehicle: Applications and design concept, material selection, construction, various sensors and control system. Case study: design of anyone underwater vehicle.

TEXT BOOKS:

- 13. Subrata Chakrabarti, Handbook of Offshore Engineering volume 1, Elsevier Science, Netherlands, June 2005.
- 14. Subrata Chakrabarti, Handbook of Offshore Engineering volume 2, Elsevier Science, Netherlands, June 2005.
- 15. Clauss, Günther, Lehmann, Eike, Östergaard, Carsten, Offshore Structures: Volume I: Conceptual Design and Hydromechanics, Springer - Verlag London Limited, 1992.
- 16. Gunther Clauss et. al, 1. BC Grewick, Jr. Construction of marine and offshore structure, CRC Press, 2000.
- 17. Minoo H. Patel, Advanced Offshore Engineering (Offshore Engineering Handbook), BPP Technical Services Ltd., UK, October 1994.

REFERENCES:

- 13. EE Allimendinger, Submersible vehicle systems design. SNAME, 1990.
- 14. RD Blevins, Flow induced vibrations, Van Nostrand Reinhold, 1990.
- 15. Karimirad, Madjid, Offshore Energy Structures For Wind Power, Wave Energy and Hybrid Marine Platforms, Springer International Publishing, Switzerland, 2014.

"Department of Naval Architecture & Offshore Engineering" **Designed by**

9 Hrs

9 Hrs

9 Hrs

Total 45 Hrs

PROGRAM		BE-N	Naval A	Archite	ecture	& Offs	hore E	Engineerin	g							
Course Code		Cour	se Nar	ne :						L	J	Γ	Р		С	
UDNAP06		Fishi	ng Ve	ssel Te	chnol	ogy				3	()	0		3	
			-								1					
Year and Sem	nester	III Y	ear (V	'I Sem	ester)			Cor	tact ho	ours per	week					
Prerequisite c	ourse	NIL			· · ·			(3H	Hrs)	, i i i i i i i i i i i i i i i i i i i						
Â		Huma	anities	and Soc	cial	Mana	gemen	t courses	Pr	ofession	al Core		Professi	onal Ele	ctive	
Course categ	ory	Scien	ices													
C C	•													\checkmark		
		Basic	Scienc	e		Engin	neering	Science	O	pen Elect	ive		Mandate	ory		
Aim / Purpo	ose of	То и	nders	tand th	he des	ign co	onstru	ction and	operc	ition of	fishing	g vessel	S			
the course			dents will be able to													
Instructional		Stud	idents will be able to													
objective of the	he	1 L	dents will be able to List the types of fish and different methods of fishing													
course		2 C	Classify	the di	ifferen	t types	of fisl	hing gear								
		3 N	/lake u	se of p	reserv	ation o	f fish	on board t	he ves	sel						
		4 C	Categor	ize the	e desig	n of di	fferen	t types of	fishing	vessels						
		5 E	Explain	the m	aterial	s used	in fish	ing vessel	const	ruction a	and eco	nomics	of the fi	shing ve	essel	
		6 N	/inimi	ze the	Cost E	estimat	ion for	making t	he low	cost fis	hing ve	ssel		0		
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
C01	-	-	-	-	-	1	1	-	-	-	-	-	-	-	-	
<u>CO2</u>	- 1	1	- 2	- 2	1	1	1	1	-	1	1	2	1	- 2	- 1	
C04	-	2	-	-	-	1	1	1	-	1	1	1	1	1	1	
CO5	-	2	2	2	1	1	1	1	-	1	1	2	2	2	1	
CO6	-	1	-	-	1	1	1	-	-	1	1	2	2	2	1	
AVERAGE	1	1.6	2	2	1	1	1	1	-	1	1	1.6	1.6	1.7	1	
CORREI LEV	LATIOI ELS	N	1.	SLIGH	IT(LOV	W)		2. MODEF	RATE(N	MEDIUN	1)	3. SU	JBSTAN	TIAL(H	IGH)	

UNIT I - INTRODUCTION

Importance of fishing; Classification of fish for harvesting. Fishing methods - Purse seining, Drift netting, Gillnet fishing. Long line fishing, Pole and line fishing; Trawling, Harpooning.

UNIT II - FISHING GEARS

Fishing gear – Towed gear; Bottom trawling; Side trawling; Towing arrangements; stern trawling operations and equipment, multiring trawling, Midwater trawling; analysis of fishing nets.

UNIT III – FISH HOLD DESIGN

Storing and preservation of fish on board a vessel; Fish hold arrangement, Insulation, icing and freezing; Refrigeration machinery.

9 Hrs

9 Hrs

UNIT IV – VESSEL DESIGN

Design of Fishing vessels, Side trawler, Stern trawler, General arrangement, layout and equipment on deck. Determination of main particulars; estimation of components weights generation of ship lines; Resistance & **Propulsion calculations**

UNIT V – COST ESTIMATION

Economics of fishing vessels. Design and economics of simple low cost country fishing craft. Main and auxiliary machinery; Electrical systems; Structural arrangements. Material for construction.

TEXT BOOKS

- 1. Design of small fishing vessel, john F. Fyson, Food and agriculture organization of the united nations-1985
- 2. Fishing boats and their equipment, Dag Pike, 1992.

REFERENCES

3. Fishing boat designs, 3small trawlers, issues 188-191, john f,fyson, Food and agriculture organization of the united nations-1985

"Department of Naval Architecture & Offshore Engineering" **Designed by**

9 Hrs

Total 45 Hrs

PROGRAM	IME	BE	- Nav	al Aro	chitec	ture a	& Off	shore En	gine	ering							
Course Code	e	Cou	irse 🛾	Name	:ST	ATU	TORY	Y REG	JLA'	TIONS	AND	L	Т	P	С		
UDNAP07		CL	ASSI	FICA	TION	I RU	LES					3	0	0	3		
			/0 /0 -														
Year and Ser	mester	III	Year (VI Se	emeste	er)			Co	ntact ho	ours per	r week					
Prerequisite		NII				/			(3	Hrs)	1						
course			-						、 -								
		Hur	nanitie	s and	Social	Mai	nageme	ent courses	F	rofessio	nal Cor	e	Profess	ional E	lective		
Course cate	gory	Scie	ences														
	80-7													\checkmark			
		Bas	ic Scie	nce		Eng	ineerir	ng Science	()pen Ele	ctive		Manda	tory			
								0									
Course Obje	ctives	To	unde	rstan	d the	role	of IM	O and c	lassi	ficatio	n socie	eties a	nd the	releva	ince of		
		Co	des &	Con	ventia	ns in	shin	huildino	<i>ieuss</i> į	, ieune	r soen		100 1110	101010	nee oj		
			the er	nd of	the co	nis in	the st	udent sh	uld	he ahle	to						
		л	1Describe the importance of classification society in Ship building														
		1	1 Describe the importance of classification society in Ship building														
			1Describe the importance of classification society in Ship building2Explain the IMO conventions														
		2	2 Explain the IMO conventions														
Course Out		3	 2 Explain the IMO conventions 3 Apply the IMO codes 														
Course Out	come	4	2Explain the IMO conventions3Apply the IMO codes4Categorize the safety survey and draft survey														
		5	Ev	aluate	e the s	statut	ory su	irvey and	l Peri	odic su	irvey						
			Ad	lant t	he teo	hnic	al gui	delines	rules	and r	egulati	ons w	hich a	re offe	red by		
		6		- apr a			8.	<i></i>			- 8			• • • • • •			
		Ŭ	va	rious	classi	ficati	on so	cieties in	mar	ine ind	ustry.						
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	2	2	-	-	2	1	1	-	-	-	-	1	-	1	1		
<u>CO2</u>	2	2	-	-	2	1	2	-	2	-	-	2	-	2	2		
CO3	2	2		-	2	2	2	-	2	1	-	2	-	2	2		
CO5	2	2	-	-	2	2	2	1	2	2	-	2	2	2	2		
CO6	1	1	-	-	1	2	1	2	1	2	-	2	1	2	2		
AVERAGE		1.8 N	-	-	1.8	1.5	1.6	1.5	1.8	1.5	-	1.8	1.6	1.8	1.8		
LEV	LATIO FI S	IN	1.	SLIGF	HT(LO	W)	2	. MODER	ATE(MEDIU	M)	3. SU	BSTAN	TIAL(H	HGH)		
							1										
UNIT I - I	NTRO	DUC	CTIO	N T	O RU	LES	AND	REGU	LAT	IONS					9 Hrs		

Introduction to Development of Codes & Conventions, Role of Classification societies, rules in ship
building - History of Classification society-IACS organization activities, DG shipping, MMD rules,
flag, tonnage regulations
UNIT 2 - IMO CONVENTIONS 9 Hrs
IMO conventions & its relevance to ship construction, Basic concepts of SOLAS, MARPOL, STCW
UNIT 3 - IMO CODES 9 Hrs
Basic concepts of FSS, LSA, ISM, - FSS and LSA plan – Emergency preparedness and plan
UNIT 4 - CLASS SURVEY 9 Hrs
Introduction to safety survey, Draft survey-Cargo survey-Refit and operational cycle
UNIT5 -STATUTORY SURVEY 9 Hrs
Introduction to statutory survey, Periodic survey, Re classification survey, Damage survey
Total : 45 Hours
REFERENCES
1. IMO Publications and Documents
2. IACS Publications and Documents
3. MARPOL and SOLAS Code
Designed by "Department of Naval Architecture & Offshore Engineering "

PROGRAM	BE	E-Naval A	Archite	cture	& Offs	hore E	Engine	eering	5						
Course Code	Co	urse Nar	ne :							L]	[Р		С
UDNAP08	IN	LAND V	VATE	R TRA	NSPC	ORTAT	ΓΙΟΝ			3	()	0		3
Year and Semester	III	Year (V	'I Sem	ester)				Cont	tact ho	ours per	week				
Prerequisite course	1.	Ship Tł	neory					(3 H	Irs)						
	2.	Ship re	sistanc	e and	Propul	sion									
	Hu	manities a	and Soc	cial	Mana	gemen	t cours	ses	Pr	ofession	al Core		Professi	onal Elec	ctive
Course category	Sci	ences													
														\checkmark	
	Bas	sic Scienc	e		Engir	neering	Science	ce	Op	pen Elect	ive		Mandat	ory	
Aim / Purpose of	То	unders	tand a	and a	pply t	he va	rious	step	s inv	olved i	n Inlar	ıd wate	er trans	sportati	on and
the course	inl	and wat	er ves	sel de	esign.										
Instructional	Str	tudents will be able to Show the various features of inland water transportation													
objective of the	1	Show t	he var	ious f	eature	s of ir	land	wate	r trar	snorta	ion				
course	1	1 Show the various features of inland water transportation													
	 2 Explain the facilities required for the inland water transportation. 														
	3	Model	the de	sign o	of an i	nland	watei	r veh	icle f	or India	an wate	ers with	low w	ash	
	4	Functio	ons of	the fl	otilla a	and pu	isher	tug s	systen	n					
	5	Rule or	n the	structi	ural ar	range	ment	of I	nland	water	vessels	s using	classif	ication	society
		rules.				U						U			
	6	Design	the pr	ropell	ers rec	luired	for I	nlanc	l wate	er vesse	els				
POS/COS PO1	PO2	2 PO3	PO4	PO5	PO6	PO7	PO	08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
- CO1 -	-	-	-	-	-	1	1		1	1	-	1	1	-	1
<u> </u>	1	2	1	- 1	1	1	1		1	1	1	1	1	1	1
CO4 -	2	2	1	-	2	1	1		1	1	1	1	1	1	1
CO5 -	2	2	1	-	1	1	1		1	1	1	1	1	1	1
CO6 -	-	1	1	-	1	1	1		1	1	1	1	1	1	1
CORRELATION	1.5 J	1.0	1	1	1.2	1	I		1	1	1	1	1	1	1
LEVELS	•	1.	SLIGH	IT(LOV	W)		2. MO	DER	ATE(N	MEDIUN	1)	3. SU	JBSTAN	ITIAL(H	IGH)

UNIT I - INTRODUCTION TO INLAND WATER TRANSPORTATION

Inland waterways and their peculiarities; Maintenance of navigation channels; Siltation, bank erosion and dredging; Indian national waterways.

UNIT II - TRANSPORTATION FACILITIES

Inland river ports; Jetties and infrastructural facilities for Intermodal transportation- water, rail and road; Specialized inter modal transportation vessels

UNIT III – INLANDWATER VEHICLE DESIGN

Inland water vessels features; Design process; Low wash and low draft self-propelled vessels; dumb barges; flotilla, pusher tugs, passenger ferry, hospital ship.

UNIT IV - STRUCTURAL DESIGN OF INLAND WATER VEHICLES

Materials used for Inland water vehicle construction, structural components and scantlings, Classification society rules, registration rules.

UNIT V – PROPULSORS FOR INLANDWATER VEHICLE

Selection of propulsion system, Propellers for inland water vessels; Special features-tunnels; Shrouded propellers, water-jet propulsion.

Total 45 hrs

TEXT BOOKS

- 9. Ship Design Methodologies of Preliminary Design by ApostolosPapanikolaou
- 10. Practical Ship Design by D.G.M Watson
- 11. Ship Design for Efficiency and Economy by H. Schneekluth and V. Bertram
- 12. Ship Design and Construction by R.Taggart

REFERENCES

- 5. Basic Ship Theory, Vol.1 & 2 by K.J.Rawson and E.C.Tupper
- 6. Principles of Naval Architecture, Vol. 1,2&3 by Ed.V. Lewis

"Department of Naval Architecture & Offshore Engineering" **Designed by**

9 Hrs

9 Hrs

9 Hrs

PROGRAM		BE-1	Naval A	Archite	ecture	& Offs	hore E	Ingineerin	g							
Course Code		Cou	rse Nar	ne :						L]	[Р		С	
UDNAP09		FLU	JID ST	RUC	TURE	E INTE	ERAC	TION		3	()	0		3	
										-			-	I	_	
Year and Sem	ester	III Y	ear (V	'I Sem	ester)			Cor	tact h	ours per	week					
Prerequisite co	ourse				,			(4H	Hrs)	1						
•		Hum	anities a	and So	cial	Mana	gemen	t courses	Pr	ofession	al Core		Professi	onal Elec	ctive	
Course catego	ory	Scier	nces				0									
U	5													\checkmark		
		Basic	c Scienc	e		Engin	eering	Science	0	pen Elect	ive		Mandato	ory		
Aim / Purpo	se of	То	concep	otuall	y und	erstan	nd ba	sic phen	omen	on that	contr	ol the	intera	ction b	etween	
the course		simi	iltaneo	ous me	otion d	of fluic	ls and	solids. A	pplice	ation ar	e found	l in dor	nain of	ship. A	ircraft.	
		Offs	hore S	tructu	ire.	<i>J J</i>			II ····		J		j	, in the second s	.	
		0,,,0	udents will be able to													
Instructional		Stud	udents will be able to													
objective of th	ne	1 I	Definin	g of B	asic Fl	uid Me	echani	cs								
course		2 0	Dutline	the co	upled	interac	tion p	roblem.								
		3 I	dentify	the ca	uses a	nd app	licatio	n of vorte	x indu	ced vibr	ation					
		4 <i>A</i>	Analyze	the v	arious	causes	of ins	tabilities a	and ch	aos.						
		5 I	mporta	nce of	real-li	fe app	licatio	n of coupl	ing							
		6 N	Ainimi	ze the	effect	of turb	ulence	and wake	e in co	upling						
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	-	-	2	-	2	-	2	-	-	1	1	-	1	-	
CO2 CO3	-	1	- 2	2	1	2	- 2	2	- 2	- 2	1	1	1	2	2	
CO4	-	-	-	1	-	-	-	2	-	-	1	2	1	1	-	
CO5	-	-	-	1	-	2	-	2	-	-	2	2	1	1	-	
CO6	-	1	1	2	1	2	1	2	-	2	2	2	2	2	2	
AVERAGE	-	1	1.5	1.5	1	2	1.5	2	2	2	1.5	1.6	1.2	1.5	2	
LEVI	ELS	N	1.	SLIGH	IT(LOV	W)		2. MODEF	RATE(I	MEDIUM	()	3. SU	JBSTAN	TIAL(H	IGH)	

UNIT I – INTRODUCTION

9 Hrs

Basic Fluid mechanics, ideal fluid models, Governing equations - Fluid, structural mechanics, moving frames

UNIT II – VORTEX INDUCED VIBRATION

Instability of tube and cylinder arrays– vibrations induced by oscillating flow; vibration induced by turbulence and sound, damping of structures; sound induced by vortex shedding; vibrations of a pipe containing a fluid flow; indices, applications for offshore platforms. Case study-Tacoma bridge (Unsteady effects)

UNIT III - INSTABILITIES

Introduction and Overview, Introduction and overview, First Steps in Nonlinear Dynamics, Life and Depth of Dissipative Structures, Non-linear Dynamics: From Simple to Complex, Characterizing and Using Chaos, Nonlinear Dynamics Patterns

UNIT IV – STRONG COUPLING

Instabilities induced by drag crisis or lift crisis, -Unsteady effects -Coriolis damping, -Instability of a fluid chord: propagation of stable and unstable waves.

UNIT V – FLOW FORCING

-Effects of turbulent separation on obstacles; -Coupling of movement and wake, -Response to flow turbulence. Total 45 hrs

TEXT BOOKS

- Fluid Structure Interactions, Michael P. Paidoussis, Stuart J. Price, Emmanuel de Langre, December 2010.
- Fluid Structure Interaction: Applied Numerical Methods, Henri J.-P. Morand and Roger Ohayon, 1995
- Flow-induced vibration.2.ed.New York: Van NostrandReeinhold, 1990

REFERENCES

- Bungartz, H. J.; Schäfer, M. (editors). Fluid-structure Interaction: Modeling, Simulation, Optimization. Berlin: Springer, 2006
- BLAKE, W. K. Mechanics of Flow-Induced Sound and Vibration: Complex Flow-Structure Interactions (Applied Mathematics and Mechanics, vol 17. New York: Academic Press, 1986.
- <u>http://www.coursera.org/learn/fluid-solid-interaction</u>.
- <u>http://goo.gl/YKSMnD</u>
- Onlien Lecture : course on Coursera (<u>Fundamentals of FSI</u>)

Designed by "Department of Naval Architecture & Offshore Engineering"

9 Hrs

9 Hrs

9 Hrs

PROGRAM		BE	-Naval A	Archite	ecture	& Offs	shore E	Engineer	ing						
Course Code		Co	ırse Naı	ne :						L	J	[Р		С
UDNAP10		SH	IP SYS	TEM	S ENG	GINE	ERINO	J		3	()	0		3
										-			-		-
Year and Sem	nester	III	Year (V	/I Sem	ester)			С	ontact h	ours per	week				
Prerequisite c	ourse	NII	_					((3Hrs)						
		Hui Scie	nanities : ences	and So	cial	Mana	igemen	t courses	Pr	ofession	al Core		Professi	onal Elec	ctive
Course categ	ory													\checkmark	
		Bas	ic Scienc	ce		Engir	neering	Science	O	pen Elect	tive		Mandat	ory	
		_													
Aim / Purpo the course	ose of	To	underst	tand a	nd pre	epare	the co	mponer	its of va	rious S	hip Sys	tems ar	<i>id their</i>	arrang	ements
Instructional		Stu	dents w	ill be a	ble to										
objective of the	ne	1	List the	e com	oonen	ts invo	olved i	in diffe	rent Shi	p syste	ms				
course		2	T11	4 - 41	111		1	41							
		2	mustra	te the	null s	ystem	s and	their ar	rangem	ents					
		3	Identif	y the c	liffere	nt eng	gineeri	ng syst	ems						
		4	Inspect	the F	irefigl	nting s	system	n in the	ship						
		5	Assess	the de	esign l	Propul	lsion a	and Stee	ering sy	stems					
		6	Solve a	ı desig	gn task	c of va	rious	systems	s contai	ns in th	e ship				
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	2	2	-	-	1	-	-	-	-	-
C02	1	1	2	2	-	1	1	-	1	-	-	1	1	2	1
CO4	1	1	2	1	-	1	1	-	1	-	-	1	1	2	1
CO5	-	-	-	-	2	-	1	-	2	2	1	2	1	1	2
CO6	-	1	1	1	-	1	2	2	1	-	1	2	1	2	2
AVERAGE		1	1.7	1.2	2	1.5	1.3	2	1.2	1.5	1	1.4	1	1.8	1.4
CORREI LEV	LATION ELS	N	1.	SLIGH	IT(LOV	W)	,	2. MODI	ERATE(I	MEDIUN	(1)	3. SU	JBSTAN	TIAL(H	IGH)
				m o ~											0.77

UNIT I - INTRODUCTION TO SHIP SYSTEMS

Ship systems- piping system - types, color coding, valves - HVAC system- types of coolants, insulation, Flow measurements, Heat Load, Air changes, pneumatic system- basic function, types of valves, pneumatic/hydraulic system hygiene

UNIT II – HULL SYSTEMS

Fresh water system, -RO plant - hydrophore tank, Sanitary system- sewage treatment plant (STP) - deck drainsballast system and ballast water treatment- deck equipment's- anchor handling system- cargo handling equipment's, Boat Davits, Roll stabilizers, Deck cranes/derricks, anchor cables arrangement. 9 Hrs

UNIT III - ENGINEERING SYSTEMS

Fuel oil - lubrication oil - starting air compressed air - exhaust - boiler - jacket cooling - oil filters/strainers - oily water separator- scavenging and turbo charger - Anti-vibration - Types of machinery Shock mounts, Engine exhaust. Engine Room Ventilation, Chilled water

UNIT IV –FIRE FIGHTING AND LIFE SAVING SYSTEMS

Fire Fighting Appliance (FFA) – life saving appliances (LSA) - fire main system- CO₂ system- bilge systemsludge system,- deck sprinkler

UNIT V - PROPULSION AND STEERING SYSTEM

Conventional propulsion system (Prime mover to Propeller including Thrust Block plumber block Gear Box etc.) Electrical propulsion- diesel propulsion system - CODOG, CODAG- power flow schematic- single line layout-steering gear system- stern tube bearing- oil lubricated stern tubes- controllable pitch propeller- thrusters, Active rudder-Dynamic Positioning System.

Total 45 Hrs

TEXT BOOKS

- 1. G.O. Watson, Marine Electrical Practice, ButterworthHeineman, 1990
- 2. Harrington L.Roy, Marine Engineering, SNAME Publications, 1992
- 3. Chirstopher Lavers and Edmund G.R. Kraal, Reed's Vol.7, Advanced Electro technology for marine engineers, 2014

REFERENCES

- 1. E. A. Fernandez, Marine Electrical Technology, 2014
- 2. Mukund R. Patel, Electrical Power Systems, 2012
- 3. Generation, Transmission and Utilisation of Electrical Power, A.T. Starr, 1957

"Department of Naval Architecture & Offshore Engineering" **Designed by**

9 Hrs

9 Hrs

PROGRAMM	E	BE	- Naval	Archit	ecture	& Off	shore	Engi	neeri	ng								
Course Code		Co	urse Na	me :	INTR	ODU	CTIO	ΝΤ	IEERIN	٩G	L	Т	Р	С				
UDNAO05		SI	MULAT	TIONS	S-A H	AND	S ON	PRA	CTI	CE			3	0	0	3		
													5	0	0	5		
Year a	and	III Y	ear (SE	MEST	ER VI)			Con	tact ho	ours per	week						
Semester									(3)	Hrs)								
Prerequisite course		NIL																
Course categor	ry	Hum Scier	anities ar aces	nd Socia	al	Manag	ement	cours	ses	Pro	fessiona	l Core		Profess	ional Elec	tive		
	-	D .	a :							-				1.				
	-	Basic	e Science			Engine	ering S	scienc	ce	Ope	en Electi	lve		Mandat	ory			
Course		Too	ain the	hand		mania	naair	the	Eng	in a anii	v na Cim	ulation						
Objectives		10 g	ain ine	nanas	s on e.	хрепе	nce in	i ine	Engi	neerii	ng simi	шаноп	2					
		A + +1	a and a	e end of the course the students should be able to														
		Atu	le end (e end of the course the students should be able to														
		1	Showir	Showing the develop and understanding of the basis of finite-element analysis and														
		1	compu	tationa	al flui	d dyna	mics											
		2	Illustra	te the	struct	ural a	nalysi	s pro	blen	n using	g simul	ation s	oftware	e				
			Apply	the co	ncept	of flu	iid dy	'nam	ics i	n anal	ysis of	fluid	and str	ucture	problen	n using		
Course Outcor	ne	3	CFD		1		5				5				1	U		
	-		Analyz	e a m	athem	atical	nrohl	em u	inder	lving	simulat	ions in	MAT		nd even	ine the		
		4	data us	ing gr	anhic	al visu	alizat	ion	muer	lying	siiiuiai	10115 11						
	_				apine		unzai											
		5	Compa	ring a	in exi	sting	proble	em n	nanua	ally ar	nd iden	tify the	e varia	tion us	sing sim	ulation		
		5	techniq	lue														
		6	Discus	s the p	oroble	ms thr	ough	repo	rt wr	iting a	and dev	elopin	g techn	ical wi	iting ski	ills		
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P	08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	2	2	-	-	2	1	1		-	-	-	-	1	-	1	1		
CO2 CO3	2	2	-	-	2	1 2	2		-	$\frac{2}{2}$	- 1	-	2	- 2	2	$\frac{2}{2}$		
CO4	2	2	-	-	2	1	2		-	2	1	-	2	-	2	2		
CO5	2	2	-	-	2	2	2		1	2	2	-	2	2	2	2		

CO6 1 1 - - 1 2 1 2 - 2 1 2 2 AVERAGE 1.8 1.8 - - 1.8 1.5 1.6 1.5 1.8 1.5 - 1.8 1.6 1.8 1.8														
CORRELATION 1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH)														
UNIT I – OVERVIEW ON ENGINEERING SIMULATIONS 9 Hrs														
Basics of fluid and solid mechanics, governing equations in CFD and FEA, applications, process – meshing, numerical formulation, solving and data processing, familiarization with CFD and FEA tools. Developments of CFD and FEA applications in industry														
UNIT II – BAR AND TRUSS 9 Hrs														
Axial deformation of bars, axial spring element, Analysis of trusses-Two dimensional truss element														
FEA Practice – Analysis of 2D stress distribution														
UNIT III- BEAM ELEMENT 9 Hrs														
Beam bending-Governing equations for beam bending, two node beam element														
FEA Practice – Analysis of uniform beams subjected to distributed and point loads														
UNIT IV - STEADY STATE ANALYSIS9 HrsExplicit and implicit approach - Finite Volume Method - Some conceptual basics and illustrations of 1-D and														
UNIT IV – STEADY STATE ANALYSIS 9 Hrs Explicit and implicit approach - Finite Volume Method – Some conceptual basics and illustrations of 1-D and 2 – D steady problem CED Practice Steady atom with the state and the state and the state atom with the state atom wit														
CFD Practice – Steady state problem														
UNIT V - UNSTEADY STATE ANALYIS 9 Hrs														
Multi-Physics flow, Free surface modelling – interface tracking and interface capturing techniques – CFD in marine applications														
CFD Practice – Unsteady state problem														
Total 45 Hrs														
TEXT BOOKS														
1. John D. Anderson, Computational Fluid Dynamics: The Basics with Applications, 1995.														
2. H. Versteeg and W. Malalasekera, <i>An Introduction to Computational Fluid Dynamics: The Finite Volume Method</i> , Printice Hall, Second Edition, 2007														
 C.A.J. Fletcher, Computational Techniques for Fluid Dynamics, Vol. 1: Fundamental and General Techniques, 2nd Edition, Springer, 1988 Bhatti, M.A., Fundamental Finite Element Analysis and Applications: with Mathematica and Matlab 														
Computations, Wiley, 2005. 5 Reddy I N An Introduction to the Finite Element Method 3rd Edition McGraw-Hill														

- 5. **Reddy, J. N.,** An Introduction to the Finite Element Method, 3rd Edition, McGraw-Hill Science/Engineering/Math, 2005.
- 6. Logan D. L., A First Course in the Finite Element Method, Thomson- Engineering, 3rd edition, 2001.

REFERENCES

- 1. WS Atkins Consultants and Members of the NSC, Best Practice Guidelines for Marine Applications of Computational Fluid Dynamics, 2003
- 2. Chandrupatla T. R., and Belegundu, A. D., Introduction to Finite Elements in Engineering, Prentice Hall,

2003

3. CFD Software manuals for marine applications

NPTEL Lectures

Designed by "Departm

"Department of Naval Architecture & Offshore Engineering"

PROGRAM		BE-1	Naval A	Archite	ecture a	& Offs	hore E	Engine	eering	g						
Course Code		Cour	rse Nar	ne :							L]	Γ	Р		С
UDNAO06		FISH	HING V	/ESSE	EL AN	D WO	RKBC)AT								
CDIMICOU		DES	IGN								3	()	0		3
		220	1011										, 	0		
Year and Seme	ester	III Y	ear (Sl	EMES	TER V	'I)			Con	tact ho	ours per	week				
Prerequisite co	ourse	NIL							(3H	Irs)	•					
		Hum	anities a	and Soc	cial	Mana	gemen	t cours	ses	Pr	ofession	al Core		Professi	onal Elec	ctive
		Scier	nces				0									
Course categor	rv															
U	-	Basic	c Scienc	e		Engin	eering	Scien	ce	O	oen Elect	ive		Mandato	ory	
											\checkmark					
Aim / Purpos	se of	Тои	nders	tand d	lesign	of fish	ing ve	essel	and	work	boat					
the course			understand design of fishing vessel and work boat dents will be able to													
Instructional		Stud	understand design of fishing vessel and work boat dents will be able to Shows the importance of fishing													
objective of the	e	1 S	shows t	he im	oortand											
course		2 E	Explain	s the s	toring	and pr	eserva	tion c	of fisl	h onbo	ard					
		3 N	 Aodelli	ng the	basic	design	of fisl	ning v	vesse	l and v	vork bo	at				
		4 F	Explana	tion of	f the m	ain pa	rticula	rs of	the fi	ishing	vessel	ac				
		5 T	Design	the lin	es nlar	and c	alculat	tion o	f resi	istance	and pr	onulsion	<u>ו</u>			
		5 L 6 F	Formula	ate the	Recist	$\frac{1}{2}$ ance δ	Pron	ulsion	n cale	rulatio	ne	spuisioi	1.			
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6		PC		PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	1	1	-		-	-	-	-	-	-	-
CO2	-	1	-	-	1	1	1	1		-	1	1	2	1	-	-
CO3	1	2	2	2	1	1	1	1		-	1	1	1	2	2	1
CO4	-	2	-	-	- 1	1	1	1		-	1	1	1	1	1	1
C05	-	2	2	2	1	1	1	1		-	1	1	2	2	2	1
AVERAGE	1	1.6	2	2	1	1	1	1		-	1	1	1.6	1.6	1.7	1
CORRELA LEVE	ATION ELS	J	1.	SLIGH	IT(LOV	W)	,	2. MC	DER	ATE(N	/IEDIUN	()	3. SU	JBSTAN	TIAL(H	IGH)

UNIT I - INTRODUCTION

Importance of fishing; Classification of fish for harvesting. **UNIT II - FISHING HOLD**

Storing and preservation of fish on board a vessel; Fish hold arrangement, Insulation, icing and freezing; Refrigeration machinery..

9 Hrs

UNIT III - VESSEL DESIGN	9 Hrs
Design of Fishing vessels, Design of a work boat. General arrangement, layout and equipment on deck. UNIT IV - MAIN PARTICULARS	9 Hrs
Detrmination of main particulars; estimation of components weights. UNIT V - PROPULSION	9 Hrs
Generation of ship lines; Resistance & Propulsion calculations. Material for construction.	
Total	45 Hrs
TEXT BOOKS	
A Design of small fishing vessel john E Evson Food and agriculture organization of the united i	notions

- 4. Design of small fishing vessel, john F. Fyson, Food and agriculture organization of the united nations-1985
- 5. Fishing boats and their equipment, Dag Pike, 1992.

Designed by	"Department of Naval Architecture & Offshore Engineering"									
PROGRAM	E-Naval Architecture & Offshore Engineering									
Course Code	Course Name :	L	Т	Р	С					
UDNAO07	OCEAN OBSERVATION AND									
	INSTRUMENTATION TECHNIQUES 3 0 0 3									

Year and Sen	nester	III Y	ear (Sl	EMES	TER V	/I)		(Contact	ho	urs per	week				
Prerequisite c	ourse	NIL						(3Hrs)							
Course cate	gory	Hum Scier	anities ances	and Soo	cial	Mana	igemen	t course	S	Pro	ofessiona	al Core		Professi	onal Ele	ctive
course cute	gory															
		Basic	c Scienc	e		Engir	neering	Science	è	Op	en Elect	ive		Mandat	ory	
											\checkmark					
Aim / Purpo the course	ose of	To le	earn al to del	oout th		an obs an ser	serving	g syste	ms and	l m	easure	ment te	echniqu	es whic	ch has a	central
Instructional		At th	e end	of the	course	the st	idents	will be	able to)						
objective of the	he	1 I	List the	e hydr	ograpl	hic su	rvey n	nethod	.S	, 						
course		2 (Classif	y the o	differe	ent oce	ean ob	servat	ion sys	ter	ns					
		3 Identify the global climate change and the influence of ocean														
		4 /	Analyz	e the	use of	differ	ent ob	oservat	ion and	d n	neasure	ement o	devices			
		5 E	Evalua	te the	differ	ent me	easure	ment t	echniq	ues	s used	for oce	an obse	ervatio	n	
		6 (Compi	le the	data a	nd im	age pr	rocessi	ng met	ho	ds					
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	9	PO10	PO11	PO12	PSO1	PSO2	PSO3
<u>CO1</u>	-	1	-	- 1	1	1	1	-	-		-	-	-	-	1	1
CO2	-	1	-	-	1	1	1	1	1		- 1	-	1	1	1	1
CO4	-	1	-	1	1	1	1	1	-		-	1	1	1	1	1
CO5	-	1	-	1	1	1	1	1	-		-	1	1	1	1	1
CO6	-	1	-	1	1	1	1	-	1		1	1	1	1	1	1
AVERAGE	-	1	-	1	1	1	1	1	1		1	1	1	1	1	1
CORREL LEV	LATIOI ELS	N	1.	SLIGH	IT(LOV	W)		2. MOI	DERATE	E(M	IEDIUN	1)	3. SU	JBSTAN	TIAL(H	IGH)
																0.11

UNIT I - INTRODUCTION

Hydrographic survey, gravitational and magnetic surveys. Ship borne and air borne surveys, Coastal navigation: Navigation warnings. Coastal marks and buoys, sounding, tides and tidal streams. Visual fixing. Fixing by radar and radio aids to navigation.

UNIT II – OCEAN AND OBSERVATION TECHNIQUES

Ocean's role in climate change, ocean and global carbon cycle, Technologies for sea observation and monitoring (waves, currents, bathymetry, wind); monitoring of water chemical and physical parameters; technology and techniques for oil spill detection and analysis; Ocean and future climate change

UNIT III – MEASUREMENT TECHNIQUES

Measurement techniques, sensors and instruments: Sensors for tide, wave, salinity, temperature, water current & direction, underwater radiation. Pressure sensors, Acoustic sensors, Strain gauge type, Sensors for ship borne, air borne and buoys

UNIT V - OCEAN COMMUNICATION SYSTEMS

Marine radios and regulations, radar, direction finders, Decca/ Loran systems, satellite position fixing systems, GPS and DGPS, Electronic marine safety instruments: Direction finding floating beacons, EPIRB, equipment for marine surveillance

UNIT V – DATA AND IMAGE PROCESSING

Data processing and storage: Raw and processed positional data. Storage systems and methods, Data presentation, charts, electronic and graphic presentation, Mapping, airborne and satellite imaging, Interpretation, analyses and processing systems, Digital image processing

TEXT BOOKS

- 1. Instrumentation Measurement and Analysis -B.C Nakra and Choudhry
- 2. Measurement Systems and Applications, Earnest O. Deobelin, McGraw Hill, 1stedn. 1997
- 3. Instrumentation Systems and Devices, Rangan& Sharma, Tata McGraw Hill, 1stEdn., 1997

REFERENCE BOOKS

- 1. Instruction Manual for Oceanic Observations, U.S. Naval Oceanographic Office, N.Y., 2001
- 2. Instrument Methods of Analysis, Willard, Merrit& Dean, C B S Pub., 1stedn., 1992

Designed by "Department of Naval Architecture & Offshore Engineering"

9 Hrs

9 Hrs

9 Hrs

PROGRAM	N	BE-N	E-Naval Architecture & Offshore Engineering												
G G	1		Co	urse N	Name :			L		Т		Р		С	
UDNA6	de: PA	MAI LAB	RINE ORA	НҮ ГОRY	ZDRO	DYNA	AMICS	0		0		2		1	
Year an Semeste	ıd er		III	Year (VI sen	nester))		Co	ontact h	ours pe	er week			
Prerequis course	site										(21	Hrs)			
Course	è	Hun Soci	nanities al Scie	s and ences	N	lanage: cours	ment es	Prot	fessior	nal Core		Profes	ssional	Elective	;
categor	У	Bas	sic Scie	ence	E	inginee Scien	ering ce	O	✓ pen El	ective			Ma	ndatory	
Course Objectiv	e ve	To u 1.To	understand the experimental techniques in the model making. o understand the techniques involved in model making and model testing er completion of the course, the students will be able to												
Course After completion of the course, the students will be able to 1. Demonstrate the model making techniques available for floating bodies – v practical exposure to model making 2. Explain the values of different resistance parameters manually 3. Justify basic experiments related to ship hydrodynamics 4. Criticize Resistance with the available data 5. Explain involved in a propeller design											with				
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2	PSO 3
CO1	1	1	-	-	1	-	2	3	1	2	1	1	3	3	3
CO2	3	2	1	-	2	1	1	1	-	-	2	-	3	3	3
CO3	3	2	2	-	2	1	1	1	-	-	2	-	3	3	3
CO4	2	2	1	-	1	1	-	2	1	2	2	-	3	3	3
CO5	2	2	1	1	1	2	- 1	- 1	1	2	3	1	3	3	3
AVERAGE	23		1 1 2	1.5	3 16		1 1 25	16	1	2 25	2	 1.33	3	3	3
CORREI	AVERAGE 2.3 1.8 1.2 1.5 1.6 1.4 1.25 1.6 1 2.3 CORRELATION LEVELS 1. SLIGHT(LOW) 2. MODERATE(MEI										2 M)	SUB	STANT	B. FIAL(HI	[GH)

Model Making Techniques, Calibration of instruments, analysing the geometrically similar ship model, determination of CG of the Ship model, Inclining Experiment, estimating the Radius of Gyration of a Ship Model, Model preparation for resistance and sea keeping tests, IITC standards of model tests, Method of IITC 1978 resistance prediction method

Total: 30 Hours

REFERENCES

1. Practical Ship Hydrodynamics. Volker Bertram, Butterworth-Heinemann, 2000
Dynamics of Marine Vehicles, R Bhattacharya, 1978Designed by" Department of Naval Architecture & Offshore Engineering"

PROGRAM	Ν	BE-N	E-Naval Architecture & Offshore Engineering												
Course Co			Co	ourse N	lame :			L	Ĭ	Т		Р		С	
UDNA6	DB	OFFS SOF	SHORI FWAR	E STRU E LAB	UCTUI	RE DE TORY	SIGN -	- 0		0		2		1	
Year an Semest	nd er		III Y	Year (VI Ser	nester)		Co	ontact h	ours pe	er week			
Prerequis course	site e										(2	Hrs)			
Course	<u>a</u>	Hun Soci	nanitie ial Scie	s and ences	N	lanage cours	ment es	Pro	fessior	nal Core]	Professi	onal Ele	ctive
categor										\checkmark					
Categor	y	Bas	sic Scie	ence	F	Enginee Scien	ering .ce	0	pen El	ective			Ma	indatory	
Course	e	1	l. To 1	earn th	ne desi	ign pro	ocedur	e for the	fixed	offshor	e struct	ture usi	ng the	given o	design
Objectiv	ve	softv	vare.										-	-	-
Course OutcomeAfter completion of the course, the students will be able to 1. Create model of the given Jacket platform in software. 2. Analyze the structure under various conditions. 3. Analyze the structure under various loads. 4. Find suitable conditions to geometrically frame jacket platform. 5. Interpret and validate the results. 6. Create a semisubmersible with topside.															
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	-	-	-	2	1	-	-	1	1	2	1	1	2	2	2
C02	-	-	-	2	2	1	-	1	-	-	2	-	3	3	3
CO4	-	-	-	2	1	1	-	1	1	2	2	-	3	3	3
CO5	-	-	-	2	1	2	-	1	1	2	3	1	3	3	3
CO6	-	-	-	2	3	2	-	1	1	3	2	2	3	3	3
AVERAGE	-	-	-	2	1.6	1.4	-	1	1	2.25	2	1.3	2.8	2.8	2.8
CORREL LEV	LATIO ELS	N	1.	SLIGH	IT(LOV	V)		2. MODEI	RATE(I	MEDIUN	1)	3. SU	JBSTAN	NTIAL(H	IGH)

Brief introduction to Offshore structure design principles and calculations

Introduction to software and its modules, Familiarization with the GUI

Introduction to the Jacket Structure modelling, Structural analysis of the structure - Creation of sections, selection of materials and thickness of the plates, Creation of bottom structure like legs, horizontal bracings, vertical bracings, risers, conductors and stubs, Creation of top structure using I-sections and plates stiffeners, girders and decks and placing equipment like generator, crane, blankets on the deck, Creation of wind loads and displacement loads. Analyzing the structure by using linear structural analysis method.

Total 30 Hrs

TEXT BOOKS

1. Software modules by DNV GL Sesam (Genie v7.1)

REFERENCES

1. Software modules by DNV GL Sesam (Genie v7.1)Designed by" Department of Naval Architecture & Offshore Engineering"

SEMESTER – VII

PROGRAM	N	BE-N	Naval	Archit	ecture	& Of	fshore	Enginee	ring						
								L		Т		Р		С	
Course Co UDNA7	de: 01	A	Co dvano	ourse N ced Sh	lame : ip Te	chnol	ogy	3		0		0		3	
Year ar Semest	nd er		IV	Year (s	emest	er VII)		Co	ontact h	ours pe	r week			
Prerequis course	site e			1	NIL						(3	Hrs)			
Course		Hun Soci	nanitie ial Scie	s and ences	Ν	lanage cours	ment es	Pro	fessior	nal Core		Profe	essional	Elective	•
categor									\checkmark						
categor	y	Bas	sic Scie	ence	E	Enginee Scien	ering ce	0	pen El	ective			Ma	ndatory	
Course Objectiv	e ve	1. 2. I	Comp Inculc Famili r.com	rehence ating t arizing	ling th he bas g the s	e role sic app tandar	of IM olication d surverse the	O in mar ons of Co eys to be students	itime des au unde will b	sectors nd Conv rtaken i pe able t	vention	s ime sec	ctor		
Course	e	1. 2.	Recall Recall	the in IMO	nporta conve	ance o ention	f class	ification	societ	ty in Sh	ip buil	ding			
Outcon	ne	$\frac{3}{4}$	Recall	l nuito I safety	COUES	v and	draft	survey							
		5	Recall	l statut	orv su	rvev a	ind Pei	iodic su	rvev						
		6 Apply technical guidelines rules and regulations which are offered by various													
		classification societies in marine industry.													
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	1	2	3	-	1	2	1	-	-	2	-
CO2	-	-	-	-	2	-	-	-	-	-	2	-	-	3	-
003	-	-	-	-	2	-	-	-	-	-	2	-	-	5	-

CO4	_	_	-	-	1	_	_	-	1	2	2	-	_	3	-
CO5	-	-	-	-	1	-	-	-	1	2	2	-	-	3	-
CO6	-	-	2	2	3	-	1	3	1	3	3	2	2	3	2
AVERAGE	-	-	2	2	1.7	2	2	3	1	3	2	2	2	2.8	2
CORREI LEV	LATIO ELS	N	1.	. SLIGH	IT(LOV	V)		2. MODEI	RATE(N	MEDIUM	1)	3. SU	JBSTAN	TIAL(H	IGH)
UNIT I - I	NTR(DDUC	TION	от и	RULI	ES AN	ID RE	GULAT	IONS	5					9 Hrs
Int	roduct	tion to	Deve	lopme	nt of (Codes	& Co	nvention	s, Rol	e of Cl	assifica	ation so	cieties,	rules in	n ship
building -	Histor	ry of	Classi	ficatio	n soci	iety-I/	ACS o	rganizati	on ac	tivities.	DG s	hipping	, MMI	D rules.	flag.
tonnage reg	gulatic	ons.				5		0					,,		U,
UNIT II -	IMO	CONV	VENT	IONS											9 Hrs
IM	O con	ventic	ons &	its rele	vance	to shi	p cons	struction.	Basic	concer	ots of S	OLAS.	MARE	POL. ST	CW.
UNIT III -	IMO	COD	ES				P •om		24010	• • • • • • •		02112,) Hrs
Basic concepts of FSS, LSA, ISM - FSS and LSA plan – Emergency preparedness and plan.															
UNIT IV -		CC CT	DVF	\mathbf{V}	1, 1010	1 10	Junu	Lon più		lergene	y prope	ireanes	s and p	(uni) Hrc
Int	roduci	tion to	safety		w Dre	oft cur		argo sura		fit and	operati	onal cu	cle	-	/ 1115
	CTAT		DV CI		\mathbf{v}	iii sui	vcy-ca	uigo sui v	cy-ne	in and	operati	onai cy	cic.) Una
UNIT $V - i$			KI SU	JKVE	Y ,	. · 1		р	1	<i>,</i> •		D		2	n rs
Int	roduci	tion to	statut	ory su	rvey, I	eriod	1C SURV	vey, Re-c	lassifi	cation	survey,	Damag	ge surve	ey.	-
													Tot	al: 45 I	lours
TEXTBO	OKS:														
1. MARP	OL ar	nd SOI	LAS C	lode.											
REFEREN	NCES	:													
1. IMO P	ublica	tions a	and Do	ocume	nts.										
2. IACS I	Public	ations	and D	ocum	ents.										
Designed	by		"De	epartn	nent o	f Nav	al Ar	chitectu	re & (Offsho	re Eng	ineerir	ıg"		

PROGRAM		BE-N	Naval A	Archite	cture a	& Offs	hore E	Engin	eering	5						
Course Code		Cour	se Nar	ne :							L]	[Р		С
UDNAP11		AD	VANC	ED S	HIP D	ESIG	Ν				3	()	0		3
		L														
Year and Seme	ester	IV Y	ear (VII Sei	nester)			Con	act ho	ours per	week				
Prerequisite con	urse	1	l. Shi	p Desi	gn	,			(3 H	Irs)	1					
		C	ourse	catego	ry	Hum	anities Scie	s and inces	Socia	¹ N	Aanager	nent co	urses	Profe	essional	Core
Course categor	ry														\checkmark	
			Bas	sic Sci	ence	Engin	neerin	g Scie	ence	O	pen Eleo	ctive			Manda	tory
Aim / Purpos the course	e of	To l ship	earn a durin	bout d g desi	letaile gn sta	ed ship ges	o desig	gn pr	oces	s and	unders	tand th	e funct	ional re	equiren	ients of
Instructional		Stud	ents wi	ill be a	ble to											
objective of the	e	1 S	lelect 1	machi	nery a	nd pro	opulsi	on sy	stem	•						
course				1			1									
		2 1	llustra	te the	piping	g syste	em									
		3 N	/Iodel	the Ca	apacit	y plan	, Acc	omm	odati	on an	nd other	r plans	with re	spect to	o the St	atutory
		F	Require	ement	s.		,					r				J
			toquin.													
		4 E	Examir	ne the	electr	ical, n	aviga	tion a	and c	omm	unicatio	on equi	pment	selectio	on	
		5 E	Estima	te the	buildi	ng cos	st									
		6 F	ropos	e the s	hipbu	ilding	contr	act								
POS/COS	PO1	PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10									PO11	PO12	PSO1	PSO2	PSO3	
CO1	-	-	-	-	-	-	1	1		1	1	-	1	1	-	1
CO2 CO3	-	1	1	1	- 1	1	1	-		1	1	1	1	1	1	1
CO4	-	2	2 1 - 2 1 1						l	1	1	1	1	1	1	1
CO5	-	2	2	1	-	1	1	1	L	1	1	1	1	1	1	1
CO6	-	-	1	1	-	1	1	1		1	1	1	1	1	1	1

AVERAGE	-	1.5	1.6	1	1	1.2	1	1	1	1	1	1	1	1	1
CORREI LEV	LATIOI ELS	N	1.	SLIGH	IT(LOV	W)		2. MODER	ATE(N	MEDIUN	1)	3. SU	JBSTAN	TIAL(H	IGH)

UNIT I - SHIP DRAWINGS AND PLANS

General arrangement Plan, generation of lines plan – methods, Class and Statutory drawings

UNIT II - MACHINERY SELECTION, INSTALLATION AND PROPULSION SYSTEM 9 Hrs

Selection of Main Machinery, Selection of propeller, Selection of Rudder and Steering Gear, Selection of Auxiliary Machinery

UNIT III – PIPING SYSTEMS AND OUTFITTING

Design of piping systems, Ballast and bilge water piping system, fuel oil system, fresh water system, seawater system, Deck outfitting items, bollards, chocks, fair leads

UNIT IV –BASICS OF ELECTRICAL, NAVIGATION AND COMMUNICATION EQUIPMENT SELECTION 9 Hrs

Electrical powering calculations, Sea load, Harbour load, Selection of Generators, Emergency generators, Switch boards, Power distributions, Cabling and other equipment, navigation and communication equipment, lighting requirements in accommodation and other important compartments.

UNIT V - COST ESTIMATION

Ship design and Ship building cost - cost of material, machinery and propulsive installation, accommodation/equipment/outfitting, labour and overheads, Tender Document Preparation, TNC, PNC, contract documentation clauses, stage payment, Force Majeure, liquidity damage- mandatory document with contract-milestones, stage payment etc.

Total 45 hrs

9 Hrs

9 Hrs

9 Hrs

TEXT BOOKS

- 1. Practical Ship Design by D.G.M Watson
- 2. Ship Design and Construction by R.Taggart

REFERENCES

- 1. Basic Ship Theory, Vol.1 & 2 by K.J.Rawson and E.C.Tupper
- 2. Principles of Naval Architecture, Vol. 1,2&3 by Ed.V. Lewis

Designed by "Department of Naval Architecture & Offshore Engineering"

PROGRAM		BE-	Naval A	rchited	cture &	& Offsh	ore Er	gineering							
Course Code		Cou	rse Nan	ne:						L	Т		Р	Ū	С
UDNAP12		COI	MPUTI	ER AI	DED	STRU	CTUF	RAL							
		DES	SIGN ()	FEA)						3	0		0		3
				/								I			
Year and Sem	ester	IV Y	Zear (V	II Sem	ester)			Conta	ct hou	irs per v	veek				
Prerequisite c	ourse	NIL						(3Hrs	5)	•					
		C	course o	categor	y	Huma	nities : Scien	and Social ces	Ma	anageme	ent cours	ses	Profe	ssional (Core
Course catego	ory													\checkmark	
_			Bas	ic Scie	ence	Engin	eering	Science	Ope	en Elect	ive		N	landator	у
															-
Aim / Purpo the course	se of	To ı as fi	inderst inite ele	and th ement	e fund metho	damen od	tals of	the ship s	tructi	ural an	alysis u	sing ni	ımerica	l metho	ds such
Instructional		Stud	ents wi	ll be at	ble to										
objective of th course	ne		1 Tell the basic understanding of the structural problem-determinate and indeterminate structure										rminate		
		2 (Contras	t the c	oncep	ot of vi	rtual w	ork and e	nergy	-based	method	ls to sol	ve struc	ctural pr	oblems
		3 A 8	Apply to a series of the serie	the Str tion su	ructur ich as	al met finite	hods eleme	used for s nt method	olvin	g struc	tural pi	roblem	s leadir	ig to co	mputer
		4 I	mporta	ince of	f finite	e elem	ent me	ethod and	its ap	plicatio	on				
		5 A	Adapt t	he fini	te ele	ment r	nethod	l to ship s	tructu	ire					
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	1 1 -						-	-	-	-	-	-	-
CO2	-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1	-	1	1	2	1	- 2	-
C04	-	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					1	-	1	1	1	1	1	1
CO5	-	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						-	1	1	2	2	2	1
CO6	-	1	-	-	1	1	1	-	-	1	1	2	2	2	1
AVERAGE	1	1.6	2	2	1	1	1	1	-	1	1	1.6	1.6	1.7	1

CORRELATION			2 SUDSTANTIAL (IIICII)
LEVELS	1. SLIGHT(LOW)	2. MODERATE(MEDIUM)	5. SUBSTANTIAL(HIGH)

UNIT I - INTRODUCTION TO SHIP STRUCTURAL ANALYSIS

Basic concepts; Types of structure; Force displacement relationship; Statical and kinematic indeterminacy; Assumptions, objectives and general approach in ship structural analysis.

UNIT II - ENERGY BASED METHODS

Principles of virtual works; Castiglione's theorems; Other energy-based methods; Introduction to flexibility and stiffness matrix method; formation of equation.

UNIT III - MATRIX METHODS

Determination of member and joint displacements; Equivalent joint loads, Stiffness matrix; Deformation matrix; Member and overall stiffness matrices. Boundary conditions; Effect of temperature variations; lack of fit etc.

UNIT IV – FINITE ELEMENT METHOD

Introduction to finite element method; Advantages and disadvantages, Beam element; plane stress; plate bending; use of conforming elements.

UNIT V - FEM APPLICATIONS TO SHIP STRUCTURES

Application of FEM to ship structures; deck beams and deck girders; frames; double bottoms; bulkheads; deck and side shell.

TEXT BOOKS

- 1. Bhatti, M.A., Fundamental Finite Element Analysis and Applications: with Mathematica and Matlab Computations, Wiley, 2005.
- 2. Reddy, J. N., An Introduction to the Finite Element Method, 3rd Edition, McGraw-Hill Science/Engineering/Math, 2005.
- 3. Logan D. L., A First Course in the Finite Element Method, Thomson-Engineering, 3rd edition, 2001.

REFERENCES

1.	Chandrupatla	T. R., and	Belegundu,	A. D.,	Introduction	n to Finite	Elements	in Engineering	g, Prentice Hall, 2003
1		<i>(</i> / D		T 1 1		0 0 00 1	- ·		

Designed by "Department of Naval Architecture & Offshore Engineering"

9 Hrs

Total 45 Hrs

9 Hrs

9 Hrs

9 Hrs

PROGRAM	ME	BE-	BE-Naval Architecture & Offshore Engineering																		
Course Code		Cou	rse Nar	ne :									Т		P	С					
UDNAP13		SUI	BSEA	PIPEI	LINE A	AND	RISEF	RS				3	0	()	3					
															~	-					
Year and Sen	nester	IV Y	ear (V	/II Ser	nester)			Cor	ntact ho	ours per	week									
Prerequisite c	ourse	NIL	X			/			(3H	Hrs)	rs)										
		Hum	anities	and So	cial	Mana	gement	t cou	rses	Pr	ofession	al Core		Professi	onal Ele	ective					
		Scie	nces				0														
Course categ	orv														\checkmark						
course eurog	.019																				
		Basi	e Scienc	e	Engir	neering	Scie	nce	Of	ben Elect	ive		Mandat	ory							
Course		To g	To gain knowledge on risers, offshore pipeline design, piping components, piping material																		
Objectives		take	e off pr	epara	tion a	nd ins	tallati	ion r	nethe	ods											
		Stuc	lents w	ill be a	ble to																
		1 7	1 Tell the offshore pipeline and riser configurations																		
		2 5	2 Show the functions of pipeline and riser components																		
Course Out	ama	3	3 Apply the offshore pipeline and risers under various conditions																		
Course Out	come	1 1	Inspect the design ariteria and considerations for affeltance size line and size																		
			Inspect	uie u	esign	CILICII			sider			snore p	openne	and ms	el syst	ems					
		5 1	Evalua	te the	pipeli	ne coi	nmiss	ioni	ng ar	nd ope	rations.										
		6]	Design	the su	ıbmar	ine pi	peline	s.													
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	Р	08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3					
CO1	1		-	-	-	-	-		-	-	-	-	1	1	1	-					
CO2	1	1	-	-	- 1	- 1	1		-	-	- 1	- 1	1	1	1	-					
CO3	1	1	- 2	- 2	1	2	1 2		1	- 1	1	1	1	1	1	1					
CO5	1	1	-	2	1	2	2		1	1	2	1	1	1	1	1					
CO6	1	-	2	2	-	1	2		2	1	1	1	1	1	1	1					
AVERAGE	1	1	2	2	1	1.5	1.6	1	.2	1	1.2	1	1	1	1	1					
CORRELATION		N	1. SLIGHT(LOW)					2. MODERATE(MEDIUM)						SUBSTANTIAL(HIGH)							
	LLO		1				I						1								
	тро		TION	то е	τισιπ	A DIN	тр ри	DET	INIF	C						0 Una					
		$\mathbf{v}\mathbf{v}\mathbf{v}$		100	UDIVL					0						71115					

Introduction Pipeline, offshore pipe line- - Process Diagrams (PFD, P&ID); Codes and Standards for offshore pipeline; Pipeline Elements (Fittings, valves and instruments), Piping material selection. Material Take off for offshore pipelines. Pipeline Drawings (Field layouts, Alignment sheet, Crossing details and Trench details),

UNIT II - PIPELINE DESIGN

General Design Information - Pipeline design procedure- Design Cycle ; Route Selection and Diameter ,Wall Thickness calculation - Internal Pressure, External Pressure, Temperature ;. Hydrodynamic Stability of Pipelines- Pipeline Span - Dynamic Span – Vortex Induced Vibrations and Fatigue; Operating Stresses; Pipeline External Corrosion Protection ; Pipeline Insulation

UNIT III - SUBMARINE PIPELINE INSTALLATION

Pipeline survey and mapping, Pipeline route engineering; Pipeline Installation Methods.- Installation Bending Stress Control; Pipeline On-Bottom Stability Control

UNIT IV - PIPELINE COMMISSIONING AND OPERATIONS

Pipeline construction for cross country and offshore systems focusing on welding, Pressure testing, precommissioning, and commissioning, Pipeline integrity aspects including in-line inspection, Leak detection and emergency planning considerations. Flow assurance; Pigging Operations.

UNIT V - RISERS AND DESIGN COSIDERATIONS

Riser – different types of risers ; Riser components, Riser Bends, Riser Clamps; Different riser configurations; riser failure modes; structural riser analysis; static and dynamic riser analyses; riser design criteria and considerations.

Total 45 hrs

TEXT BOOKS

- 1. Offshore Pipelines By Dr. Boyun Guo -University of Louisiana at Lafayette, Shanhong Song ChevronTexaco Overseas Petroleum Company ,Jacob Chacko, INTEC Engineering, Inc. ,Dr. Ali Ghalambor University of Louisiana at Lafayette.
- 2. George A. Antaki Piping and Pipeline Engineering: Design, Construction, Maintenance, Integrity, and Repair
- 3. M L Nayyar, Piping handbook
- 4. Boyun Guo, Shanhong Song, Jacob Chacko, Ali Ghalambor, Offshore Pipelines
- 5. Shashi Menon, Piping Calculations Manual (McGraw-Hill Calculations)- December 10, 2004
- 6. Hydrodynamics of Offshore Structures by S.K. Chakrabarti, Springer-Verlag
- 7. Handbook of Offshore Engineering by S.K. Chakrabarti, Elseviers, 2005.

REFERENCES

- Peter Smith ,The Fundamentals of Piping Design (Process Piping Design) (v.1) Hardcover April 15, 2007
- 2. M. W. Kellogg, "Design of Piping Systems Paperback July 6, 2011
- 3. Subrata K. Chakrabarti "Hand book of Offshore engineering " . Offhore structural analysis , Inc. volume II ELSEVIER (2005)

Designed by "Department of Naval Architecture & Offshore Engineering"

9 Hrs

9 Hrs

9 Hrs

PROGRAM		BE-N	Naval A	Archite	ecture	& Offs	shore E	Ingineerin	g											
Course Code		Cour	se Nar	ne :						L	,	Г	Р		С					
UDNAP14		DYN	NAMI	CS OI	F OFF	SHO	RE													
		STR	UCTU	JRE						3		0	0		3					
Year and Sen	nester	IV Y	ear (V	/II Sen	nester)		Cor	tact	ct hours per week										
Prerequisite of	course	NIL				,		(3H	Irs)	rs)										
		С	ourse	catego	ory	Hum	anities Scie	and Soci	al	Manage	ement co	urses	Professional Core							
Course categ	gory													\checkmark						
			Bas	sic Sci	ence	Engi	neerin	g Science	•	Open El	ective		Mandatory							
Aim / Purp	ose of	То и	ndersi	tand ti	he dyn	amic	chara	cteristics	and	its app	lication	to offsh	nore con	ndition.	5					
the course																				
Instructional		At th	e end	of the	course	the stu	ıdents	will be at	le to											
objective of t	he	1	List t	he dy	namic	chara	octeris	tics of fix	ked a	nd floa	ting offs	shore st	ructure	5						
course		2	Fynl	ain th	e haci	c con	cente	involved	in t	ha stru	etural d	unamic	and th	peir go	verning					
		2	equa	tions.			cepts	mvorveu	III t	ne suu		ynannes		icii go	verning					
		3	Solve the equations of motion and evaluate the response under various loading																	
			cond	ition f	for SD	OF					1				U					
		4	Analyze the equations of motion for MDOF system, estimate natural frequencies and																	
			mode shapes																	
		5	Appraise the concepts of structural dynamics to offshore structures																	
		-	· • PP	uise ii		ice pro	01 541		, man			Structu								
	6 Test the response of the offshore structure using numeric									numeric	al integ	ration t	echniq	ue.						
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	POS	PO10	PO11	PO12	PSO1	PSO2	PSO3					
CO1	-	- 1	- 2	- 1	-	- 1	1	1	1	1	- 1	1	1	- 1	1					
CO3	-	1	1	1	1	1	1	-	1	1	1	1	1	1	1					
CO4	-	2	2	1	-	2	1	1	1	1	1	1	1	1	1					
LL CO5		2	2	1	-		1	1	1	1		1 1								

CO6	-	-	1	1	-	1	1	1	1	1	1	1	1	1	1	
AVERAGE	-	1.5	1.6	1	1	1.2	1	1 1 1		1	1	1	1	1	1	
CORREI LEV	LATIO ELS	N	1.	SLIGH	IT(LOV	W)		2. MODER	RATE(N	MEDIUN	()	3. SUBSTANTIAL(HIGH)				

UNIT I –FUNDAMENTALS OF DYNAMICS

Introduction to different types of ocean structures - Environmental forces -Structural action of ocean structures, Basic features of dynamic loading and response – models for dynamic analysis – lumped mass, generalized displacements, Degrees of freedom – Translational and rotational systems - mass moment of inertia.

UNIT II – SINGLE DEGREE OF FREEDOM SYSTEM

Free vibration - Equation of motion, Damped free vibration, critically damped, under damped and over damped systems, Negative damping.

Forced vibration - Response to harmonic loading, magnification factor, Undamped and damped system, Comparison in response build up. Response to periodic loading -Fourier series expansion - response to Fourier series loading, Exponential form of Fourier series loading and response- Complex frequency transfer functions, Formulation of equation of motion numerical problems

UNIT III – MULTI-DEGREE OF FREEDOM SYSTEM

Equations of motion and response of free and forced (harmonic) vibration - Natural frequencies and mode shapes, Eigenvalues and eigenvectors - Orthogonality of modes, Stodola, Rayleigh-Ritz and influence coefficient methods, Dunkerley - Matrix methods for dynamic analysis -Modal response method - Modal mass contribution, Problems - Duhamel's integrals.

UNIT IV – STRUCTURAL RESPONSE OF OFFSHORE STRUCTURES

Introduction to Fluid-structure interaction, Mathematical idealization, formulation of Equation of motion, response of Jacket Structure, Articulated Tower, Tension Leg platform.

UNIT V – DYNAMIC ANALYSIS

Dynamic analysis of fixed and floating offshore structures, Numerical integration technique - Newmark-Beeta, Runge-Kutta methods. Structural health monitoring of offshore platforms using Wireless Sensor Networking (WSN)

Total 45 Hrs

TEXT BOOKS

1. Anil K. Chopra. 2003. Dynamics of structures: Theory and applications to earthquake Engineering: Pearson Education, Singapore.

2. ArvidNaess and TorgeirMOan. 2013. Stochastic dynamics of marine structures,

Cambridge University Press, New York, USA.

REFERENCES

- 1. Clough, R.W. and Penzien, J., Dynamics of structures, McGraw Hill, 1993Seakee
- 2. Meirovitch L., Elements of Vibration Analysis, Mc.Graw Hill, 1986
- 3. James F. Willson, Dynamic of offshore structure, John Wiley & Sons Inc.
- 4. S 1893 Criteria for Earthquake Resistant Design of Structures, 2002.
- 5. SP 22: Explanatory Handbook on Codes for Earthquake Engineering.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

- 6. Meirovitch L., Elements of Vibration Analysis, Mc.Graw Hill, 1986.
- 7. Thomson W.T., Theory of Vibration with Applications, Pearson Education Inc., 1998.
- 8. Craig, Jr. R.R., Structural Dynamics, John Wiley, 1981.
- 9. Hurty, W.C. and Rubinstein M.F., Dynamics of Structures, Prentice Hall, 1964.

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAM		BE-Naval Architecture & Offshore Engineering																		
Course Code		Cou	rse Nar	ne :							L	J	Γ	Р		С				
UDNAP15		Vib	ration	of floa	ating s	tructu	res				3	()	0		3				
					0						-			-		-				
Year and Sem	nester	IV Y	ear (V	/II Ser	nester)			Contact hours per week											
Prerequisite c	ourse	NIL				,			(3Hrs)											
		Hun	nanities Scie	and S nces	locial	Mar	nageme	ent co	ourse	s	Profess	ional C	ore	Professional Elective						
Course cate	gory														\checkmark					
		Basic Science Engineering Sc							ence	0	pen Ele	ctive			Manda	tory				
Aim / Purpose of the courseTo understand the fundamentals of the ship vibration and use knowledge for proper of engine and propeller. use the knowledge gained to design the structure and a instrument and machinery mounts for reducing effects of harmful dynamic effects										roper se and de fects	election esign of									
Instructional		Stud	lents wi	ill be a	ble to															
objective of the	he	1 I	Define	a dyn	amic	systen	1													
course		2 I s	nterpro	et the s	math	ematio	cal as	pects	s of s	single	degree	e freed	om free	e and f	orce vi	bration				
		3 /	Apply	the ma	athema	atical	aspect	s of 1	multi	degre	ee freed	lom fre	e and fo	orce vib	ration s	systems				
		4 /	Analyz ntroduo	e the restion to	mathe	matica vibrati	al aspe on	ects c	of co	ntinuc	ous syst	em free	e and fo	orce vib	ration s	systems				
		5 A	Assess	the sh	nip vit	oration	syste	m												
		6 I	Propos	e the s	selecti	on of	engin	e and	l pro	peller	details									
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	28	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3				
CO1	-	-	-	-	-	-	1	1	1	1	1	-	1	1	-	1				
CO2 CO3	-	1	2	1	-	1	1	1	1	1	1	1	1	1	1	1				
C03	-	2	2	1	-	2	1	1	- 1	1	1	1	1	1	1	1				
CO5	-	2	2	1	-	1	1	1	1	1	1	1	1	1	1	1				
CO6	-	-	1	1	-	1	1	1	1	1	1	1	1	1	1	1				
AVERAGE	-	1.5	1.6	1	1	1.2	1	1	1	1	1	1	1	1	1	1				

CORRELATION LEVELS 1. SLIGHT(LC	V) 2. MODERATE(MEDIUM)	3. SUBSTANTIAL(HIGH)
------------------------------------	------------------------	----------------------

UNIT I - INTRODUCTION

Dynamic analysis; Representation of a system; fluctuating force or forcing function as input; response of a system to the input; Classification of forces; mathematic representation of the forces.

UNIT II - SINGLE DEGREE FREEDOM SYSTEMS

Mechanical system; Equivalent stiffness; Equivalent mass; spring-mass-dashpot system; Single degree freedom system (SDF); free vibration of undraped SDF system; forced vibration of undamped SDF system; forced damped SDF system.

UNIT III – MULTI – DEGREE FREEDOM SYSTEMS

Two degree freedom system; free and forced vibration of two degree freedom system; multi degree freedom system. Method of mode summation.

UNIT IV – SHIP HULL VIBRATION

Continuous system; Holzer's method, Mikyle Stadt method; Concept of added mass in ship hull vibration; Schlick's formula; Todd's formula; Kamai's formulas SR94 expression; Stodola's method for ship hull vibrations.

UNIT V - DESIGN CONSIDERATIONS

Estimate of N_{2v}, N_{2H} and higher mode frequencies; Hull Resonance Diagram; Selection of Engine rpm; Selection of number of Blades on a Propeller; Engine Mount Design; Location finding for electronics instrument on-board -a vessel; if required structural rearrangement.

TEXT BOOKS

- 1. Mechanical vibration by Thompson
- 2. Principle of Naval architecture vol II by Edward v Lewis

REFERENCES

- 2. Ship structural design by Owen Hughes
- 3. Introductory course on theory and practice od mechanical vibration by JS RAO & GUPTA

Designed by "Department of Naval Architecture & Offshore Engineering"

9 Hrs

9 Hrs

Total 45 Hrs

9 Hrs

9 Hrs

PROGRAM		BI	E-Naval A	Archite	ecture a	& Offs	hore E	lngin	eerin	g		<u>.</u>								
Course Code		Co	ourse Nar	ne :							L]	Γ	Р		С				
UDNAP16		Hi	gh Perfo	rmance	e Mari	ne Veh	nicles				3	()	0		3				
			-																	
Year and Sem	nester	IV	Year (V	/II Ser	nester)			Con	tact h	ct hours per week									
Prerequisite c	ourse	N	Ĺ			/			(3H	Irs)	s)									
		H	umanities Scie	and S nces	locial	Mar	ageme	ent co	t courses Professional C					pre Professional Elective						
Course cate	gory														\checkmark					
			Bas	sic Sci	ence	Engi	neering	g Sci	ence	C	Dpen Ele	ective			Manda	tory				
Aim / Purpo	ose of To understand the design and performance of high performance marine vehicles																			
the course																				
Instructional		St	udents wi	ill be a	ble to															
objective of the	he	1	1 List the different types of high-performance marine vehicles																	
course		2	2 Illustrate the design high speed displacement craft																	
		2	musua	te the	desigi	n mgn	speed	i uisj	prace	mem	l clait									
		3	Model	the de	esign c	of plan	ning o	craft												
		4 Classify the types and design of air cushion vehicles																		
		5	Explain	the c	lesign	of sur	face e	effect	t ship	DS										
		6	Develo	p the	design	n of sp	ecial	craft	S											
POS/COS	PO1	PO	2 PO3	PO4	PO5	PO6	PO7	PO	08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3				
C01	-	-	-	-	-	-	1		1	1	1	-	1	1	-	1				
<u>CO2</u>	-	1	2	1	- 1	1	1		1	1	1	1	1	1	1	1				
CO4	-	2	2	1	-	2	1		1	1	1	1	1	1	1	1				
CO5	-	2	2	1	-	1	1		1	1	1	1	1	1	1	1				
CO6	-	-	1	1	-	1	1		1	1	1	1	1	1	1	1				
AVERAGE		1.:	5 1.6	1	1	1.2	1		1	1	1	1	1	1	1	1				
LEV	ELS	N	1.	SLIGH	IT(LOV	W)		2. MC	ODER	ATE(MEDIU	M)	3. SU	SUBSTANTIAL(HIGH)						

UNIT I - INTRODUCTION TO HIGH SPEED CRAFTS
Classification of high performance vehicles; Comparison of vehicles on the basis of power, sea keeping & economics; Special design feature of high performance vehicles; Materials for high performance vehicles; structural design consideration; propulsion machineries and propulsion devices.

UNIT II - DISPLACEMENT CRAFT DESIGN

High speed displacement craft; Design procedure; Estimation of power; System design consideration

UNIT III – PLANING CRAFT

Planing phenomena; estimation of power; hull from design; Hydrofoil craft; foil types and configuration; design of foils; stability when foil borne; propulsion consideration.

UNIT IV - AIR CUSHION VEHICLES

Types of air cushions and their effectiveness; cushion sealing arrangement; resistance in calm water and in waves. Propulsion and maneuvering arrangements.

UNIT V – SPECIAL CRAFTS

Surface effect ships; high speed catamarans; Trimaran; Hybrid craft.

TEXT BOOKS

- 6. Performance by design: Hydrodynamics for high speed vessel
- 7. IMO high speed craft codes
- 8. Hydrodynamics of high speed marine vehicles By OM faltinsen 2005

REFERENCES

4. Principles of Naval Architecture vol II

Designed by "Department of Naval Architecture & Offshore Engineering" 9 Hrs

9 Hrs

9 Hrs

Total 45 Hrs

PROGRAM		BE - Naval Architecture & Offshore Engineering Course Name: L T P C														
Course Code		Course Name:LTPCMarine Corrosion and Control3003														С
UDNAP17		Mari	ne Cor	rosion	and C	ontrol					3	()	0		3
Year and Semeste	er	IV Y	ear (V	/II Ser	nester)			Con	tact h	ours per	week				
Prerequisite cours	se	Elect	tro che	mistry					(3 H	lrs)	Î					
		Hum	anities Scie	and S and S	locial	Mar	nageme	ent co	ourses	8	Profess	ional C	ore	Profes	sional E	Elective
Course category	/															\checkmark
			Bas	sic Sci	ence	Engi	neering	g Scie	ence	0	pen Elec	ctive			Manda	tory
Aim / Purpose of	f															
the course			Students will be able to													
		Stud	Students will be able to													
		1 C	Define corrosion mechanism and failure													
	_	2 0	Contras	t the c	orrosic	on Insp	ection	and	maint	tenanc	e					
Instructional objectives of the	1e -	3 U	Jtilize	the cor	rosion	protec	ction b	y pro	tectiv	ve coa	tings					
course		4 L	list the	applic	ation o	of corr	osion i	nhibi	itors							
	_	5 S	elect c	athodi	c and a	anodic	protec	tion	syste	ms						
	-	6 E	estimat	e corro	osion li	ife and	select	suita	able n	nethod	ls of cor	rosion p	orotectic	n		
	1	DO1	DO2	PO4	DO5	DO6	PO7	D	26	DOO	PO10	PO11	PO12	DSO1	DSO2	DSO2
CO1 -	1	-	-	-	-	1	1	- P(-	-	-	-	-	-	-	-
CO2 -		1	-	-	1	1	1	1	1	-	1	1	2	1	-	-
CO3 1		2	2	2	1	1	1	1	1	-	1	1	1	2	2	1
<u> </u>		2	- 2	-	- 1	1	1	1	1	-	1	1	1	1	1	1
<u> </u>		1	-	-	1	1	1		-		1	1	2	2	2	1
AVERAGE 1		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												1		
CORRELAT LEVELS	ION		1.	SLIGH	IT(LOV	W)		2. MC	DDER	ATE(I	MEDIUM	1)	3. SU	JBSTAN	TIAL(H	IGH)
			•													

UNIT I- CORROSION FAILURE

Г

Introduction – Corrosion , types and modes of corrosion failures , mechanism of corrosion , factures affecting corrosion , Guidelines for investigating corrosion failures , Prevention of corrosion damage – Methods – Corrosion Testing

UNIT II : CORROSION MAINTENANCE THROUGH INSPECTION AND MONITORING 9 Hrs

Material selection -Introduction of properties of materials. Acceleration and managing corrosion damage. Smart sensing of corrosion with fiber optics ,Nondestructive evaluation (NDE)

UNIT III : PROTECTIVE COATINGS

Coating and coating process, Supplementary Protection systems. Coating materials and properties –Paint coating, metal coating etc. . Surface preparation, Rules and regulations for application of coating, Coating Surveys.

UNIT IV : CORROSION INHIBITORS :

Classification of inhibitors, Corrosion inhibition mechanism, Selection of an inhibitor system

UNIT V:CATHODIC AND ANODIC PROTECTION

Sacrificial Anode CP systems, Impressed Current Systems, Monitoring and Performance of CP systems for marine structures. Anodic Protection – Equipment required for anodic protection, Design concerns. Project : Modeling and Life prediction for corroded surfaces

TEXT BOOKS

 Hand Book of Corrosion Engineering by Pierre R.Roberge McGraw –Hill Publication
 Hsu, H.T. 1981.Applied Offshore Structural Engineering: Gulf Publishing Co., Houston
 Corrosion and Protection, Engineering Materials and Processes, ISSN 1619-0181, Springer Science & Business Media, 2004

REFERENCE

1.API-RP2A. 1989. Recommended Practice for Planning, Designing and Constructing, Fixed Offshore Platforms: 18th edn. American Petroleum Institute, Washington, D.C.

Designed by "Department of Naval Architecture & Offshore Engineering"

9 Hrs

9 Hrs

Total 45 hrs

		BE Naval Architecture & Offshore Engineering													
PROGRAM		BE-Naval Architecture & Offshore EngineeringCourse Name :LTPC													
Course Code		Cour	se Nan	ne :						L	Т		P	(С
UDNAP18		THE	ORY	AND	PRAC	TICE	S OF I	MARINE							
		CFD)							3	0		0		3
		OI D								5	0		0		-
Year and Sem	ester	IV Y	ear (V	II Sem	ester)			Conta	ct hou	irs per v	veek				
Prerequisite co	ourse	NIL			/			(3Hr	s)	I.					
		Hum	anities Scier	and Sonces	ocial	Mana	agemer	nt courses	P	Professio	onal Cor	e	Profess	ional El	ective
Course categ	gorv													\checkmark	
	5- 5		Bas	ic Scie	ence	Engin	eering	Science	Ope	en Electi	ive		Ν	Iandator	v
						0	0		1						2
Aim / Purpo	se of	To	pain k	nowle	dee o	n the	gover	ning eau	ations	, discr	etizatio	n forn	nulation	i and s	olution
the course		tech	niaues	involv	od in	CFD	and fu	rthør løar	n and	nractio	enzenie	nnlicati	ions of	CFD in	marine
		indu	stm	111/011	cu m		ina ju	incr icur	n unu	practic	ie me uj	opiicaii	ons of s		marme
Instructional		At the end of the course the students should be able to													
instructional	0			$\frac{1}{1}$	cours	$\frac{e}{1}$ the s	luden	IS SHOULD						• 1	
course	e		Define	the wi	de app	olicatio	ons of	CFD and	its re	cent ad	vancem	ents in	marine	industr	У
course		2 I	llustrat	the the	workir	ng prin	nciple	of CFD –	Pre-F	Processo	or, Solv	er and]	Post-Pr	ocessor	
		3 A	Apply t	he gov	vernin	g equa	tions	used in C	FD in	integra	and di	ifferent	ial forn	18	
		4 A	nalyze	e the g	eneral	error	s and u	uncertaint	ies in	CFD si	imulatio	ons			
		5 E	Explain	the in	nporta	nce ar	nd app	lications of	of CF	D in Na	aval Aro	chitectu	re strea	ım	
		6 C	Create s	some e	examp	les of	CFD s	simulation	ns app	olicable	for man	rine ind	ustry		
POS/COS	PO1	D1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO											PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	1	1	1	1	-	1	1	-	1
CO2 CO3		1	2	1	- 1	1	1	-	1	1	1	1	1	1	1
CO4	-	2	2	1	-	2	1	1	1	1	1	1	1	1	1
CO5	-	2	2	1	-	1	1	1	1	1	1	1	1	1	1
CO6	-	-	1	1	-	1	1	1	1	1	1	1	1	1	1

CORRELATION	1 SUICHT(LOW)		2 SUBSTANTIAL (HIGH)
LEVELS	1. SLIGHT(LOW)	2. MODERATE(MEDIUM)	5. SUBSTANTIAL(HIGH)

UNIT I - INTRODUCTION TO CFD CONCEPTS

Introduction to CFD, Working principle of CFD - Pre-Processor, Solver, Post-Processor - problem solving with CFD - models of flow - finite control volume, infinitesimal fluid element - substantial derivative - Reynold's transport theorem

UNIT II - GOVERNING EQUATIONS

Governing equations: conservation principle, mass conservation in three dimension, momentum equation in three dimensions, Navier Stokes equation for a Newtonian fluid – conservative form of the governing equations – integral and differential forms of governing equations - general form of conservation equations

UNIT III - PARTIAL DIFFERENTIAL EQUATIONS (PDE)

Introduction, Classification of partial differential equations, The Eigen value method - Behaviour of PDE's; impact on CFD – hyperbolic, parabolic and elliptic equations – Initial and boundary conditions – Dirichlet and Neumann.

UNIT IV - FUNDAMENTALS OF DISCRETIZATION

Discretization concept, discretization techniques - Finite Difference Method, Explicit and implicit approach -Finite Volume Method - Some conceptual basics and illustrations of 1-D steady problem - Basics on solution Algorithms - Basics on turbulence modelling

UNIT V - CFD IN MARINE APPLICATIONS AND PRACTICE

Free surface 166odeling - interface tracking and interface capturing techniques - Grid independence analysis -CFD in marine applications – Examples; wave pattern calculations for steady ship flow, ship resistance estimation, seakeeping and maneuvering simulations – Further developments of CFD applications in marine industry, Practical sessions

TEXT BOOKS

- 1. John D. Anderson, Computational Fluid Dynamics: The Basics with Applications, 1995.
- 2. H. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Printice Hall, Second Edition, 2007
- 3. C.A.J. Fletcher, Computational Techniques for Fluid Dynamics, Vol. 1: Fundamental and General Techniques, 2nd Edition, Springer, 1988

REFERENCES

- 4. WS Atkins Consultants and Members of the NSC, Best Practice Guidelines for Marine Applications of Computational Fluid Dynamics, 2003
- 5. CFD Software manuals for marine applications
- 6. NPTEL Lectures

Designed by	"Department of Naval Architecture & Offshore E	Engineering"
-------------	--	--------------

Total 45 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

PROGRAM	IME	BE-Naval Architecture & Offshore Engineering Course Name : L														
Course Code	¢	Cou	ırse N	ame :							L	Т	F		С	
UDNAP19		SH	IPYA	RD P	RAC	TICE	AND) PROJE	СТ							
		MA		EMF	INT						3	0	0		3	
		1,11									5	0		,	5	
Vear and Ser	nostar	W	Voor (VIIS	amact	or)				Conta	et hours	nor we	ak			
Proroquisito		NII	I car (115	emest	(1)				(3Hrs)	per we	CK			
rieiequisite	course		- moniti	ac and		Ma		ont		(51115)		Dr	ofocie		
		Hui		es and	l	Mai	lagem	ent		Profess	sional C	Core	PI		mai	
		500	al Sc	iences		cou	rses							Electiv	ve	
Course cate	egory													\checkmark		
		Bas	ic Sci	ence		Eng	ineeri	ng Scienc	e	Open El	ective		Manda	ntory		
Course Obje	ctives	To	under	stana	l the v	variou	s Shi	oyard Pr	actio	ces rela	ted to a	quality	and pr	oduct	ion and	
		to a	attain	a goo	od kna	wled	ee on	proiect i	nand	agemen	t and p	lannin	g I			
		Stu	dents	will he	able	to	5	F			I I I I I I		5			
		1	1 List the various aspects related to the Shipvard practices													
		1		st the	vario	us as	Jeers		Juie	Sinpya	iu piac	lices				
Course Out	00000	2	Ill	ustrat	e the	princi	iple ir	volved i	n the	e produ	ction, r	nanage	ement a	and pl	anning	
Course Out	come	3	De	evelor	o and	expla	in shi	pvard la	vout	and pro	ductiv	itv		•	0	
		4	Di	ssect	and s	chedu	ile a s	hip cons	truct	tion/ren	air pro	iect				
		5	E	valuat	e the	Indus	trial L	Pelations	and	Derson	nel Ma	nagem	ent			
		6		aiuai			1 D		·	Ducia			ent			
DOG/COG	DO1	0	Pr	opose	e the C	Jener	al Pro	ject Plan	ining	g, Projec	ct Sche	auling	DCO1	DCO2	DGO2	
	PO1 1	1 1	PO3	PO4	2	PO6	2	P08	P09	1	1	P012	-	1	1	
CO2	-	-	-	-	1	1	1	1	1	1	1	-	-	1	1	
CO3	-	-	-	-	-	-	-	2	2	1	1	-	-	2	2	
CO4	1	1	2	1	2	2	2	1	2	2	1	2	2	2	1	
CO5	1	<u>1</u> <u>2</u> <u>-</u> <u>2</u> <u>2</u> <u>2</u> <u>2</u> <u>1</u> <u>2</u> <u>1</u> <u>1</u> <u>1</u> <u>2</u> <u>1</u>												1		
CO6	-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												1		
AVERAGE		1	1.7	1	1.6	1.8	1.8	1.3	1.5	1.5	1	1.6	1.6	1.6	1.1	
CORRELATION 1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(H											HIGH)					

UNIT I - INTRODUCTION TO SHIP YARD ACTIVITIES

Organizational Structure of Shipyards, Functional Departments of Shipyard- Production, Planning, Material, Financial, HR and Administration, Yard Utility, Various activities in Shipyard-Shipbuilding and Ship Repair

UNIT II - SHIP BUILDING PROCESS

General Process Planning, Principles of Design for Production, Production based structural assembly plan, Process Planning-Scheduling, Monitoring and Controlling, Material Planning and Contol, Quality Assurance Process in Shipyard- (Reciept Inspection, Test Certificates, Online quality Checks, QA format/check list preparation, Class Survey), Basin /Sea Trials and Delivery formalities

UNIT III – SHIPYARD LAYOUT AND PRODUCTIVITY

Shipyard Capacity Planning- Productivity in Shipyard- Measurement and Monitoring, Shipyard Capacity estimation, Role of process and procedure in Shipyard Capacity evaluation, Shipyard Layout- Factors affecting, design of shipyard layout, Production facility layout, Some aspects of Shipyard Capacity augmentation, Developing Shipbuilding Strategy.

UNIT IV - PROJECT MANAGEMENT

General Project Planning, Project Scheduling, Application of models for process planning, scheduling and control - Gantt charts, CPM & PERT, Scheduling and Resource planning, Ship Repair Project Planning- Work Package (Direct and ancillary work), Work Scheduling, Monitoring. Planning tools- MS Project, Primavera

UNIT V – INDUSTRIAL AND HUMAN RELATIONS

Shipyard Management- Industrial Relation, Personnel Management, Human Relations and its importance, Contract Management, Managing Owners and Classification Society, Managing Vendors and subcontractors, CSR activities, Labour laws and regulatory bodies

TEXT BOOKS

- 1. Storch R. Lee, Hammon C.P. & Bunch H.M.; Ship Production, Cornell Maritime Press, Maryland, USA, 1988
- Taggart; ship design and construction, SNAME chapter 15, 1980 2.
- Buffa, Modern production operations management, 6th edition, Wiley 1980 3.

REFERENCE BOOKS

- Eyres D.J.; Ship Construction William Heinemann Ltd, London, 1982 1.
- 2. Dormidontov V. K. & et.al; Shipbuilding Technology, Mir publishers, Moscow

Designed by "Department of Naval Architecture &	Offshore Engineering"
---	-----------------------

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Total 45 hrs

PROGRAM		BE-Naval Architecture & Offshore Engineering Course Name : L													
Course Code		Cour	se Nan	ne :						L	Т		Р		С
UDNAP20		GUI	DANC	CE AN	D CC	ONTR	OL O	F							
		MA	RINE	VEHI	CLES					3	0		0		3
					_										
Year and Sem	ester	IV Y	ear (V	'II Sem	nester))		Con	tact ho	ours per	week				
Prerequisite c	ourse	NIL						(3H	rs)	-					
		Hum	anities	and S	ocial	Мал				Drofess	ional C		Drofess	ional Di	la atima
			Scie	nces		Man	ageme	ent courses	5	Profess	ional Co	bre	Profess	ional E	lective
Course cate	gory													\checkmark	
			Bas	ic Scie	ence	Engir	neering	g Science	O	pen Elec	tive			Mandat	ory
Aim / Purpo	se of														
the course															
Instructional		At th	ne end	of the	cours	se the	studer	nts should	l be al	ble to					
objective of th	ne	1 [Definin	g a nu	meric	al mo	del fo	r the cont	rol of	marine	e vehicl	es			
course				0		00					1.	6	1.	• •	
		2 L	Demon	strate	the di	fferen	t cont	rol requir	emen	ts invol	ved in	surface	e ship ar	id unde	rwater
		v	ehicle	dynar	nics										
		3 I.	dentify	diffe	rent ty	pes of	f ROV	/s and the	eir ope	erations	;				
			Sagaat	tha al	and	con fo	adha	al control	diag		- morin	a vohi	alaa		
	_	4 L	Issect	the ci	oseu i	loop ie	euba		l ulag	rams to	r mann	le verno	cles	_	_
		5 E	Explain	the st	abilit	y char	acteri	stics of su	irface	ship ar	nd unde	rwater	vehicle	s	
		6 A	dapt t	he fun	dame	ntals i	nvolv	ed in auto	omatio	c contro	ol and d	ynami	cs positi	oning	
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	1	1	2	-	1	-	1	1	-	1	-
C02	1	1	- 1	- 1	1	1	2	- 1	1	1	1	1	1	1	1
C04	1	1	-	-	-	-	1	2	1	1	1	1	1	1	1
CO5	1	1	-	1	-	1	1	2	1	1	1	1	1	1	1
CO6	1	1	-	-	1	1	2	2	1	1	1	1	1	1	1
AVERAGE	1	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											1	
CORRELATIO	ON LE	VELS	1.	SLIGH	T(LO	W)		2. MODER	ERATE(MEDIUM) 3. SUBSTANTIAL(HIGH)						

UNIT I – MARINE VEHICLE DYNAMICS

Kinematics of moving frames; coordinate transformation, Newtonian and Lagrangian Mechanics; Rigid Body Dynamics; Hydrodynamics Forces and Moments; Environmental Disturbances; Ocean Currents

UNIT II – CONTROL SYSTEM FUNDAMENTALS

Introduction – plants, inputs and outputs, the need for modelling, basic components of a control system, openloop and closed loop control systems, Block diagrams, Laplace transform, representation of linear systems transfer function, state-space form, conversion of state space and transfer function representations, PID controllers - Proportional only, Proportional-Derivative only, Proportional-Integral-Derivative - Benefits and drawbacks

UNIT III - CONTROLLABILITY OF SURFACE SHIPS

Controllability, surface vessel linear model, Types of stability, stability of the sway/yaw system, Analysis of course keeping, basic rudder action in sway/yaw model, various maneuvers, Introduction to nonlinear equations.

UNIT IV – CONTROLLABILITY OF UNDERWATER VEHICLES

ROV overview, operational goals, classification, Flow characteristics for standard operations, Types of ROV services, Design theory – Vehicle design, stability and control, Standards and specifications, propulsion systems

UNIT V – AUTOMATIC CONTROL SYSTEMS

Adaptive autopilots, Course keeping with automatic control, Automatic controls of unstable vessels, Unstable ship – limits and difficulties, Input data and time lag effects, Dynamic Positioning Systems **Project:** Numerical modelling of surface ship or underwater vehicle control

TEXT BOOKS

18. Fossen, T. Guidance and Control of Ocean Vehicles. New York, NY: John Wiley & Sons, 1994.

- 19. Lewis, E.V. Principles of Naval Architecture Vol III Motions in Waves and Controllability, 2nd edition, The Society of Naval Architecture and Marine Engineers, Jersy City, NJ, 1989
- 20. Ogata, K. Modern Control Engineering. 4th ed. Upper Saddle River, NJ: Prentice Hall, 2001.
- 21. Robert D. Christ and Robert L. Wernli, Sr. The ROV Manual A User Guide for Remotely Operated Vehicles, 2nd ed. Elsevier, 2014

REFERENCES

- 1. Perez, T. Ship Motion Control Course keeping and roll stabilization using rudder and fins, Springer-Verlag London Limited, 2005.
- 2. Fossen, T. Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley& Sons. LTD, 2011.

Designed by	"Department of Naval Architecture & Offshore Engineering"

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Total 45 hrs

PROGRAMME	BE-Naval Architecture & Offshore Engineering Course Name : L T P C														
Course Code	Cou	irse Nar	ne :]	Ĺ	Т		2	С	
UDNAP21	WA	RSHI	P TEC	CHNO	LOGY	ľ				3	0	()	3	
Year and Semester	IV	Year (V	II Sen	nester)		Со	ntact h	ours per	week					
Prerequisite course	NIL						(3	Hrs)	_						
Course category								Genera	ıl						
	Hui	nanities Scie	and S	locial	Mar	nagem	ent cours	es	Profess	ional C	ore	Profes	sional E	Elective	
Course category													\checkmark		
	Bas	ic Scien	ice		Engi	neerin	g Science	e 0	pen Eleo	ctive		Manda	tory		
Course Objectives	To arr	To understand the various aspects of Warships and submarines, it's types, capabilities, urrangements, standards.													
	Stu	Students will be able to													
	1	I Relate the Warship and Submarine projects-design and constructions.													
	2	Explair	n vario	ous as	pects r	elated	to the V	Varshi	ps and	Subma	rines				
Course Outcome	3	$\frac{1}{Construct}$	ict the	e Gene	eral ar	range	nent of	warshi	ns						
Course Outcome	<u> </u>	Evomir	$\frac{1000}{1000}$	oontr	al avat	ome		v ar bin	P ⁵						
	4			contro		ems									
	5	Estima	te the	value	of dev	velopr	nent of v	varshij	ps						
	6	Plan to	join i	n the l	Indian	Navy	or a PS	U as a	career	option	for the	student	S		
POS/COS PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
- CO1 -	-	-	-	-	1	1	-	-	-	-	-	-	-	-	
CO2 -	1	- 2	-	1	1	1	1	-			2		- 2	- 1	
CO4 -	2	-	-	-	1	1	1	-	1	1	1	1	1	1	
CO5 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												1		
CO6 -	1 1 1 1 1 1 2 2 1														
AVERAGE 1	1.6 2 2 1 1 1 1 1 - 1 1 1.6 1.6 1.7 1														
CORRELATION LEVELS	N	1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH)													

UNIT I: INTRODUCTION TO WARSHIPS Utility Concept of warships, Type of Warships, Classification of warships and their functions,

UNIT II: GENERAL ARRANGEMENT

Various decks and arrangements, Weapons positioning, magazines, Hull, Engineering, Electrical and weapon equipment, accommodation, Bridge navigation system etc.

UNIT III: DESIGN AND CONSTRUCTION OF WARSHIPS

Design spiral, rules for classification, Warship specifications and standards, Vibration, Shock, Subdivision, damage, Electronical Interactions, FW system, SW system, Weapon systems, Anchor chain cable system, towing and mooring arrangements, HVAC, Cold and Cool Room system, NBC warfare, Citadel, ATUs/AHUs, ER arrangements, Auxiliary machinery, Generators, Emergency generator, Masts, Lights, human fatigue. Stealth considerations for design

UNIT IV: FRIGATES AND DESTROYERS

Role of these Ships, Advantages of general purpose ship, Advantages of General Purpose Ship, Advantages of Specialist Vessels, Typical Frigate Profile, Weapon Systems Selection, Communication Systems, Typical Weapon Systems, Integration of Ship, Sensors and weapon systems, Overall ability and effectiveness of a warship, Weapons and fighting Capabilities, Creating a fighting Ship, Propulsion Machinery.

UNIT V: SUBMARINE DESIGN AND CONTROL SYSTEMS

Types of submarines, Utility Concept of submarines, GA of submarine, The basic design process, Characteristics and development of submersibles, The environment, Materials, Hydro mechanical principles, Structural principles, Submersible vehicles support systems, Design and operating safety, Rules for classification of submarines, commercial submarines.

TEXT BOOKS

- 1. Rawson & Tupper, Basic Ship Theory, Vol 2 George A. Antaki Piping and Pipeline Engineering: Design, Construction, Maintenance, Integrity, and Repair
- 2. EE Allimendinger, Submersible vehicle systems design. SNAME, 1990.
- 3. Modern Warship Design and Development by Norman Friedman

REFERENCES

- 1. Naval Forces, Jane's Fighting Ships
- 2. Naval Forces, Naval Weapon Systems
- 3. Naval Forces, Navy International
- 4. Journal of Naval Engineers.

Designed by "Department of Naval Architecture & Offshore Engineering"

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Total 45 hrs

PROGRAM		BE-Naval Architecture & Offshore Engineering Course Name : L T P C														
Course Code		Cou	rse Nar	ne :							L]	[Р		С
UDNAO08		INT	RODU	JCTIC	ON TO) UNI	DERW	/ATI	ER							
		TEC	CHNO	LOGY	Z						3	0)	0		3
		1														
Year and Sem	ester	IV Y	ear (Sl	EMES	TER V	/II)			Con	tact ho	ours per	week				
Prerequisite c	ourse	NIL							(31	Hrs)	Î					
Contractor		Hun	nanities Scie	and S	locial	Mar	nageme	ent co	ourse	S	Profess	ional C	ore	Profes	sional E	Elective
Course catego	ory		Desta			D ara		C	•	_	0	El			Man	1 - 4
			Basic 3	scienc	e	Eng	ineerii	ng Sc	cience	2	Open	Electiv	e		Man	datory
Aim / Dump	an of	T	- 1- 4	. 1				1:00	•	(I.	•	4 1	1		1	
Am / Purpo	se or	10	obtain		SIC KN	owiea	ge on		ereni 1	t unae	erwater	tecnne	nogies	such a	s explo	oration,
the course		subs	sea pip	enne	ana u	naerw	ater v	enici	ies							
		At the end of the course the students will be able to														
		1 List the various challenges involved in the underwater exploration														
		2 Explain the importance of ocean resources														
		1 2	Explain	1 the 1	mport	ance of	or ocea	an re	sour	ces						
Instructional objective of the	ne	3 I	Make u	se of	the na	tional	devel	lopm	ents	in uno	derwate	er explo	oration	of resou	irces	
course		4 I 8	nspect applica	the tions	differe	ent pi	peline	me	thods	s and	their i	nstalla	tion wi	ith resp	ect to	subsea
		5 I	mport	ance c	of diffe	erent u	inderv	vater	veh	icles a	nd thei	r opera	tions			
			1	.1				1				1	1		1.	.•
		6 I	Jevelo	p the	variou	is sens	sors ar	nd na	avıga	tion s	ystems	used fo	or unde	rwater a	applica	tions
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P	08	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	-	2	2	2		1	1	1	1	-	-	1	1
C02	-		-	-	-	-	-		2	1	1	1	-	-	2	2
CO4	1	1	2	1	2	2	2		1	2	2	1	2	2	2	1
CO5	1	1 2 - 2 2 2 2 1 2 1 1 1 2 1												1		
CO6	-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												1		
CORREI		I J	1./	1	1.0	1.ð	1.8	1	.3	1.3	1.3	1	1.0	1.0	1.0	1.1
LEV	ELS		1.	SLIGH	IT(LOV	W)		2. MO	ODER	RATE(N	MEDIUN	1)	3. SU	JBSTAN	TIAL(H	IGH)
			1				I									
UNIT I – M	ARIN	NE RESOURCES 9 Hrs												9 Hrs		

Introduction, Challenges in deep sea, Seafloor characteristics, Physical properties of sea water. Effects of density, salinity and temperature on sound speed, Ocean resources, classification, potential uses of sea, Mineral and hydrocarbon resources

UNIT II – UNDERWATER EXPLORATION

Exploration, development, Underwater Sound Channels, Underwater instruments for positioning, signal transfer and mapping, production of hydrocarbons, deep sea mining – national developments

UNIT III – SUBSEA PIPELINE AND RISERS

Introduction subsea pipeline, Pipeline Elements, Piping material selection, Pipeline survey and mapping, Pipeline route; Pipeline Installation Methods. Riser – different types of risers 9 Hrs

UNIT IV – INTRODUCTION TO UNDERWATER VEHICLES

Introduction, Unmanned marine vehicles - Applications, Unmanned surface vehicles, Unmanned underwater vehicles - Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs), Classification, Types of ROV services, Operations, Type of propulsions, Design theory – Vehicle design and stability

UNIT V - UNDERWATER NAVIGATION & SENSING SYSTEMS

Vehicle sensors; Function of sensors, Types of sensors, Sensor Categories Vehicle navigation sensors, Flux gate compass, Tether turn counter, Pressure-sensitive depth gauge, Obstacle avoidance sonar, Altimeter, Inclinometer, Vehicle lighting

Total 45 Hrs

TEXT BOOKS

- 1. G.Neumann & WJ Pierson, Jr., Principles of Physical Oceanography, Prentice Hall, 1st edn., 1966.
- 2. **E S Cassdy**, *Introduction to Energy Resources, Technology and Society* :, Elsevier, 1st edn., 2000.
- 3. **D S Cronon**, *Underwater Minerals*, Academic Press, 1st edn., 1980.
- 4. Robert D. Christ and Robert L. Wernli, Sr. The ROV Manual A User Guide for Remotely Operated Vehicles, 2nd ed. Elsevier, 2014

REFERENCES

- 5. Borges & Ginsburg, Ocean Year Book (Vol 1 4), The University of Chicago Press, 1983.
- 6. Ghosh & Mukhopadyay, Mineral Wealth of the Ocean, Oxford & IBH Pub. Co., 2nd, 1999

Designed by "Department of Naval Architecture & Offshore Engineering"

9 Hrs

9 Hrs

PROGRAMM	Æ	BE-Naval Architecture & Offshore Engineering Course Name : L T P C Dingling and Diagr Engineering 2 0 0 2														
Course Code		Course Name :LTPPipeline and Riser Engineering3003													С	
UDNAO09		Pip	eline an	d Rise	r Engiı	neering	5				3	0	()	3	
										•			•	•		
Year and Seme	ester	IV	Year (Sl	EMES	TER V	/II)		Con	tact ho	ours per	week					
Prerequisite co	ourse	NII	``````````````````````````````````````			,		(3E	Irs)	•						
		Hu	manities Scie	and S	locial	Mar	ageme	ent course	s	Profess	ional C	ore	Profes	sional E	Elective	
Course categ	gory		Basic S	Science	e	Eng	ineeri	ng Science		Open	Electiv	e		Man	datory	
										\checkmark						
Course Objectives		To tak	o gain knowledge on risers, offshore pipeline design, piping components, piping material ike off preparation and installation methods tudents will be able to													
		Stu	Students will be able to													
		1	Definir	ig the	offsho	ore pip	beline	and riser	config	guratio	ns					
		2	Explain	the f	unctic	ons of	nineli	ne and ris	ser con	mponer	nts					
~ ~ ~		3	Dovelo	n tha	offeho	ro nin	olino	and ricere	undo			litiona				
Course Outco	ome	5		p the		ie pip	enne		sunde							
		4	Evalua	te the	design	n crite	ria an	d conside	ration	s for of	fshore	pipelin	e and r	iser sys	tems	
		5	Assess	the pi	peline	e comr	nissio	ning and	opera	tions.						
		6	Improv	e the	Desig	n aspe	cts of	offshore	pipeli	nes.						
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	1	-	-	1	-	-	-	-	-	-	-	1	1	1	-	
CO2	1	1	-	-	-	-	1	-	-	-	-	1	1	1	-	
CO3	1	1	-	-	1	1	1	1	- 1	1	1	1	1	1	1	
C04	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												1		
CO6	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
AVERAGE	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
CORREL LEVE	ATION ELS	I 2 2 I I.5 I.6 I.2 I I.2 I <thi< th=""> I I<</thi<>											IGH)			

UNIT I - INTRODUCTION TO OFFSHORE PIPELINES

9 Hrs

Introduction Pipeline, offshore pipe line- - Codes and Standards for offshore pipeline; Pipeline Elements (Fittings, valves and instruments), Piping material selection(PMS). Material Take off for offshore pipelines. Pipeline Drawings (P&ID ,Field layouts, Alignment sheet, Crossing details and Trench details),

UNIT II – BASIC DESIGN PARAMETERS AND PROCEDURES

General Design Information - Pipeline design procedure- Design Cycle ; Route Selection and Diameter ,Wall Thickness calculation - Internal Pressure, External Pressure, Temperature . Pipeline External Corrosion Protection; Pipeline Insulation;. Introduction to Flexible Pipelines; Pipeline Supports and Clamps

UNIT III - ANALYSIS AND INSTALLATION OF PIPELINES

Pipeline survey and mapping, Pipeline route engineering; Pipeline Installation Methods.- Installation Bending Stress Control. Hydrodynamic Stability of Pipelines- Pipeline Span - Dynamic Span - Vortex Induced Vibrations and Fatigue; Operating Stresses

UNIT V - RISER AND COMPONENTS

Riser – different types of risers ; Riser components, Riser Bends, Riser Clamps; Different riser configurations; riser failure modes; structural riser analysis; static and dynamic riser analyses; riser design criteria and considerations.

UNIT IV - PIPELINE OPERATIONS AND INSPECTIONS

Pipeline construction for cross country and offshore systems focusing on welding, Pressure testing, precommissioning, and commissioning, Pipeline integrity aspects including in-line inspection, Leak detection and emergency planning considerations. Flow assurance; Pigging Operations.

TEXT BOOKS

- 8. Offshore Pipelines By Dr. Boyun Guo -University of Louisiana at Lafayette, Shanhong Song ChevronTexaco Overseas Petroleum Company ,Jacob Chacko, INTEC Engineering, Inc. ,Dr. Ali Ghalambor University of Louisiana at Lafayette.
- 9. George A. Antaki Piping and Pipeline Engineering: Design, Construction, Maintenance, Integrity, and Repair
- 10. M L Nayyar, Piping handbook
- 11. Boyun Guo, Shanhong Song, Jacob Chacko, Ali Ghalambor, Offshore Pipelines
- 12. Shashi Menon, Piping Calculations Manual (McGraw-Hill Calculations)- December 10, 2004
- 13. Hydrodynamics of Offshore Structures by S.K. Chakrabarti, Springer-Verlag

14. Handbook of Offshore Engineering by S.K. Chakrabarti, Elseviers, 2005.

REFERENCES

- Peter Smith ,The Fundamentals of Piping Design (Process Piping Design) (v.1) Hardcover April 15, 2007
- 5. M. W. Kellogg, "Design of Piping Systems Paperback July 6, 2011
- 6. Subrata K. Chakrabarti "Hand book of Offshore engineering ". Offhore structural analysis, Inc. volume II ELSEVIER (2005)

Designed by "Department of Naval Architecture & Offshore Engineering"

911

Total 45 Hrs

9 Hrs

9 Hrs

9 Hrs

PROGRAM		BE-Naval Architecture & Offshore Engineering Course Name : L T P C														
Course Code		Co	urse Nar	ne :						L	1	Г	Р		С	
UDNAO10		ΗU	ILL INS	PECT	ION					3	()	0		3	
										0			0		0	
Year and Semes	ster	IV	Year (S	EMES	TER V	/II)		Con	tact ho	ours per	week					
Prerequisite cou	ırse		```					(3)	Hrs)	•						
		Hu	manities Scie	and S	locial	Mar	agem	ent course	s	Profess	ional C	ore	Profes	sional E	lective	
Course catego	ory															
			Basic S	Science	e	Eng	ineeri	ng Science	e	Open	Electiv	e		Man	latory	
										\checkmark						
Aim / Purpose the course	e of	To me	have fo asures o	air av and m	varene onitor	ess of • hull o	Surve condit	ey proced ion with i	lure a respec	ind its et to cor	relevai rosion	nce and	d to ad	opt pro	otective	
Instructional		Stu	Students will be able to													
objective of the		1	1 List the strength and grades of shipbuilding steel													
course		-	List the strength and grades of snipbullding steel													
		2	Explain	the v	arious	s failu	re mo	des of Sh	1p stru	ictural	elemen	ts				
		3	Make u	se of	IACS	stanc	lards f	for ship c	onstru	ction a	nd repa	urs				
		4	Inspect	the w	velder	certifi	catior	n process								
		5	Evalua	te the	hull ir	ispect	ion du	ring ship	repai	rs						
		6	Improv	e the	hull p	rotecti	ve co	atings and	d prot	tection	against	corros	ion			
POS/COS 1	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	- 1	- 1	-		1	1	2	-	1	- 1	1	1	- 1	1	- 1	
CO3	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	
CO4	1	1	-	-	-	-	1	2	1	1	1	1	1	1	1	
C05	1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$														
AVERAGE	1	1	1	- 1	1	1	1.6	1.7	1	1	1	1	1	1	1	
CORRELA LEVEI	ATION LS	ON 1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH)										IGH)				

UNIT 1 – INTRODUCTION TO HULL MATERIAL AND ITS RELEVANCE IN SURVEY 9 Hrs

Types of Ships; Overview of Materials for Shipbuilding; Types of Ship building Steel- Grade; Purpose /utility of high grade; Scantling of ship and its relevance in survey of Ship, relevance of shell expansion drawing in hull survey.

UNIT II - FUNDAMENTALS OF HULL SURVEY

Need for hull survey; Periodicity of Hull survey, Types of Hull survey, Methods of hull survey - Visual, Hammer, Ultrasonic thickness gauging, Ultrasonic survey. Method of recording Survey findings, Hull Structural failure modes- Buckling, fatigue, corrosion; Survey Report

UNIT III – HULL STRUCTURAL SURVEY DURING CONSTRUCTION

Hull Structural standards, IACS standards, Ship Building Standards, Ship Repair Standards (Recap) Classification Survey during Construction- Steel traceability, Inspection of welders and welder certification. Stage wise survey of structure- Dry survey procedure (Include Dimensional and Diagonal checks) and corrective action.

UNIT IV – SALIENT FEATURES OF SURVEY DURING SHIP REPAIR

Hull Survey during ship repair, Hull defect Survey – Survey of U/w hull external, u/w hull internal structures, Survey of inaccessible areas, Survey of Wet compartment, Inspection of load carrying welded hull fitting. Critical areas of inspection prone to corrosion and deterioration, Recoding of Survey remarks- Survey Report

UNIT V- HULL PROTECTION AND MONITORING

Hull Corrosion Protection system, Fundamentals of protective coating, Defects and effects of coatings, Differential Corrosion, Preferential corrosion, Galvanic Cell, Sacrificial Anodes - Types, ICCP system, Underwater Inspection and Hull survey, Survey of Sacrificial Anodes, Survey of ICCP system components.

TEXT BOOKS

- 1. Eyres, D.J, Ship construction, 1994
- 2. Taylor, D.A, Merchant ship construction ,2002
- 3. Kemp, Ship construction ,2002
- 4. Pursey,H.J , Merchant ship construction ,2002

REFERENCES

- 1. Guide for hull inspection and maintenance program ABS
- 2. Ship Surveys and Inspection, Great Britain, National Audit Office.

Designed by "Department of Naval Architecture & Offshore Engineering"

9 Hrs

9 Hrs

9 Hrs

Total 45 Hrs

PROGRAM	M	BE-Naval Architecture & Offshore Engineering																
Course Co	de		Co	ourse N	lame :			L		Т		Р		С				
UDNA7	PB	Num Softv	erical vare La	Ship aborato	Hydr ry	odyna	mics	- 0		0		2		1				
Year an Semest	nd er		IV	Year (s	emest	er VII	.)		Contact hours per week									
Prerequis course	site e			1	NIL				(2Hrs)									
Course		Hun Soci	nanitie al Scie	s and ences	M	anage cours	ement ses	Pro	fessio	onal Core	e	Profe	ssional	Electiv	/e			
category									√									
		Bas	sic Sci	ence	E	ering Ice	0	pen E	Elective			Ma	indatory	/				
Course Objectiv	e ve	1. 1 2. 1 3. 1	 Layout the preprocessing plan and execute it. Defining the computational domain and environmental conditions. Performing the post-processing and inference from the results. 															
Course Outcon	e ne	After completion of the course, the students will be able to: How to approach ship hydrodynamic problem numerically using CFD approach Recall the basic theory behind the software Design a model on the software Criticize the values manually which was as given as a output Estimate the numerical problems in Naval Architecture such as ship resistance, Estimate the numerical problems in Naval Architecture such as ull propeller intera											action					
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	2	2	1	1	1	-	-	-	3	2	1	-	1	2	2			
CO2	2	2	1	1	1	-	-	-	3	2	1	-	1	2	2			
CO3	2	2	1	3	2	-	1	2	2	2	1	-	1	2	2			
C04	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
C05	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
AVERAGE	- 2																	
CORRELAT	CORRELATION LEVELS 1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL (HIGH										GH)							
Int in ship hyd	CORRELATION LEVELS 1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH) Introduction to the software and its capabilities, General overview of CFD process and its application in ship hydrodynamics, Familiarization with the GUI, Importing the CAD model, generation Virtual Towing																	

Tank, Boundary conditions, Meshing strategies, solver parameters, post processing the results.

Numerical experiments:

Marine Resistance Prediction

Marine propeller in	Open water										
Self-Propulsion tes	t										
Motion studies in H	lead Sea condition										
		Total: 30 Hours									
TEXTBOOKS:											
1. WS Atkins Consultants and Members of the NSC, Best Practice Guidelines for Marine											
2. Applications of	f Computational Fluid Dynamics, 20	003									
Software manual.											
DEFEDENCES.											
REFERENCES.											
1. John D. Anderson, Computational Fluid Dynamics: The Basics with Applications, 1995.											
Designed by	"Department of Naval Archited	ture & Offshore Engineering"									

PROGRAM	Л	BE-Naval Architecture & Offshore Engineering																	
Course Coo	de:		Co	urse N	lame :			L		Т		Р		С					
UDNA7	PC			Mini	Projec	rt		0		0		2		1					
ODI UTI				TVIIIII	Tioje			Ŭ		0		2		1					
Year an Semeste	ld er		IV Y	lear (s	emest	er VII)		Contact hours per week										
Prerequis course	site			١	NIL					(4	Hrs)								
Course	2	Hun Soc	nanities ial Scie	s and ences	N	lanage cours	ment es	Pro	fession	al Core		Profe	essional	Elective	;				
course								\checkmark											
category		Basic Science			Engineering Science			C	pen El	ective			Ma	ndatory					
Course Objectiv	e ve	1. 1 2. 1	 Implementing the self-understanding about technical and non-technical backgrounds. Practicing the skills of managing the time-bounded attributes of the projects. Learning how things could be executed within time. 																
Course OutcomeAfter completion of the course, the students will be able to:1. Explain the pre-requisites for executing any basic project.2. Show the skill of presentation3. Develop a report by him/her4. Apply the ideas penned down during the initial phase of the projects.5. Summarize the outcomes in the systematically laid out pattern to com effectively.											compr	ehend							
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3				
CO1	3	3	1	1	2	1	1	1	2	2	2	1	2	2	2				
CO2	3	3	1	1	2	2	2	-	1	2	1	2	2	2	2				
CO3	3	3	1	2	1	2	1	-	1	2	1	-	2	2	2				
CO4	3	3	1	2	3	2	2	2	1	3	2	1	2	2	2				
<u>CO5</u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
	-	-	- 1	-	-	-	-	- 1.5	- 1.05	-	- 1.5	-	-	-	-				
AVERAGE COPPELATI) ON LEX		1	1.5 SUICH		1.75	1.5	1.5 2 MODE	1.25 DATE(A		1.5	1.5							
Guidelines	studen for the	t will le same	be aske e have	ed to u frame	ndergo d by tl) o a tec he dep	hnical bartme	/non-tec	hnical	project	superv	ised by	the fac	culty me	ember. Hours				

TEXTBOOKS: N/A

(not limited to	any topics)								
REFERENCES: N/A									
(not limited to	any topics)								
Designed by	"Department of Naval Architecture & Offshore Engineering"								

PROGRA	M	BE-Naval Architecture & Offshore Engineering																
Course C	odo	Ship	System	m Dra	wing &	k		L		Т		Р		С				
		Laun	nching	Calcu	lations	5		0		0		2		1				
UDNA/I	A	Labo	oratory					0		0		2 1						
									•									
Year an	d		TV V	(
Semeste	er		IV Ye	ear (se	mestei	(V II)		Contact hours per week (2Hrs)										
Prerequis	ite			NT	m													
course				IN.	IL													
		Hum	nanitie	s and	Ma	nagem	nent	D		10		Durf		El.	_			
Course		Soci	al Scie	ences	courses			Professional Core				Professional Elective						
								\checkmark										
categor	У	D			En	gineer	ing	0				1	Man 1.4					
		Bas	sic Scie	ence	S	Science	e	Open Elective]	viandat	ory				
1. Understanding the key features of the piping systems in ships																		
Objectiv	;	2. D	Develo	ping tł	ne skil	ls for s	ship's	GA										
Objectiv	/e	3. F	3. Familiarizing with the ship's launching calculations															
		After completion of the course, the students will be able to:																
		1. Develop Ship systems for a given data																
Course		2. Develop fire and safety plans																
Course	;	3. Develop pipe design diagram																
Outcom	le	4. Develop fluid systems of ship																
		5. D	Develo	p Ancl	hor an	d moo	ring											
		6. D	Develo	p laun	ching	calcula	ations	and cu	rves									
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	2	2	1	1	1	-	-	1	3	2	1	-	3	3	3			
CO2	2	2	1	1	1	-	-	1	3	2	1	-	3	3	3			
<u> </u>	2	2	1	1	1	-	1	1	3	2	1	-	3	3	3			
C04	2	2	1	1	1			1					3	3	3			
C06			1	1				1					3	3	3			
AVERAGE	2	2	1	1	1	-	1	1	3	2	1	-	3	3	3			
CORREI	N	1	SUICE		W)	2		Ъ Л ТЕ		IM)	3 511	DSTAN						
LEVELS											J1 V1)	5.30	DOTAN		1011)			
SHIP SYS	FEM	DRAV	VING	_	. –				~									
HVAC Sch	ematic	c diagr	am ,Pi	pe De	sign- I	Piping	diagra	am for	fluid	systems	of a sh	ip.(San	itary su	pply &				

discharge, Fuel oil system, lube oil system, Sea water cooling and fresh water cooling, compressed air system, Bilge and ballast system, drain pipe internal /external, etc.) ,Air ventilation system **FIRE AND SAFETY PROTECTION (ONE SYSTEM DRAWING)**

Structural fire protection plan, Fire control and safety plan, Arrangement of life saving plan, Equipment calculation and selection of Anchor and Mooring, Anchor arrangement, mooring arrangement

LAUNCHING PLAN CALCULATION

End launching calculations, end launching curves, Launching tests.

TEXTBOOKS:

1. Principle of Naval Architecture by Edward V.Lewis, Volume- III.

- **REFERENCES:**
 - 1. Robert Taggard, Ship Design & Construction.
 - 2. Eric c. Tupper, Introduction to Naval Architecture.

PROGRAM	M	BE-Naval Architecture & Offshore Engineering															
Course Co	de:		Co	ourse N	Name :			L		Т		Р		С			
UDNA7	PD			Interr	nship -	II		0		0		0		1			
					- r					-		-					
Year ar Semest	nd er		IV	Year (s	semest	er VII)		Contact hours per week								
Prerequis course	site e			l	NIL				(N/A)								
Course	Hun Soc	nanitie ial Scie	s and ences	N	lanage cours	ement ses	Pro	Professional Core Professional E						;			
categor										\checkmark							
category		Basic Science			E	Engine Scien	ering ice	C	Open Elective				Ma	ndatory			
Course	e		1. Co	ompreh	nendin	g the	classro	om lear	ning b	y practi	cing re	al time	in indu	stry.			
Objecti	ve	2. Learning how things could be executed within time.															
Course Outcon	e 1e		 After completion of the course, the students will be able to: Create correlation between what is taught during the classes and the industry practices. Explain procedural aspects of the project being undertaken in the industry. Explain the experience of their own. Explain the importance of the stay/work in the industry. Compare gained in the classroom-based learning to fulfill the tasks given during the internship. 												dustry .ng the		
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
C02	-	-	-	-	-	-	-	2	-	-	-	-	3	3	3		
CO3	_	_	_	_	_	_	_	2	_	_	_	_	3	3	3		
CO4	-	-	-	-	-	-	-	2	-	-	-	-	3	3	3		
CO5	-	-	-	-	-	-	-	2	-	-	-	-	3	3	3		
CO6	-	2						-	-	-	-						
AVERAGE	-	-	-	-	-	-	-	2	-	-	-	-	2.5	2.5	2.5		
CORRELAT	ION LE	VELS		1. SLIGH	IT(LOW	<i>'</i>)		2. MODE	ERATE(N	MEDIUM)		3. S	SUBSTAN	ITIAL(HI	GH)		
A relevant fie	studer eld of]	nt mus Naval	t unde Archi	ergo ar tecture	n inter or Of	nship Fshore	for a 1 e Engin	minimur neering.	n perio	od as pi	rescribe	ed by th	ne depa	rtment	in the		

Total: N/A

Total: 30 Hours

TEXTBOOKS: N/A (not limited to	TEXTBOOKS: N/A (not limited to any topics)									
REFERENCES: N/A										
(not limited to any	topics)									
Designed by	"Department of Naval Architecture & Offshore Engineering"									

SEMESTER – VIII

PROGRAM	M	BE-N	Naval .	Archit	ecture	& Of	fshore	Enginee	ring						
Course Cou	dat		Co	urse N	lame :			L		Т		Р		С	
UDNA8	PA	Maj	or Pro	ject /] Pr	Industi oject	ry Inte	rnship	-		-		22		11	
Year an Semeste	ıd er		IV Y	ear (s	emeste	er VIII	[)		Co	ontact h	ours pe	r week			
Prerequis course	site			1	NIL						(22	e Hrs)			
Course	2	Hun Soci	nanities	s and ences	Management courses			Pro	fession	al Core		Profe	ssional	Elective	
category										\checkmark					
		Basic Science			Engineering Science			0	Open Elective				Ma	ndatory	
Course Objectiv	e ve	 Implementing the self-understanding about technical and non-technical backgrounds. Practising the skills of managing the time-bounded attributes of the projects. Learning how things could be executed within time. 												hnical s.	
Course Outcome After completion of the course, the students will be able to: Explain the pre-requisites for executing any basic project. Show the skill of presentation Develop a report by him/her Apply the ideas penned down during the initial phase of the pro Summarize the outcomes in the systematically laid out patt effectively. 										jects. tern to	compr	ehend			
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	1	2	1	1	2	2	2	2	1	3	3	3
CO2	3	3	1	1	2	2	2	2	1	2	1	2	3	3	3
CO3	3	3	1	2	3	2	2	2	1	3	2	- 1	3	3	3
CO5	-	-	-	-	-	-	-	2	-	-	-	-	3	3	3
CO6	-	-	-	-	-	-	-	2	-	-	-	-	3	3	3
AVERAGE	3	3	1	1.5	2	1.75	1.5	2	1.25	2.25	1.5	1.3	3	3	3

CORRELATION LEVELS	1. SLIGHT(LOW)	2. MODERATE(MEDIUM)	3. SUBSTANTIAL(HIGH)									
A student will b	A student will be asked to undergo a technical/non-technical project supervised by the faculty member.											
Guidelines for the same have framed by the department.												
TEXTBOOKS: N/A												
(not limited to any topics)												
REFERENCES: N/A												
(not limited to any topics)												
Designed by	"Department of Nav	al Architecture & Offshore Eng	ineering"									