SEMESTER: I

PROGR	AM		B.E (1	Departr	nent O	f Naval	Archit	tecture	And C	offshore	Engine	eering)							
Course (Code		Cours	se Nan	ne					L	r	Γ	Р		С				
UBLEC	01		Tec	hnical	Englis	sh - I				2	(0	0		2				
Year and	d Sem	ester	I Yea	ar & I	Semes	ter			(Contact	Hours	Per W	/eek						
Prerequi	isite co	ourse	Nil						/	2 Hrs									
Course	catego	ory	Huma	nities a	nd	Ma	nagem	ent	P	rofessio	nal Co	re	Profess	sional E	lective				
	-		Social	Science	es	cou	rses												
			Ba	sic Sci	Science Engineering Science Open Elective Mandatory ake the students learn to speak grammatically correct English. Guiding Guiding														
Course	Outco	omes	W 2. M in After 1. C 2. I 3. I 4. I 5. I	riting laking nportan succes Dutline llustrat Disting nfer th Develo	in Eng them <u>nee in t</u> ssful co the in te tech uish di e skill p good	lish. realize today' omplet portan nical a fferen for wr	e the i s scena tion of nce of nd ger t tense titing f ing an	mporta ario. Cours technic neral ve s and i ormal d spea	e, the cal En ocabu dentif and in king s ite En	lary. ïcation formal	ish as ts will of cor letters	Globa be abl	e to		0				
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3				
C01	-	-	-	-	2	3	2	-	3	3	-	3	-	-	-				
1				-	-	3	2	-	2	2	-	3	-	-	-				
CO2	-	-	-				-		•	2	_	2							
CO2 CO3	-	-	-	-	2	2	2	-	2	Z	-								
		- - -	-	-	2	2	2	-	3	3	-	3	-	-	-				
CO3		- - -	-	-	2 2	2 2	2 2		3 3	3 3		3 3	- - -	- - -	-				
CO3 CO4		- - - -	- - - -	- - - -	2	2	2	- - -	3	3		3	- - -	- - -	- - - -				

UNIT 1: COMMUNICATION SKILL & READING SKILL

Importance of Technical Communication-Topic sentence and its Role-Reading and Interpretations-Critical Reading -Creative and Critical Thinking-Note Making -Transfer of Information-Visual Aids-Graphics-Lab.

UNIT II: FOCUS ON LANGUAGE - VOCABULARY

General Vocabulary-Dictionary-Word Formation: Prefix and Suffix-Synonyms and antonyms- Idioms and Phrases-Homophones-Technical Vocabulary-Words commonly misspell –Lab-Test.

UNIT III: ENGLISH GRAMMAR

6 Hrs

6 Hrs

Parts of Speech-Subject Verb Agreement-Tenses, Articles, Prepositions-Common errors in English-Lab-Test.

UNIT IV: WRITING SKILL

Descriptive Writing –Paragraph-Technical descriptions-Essays-Letter Writing – Formal and Informal-Business Letters-Job Application Letter-Types of reports-Instructions and Checklists- Lab-Test.

UNIT V: LISTENING AND SPEAKING

6 Hrs

6 Hrs

Types of Listening -Listening and note taking-Pronunciations-Stress and Intonation- Conversation technique-Dialogue Writing -Professional Communication-Interview-Group Discussion –Power point Presentation Lab.

TOTAL: 30 Hours

TEXT BOOKS:

- 1. Department of English, Anna University. Mindscapes: English for Technologists and Engineers. Orient Blackswan, Chennai. 2012
- 2. Dhanavel, S.P. English and Communication Skills for Students of Science and Engineering. Orient Blackswan, Chennai. 2011

REFERENCES:

- 1. Essential Grammar in use- Raymond Murphy, Cambridge, 2007.
- 2. Raman, Meenakshi & Sangeetha Sharma. Technical Communication: Principles and Practice. Oxford University Press, New Delhi. 2011.
- 3. Regional Institute of English. English for Engineers. Cambridge University Press, New Delhi. 2006.
- 4. Rizvi, Ashraf. M. Effective Technical Communication. Tata McGraw-Hill, New Delhi. 2005
- 5. Rutherford, Andrea. J Basic Communication Skills for Technology. Pearson, New Delhi. 2001.
- 6. Viswamohan, Aysha. English for Technical Communication. Tata McGraw-Hill, New Delhi. 2008.

PROGRA	M		B.E (I	Departr	nent O	f Naval	Archi	lecture	And O	ffshore	Engine	eering)			
Course C	ode		Cours	se Nan	ne					L		Γ	Р		С
UBMTC	01		Engi	neerin	g Math	nemati	cs-I			3		1	0		4
Year and	Sem	ester		ar & I					C	ontact	Hours	Per W	/eek		
Prerequis	site co	ourse	Nil						4	4 Hrs					
Course c			Huma	nities a Science			nagem rses	ent	P	rofessio	nal Co	re	Profes	sional F	Clective
			Ba	sic Sci	ence	Eng	gineerir	ng Scien	ice	Open	Electiv	7 e	N	landato	ory
Course O	Dbject	ives	three 2. To 3. To 4. To	e dimen o unden o acqua	nsions. rstand aint the duce th	the tec e stude ne conc	chnique ent with cepts a	es of d h funct nd met	ifferen ion of thods t	geomet atiating severa to solve ls.	a func l varia	ction. bles.		ng sha	pes o
Course	Outco	omes	1. S 2. A 3. C 4. A 5. U 6. A	Solve the Apply calculu Classify Apply i Use mu	he prol the th s. y the fu ntegra iltiple i the co	olems neorem unction l calcu integra	using t is and ns of so ilus on ils to s	three-d form everal engine olve pr	limens ulae f variab eering roblem	proble	nalytic ving	cal geo proble	metry. ms in	differ	
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	-	-	-	-	-	-	-	-	2	2	2
CO2	3	3	3	2	2	-	-	-	-	-	-	2	2	2	2
CO3	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-
CO4	3	3	3	2	2	-	-	-	-	-	-	2	2	2	2
	2	2	2	2	2	-	-	-	-	-	-	1	-	3	3
CO5	3	3	3	2	2	-	-	-	-	-	-	2	3	3	3
CO6															
CO6 AVERAGE	2.7	2.7 ON LEVI	2.7	2	2	- HT (LO)	-	-	-	-	-	1.8	2.3	2.4	2.4

UNIT I: THREE DIMENSIONAL ANALYTICAL GEOMETRY

12 Hrs

Equation of a sphere – Plane section of a sphere – Tangent Plane – Equation of a cone – Right circular cone – Equation of a cylinder – Right circular cylinder.

UNIT-II:- DIFFERENTIAL CALCULUS

Differentiation of algebraic – circular - exponential and logarithmic functions of products and quotient – Functions of a function and simple implicit functions – Successive differentiation- introduction and notation – nth order derivatives of standard functions – nth order derivatives using trigonometric identities and standard functions and partial fractions – Leibnitz theorem – Maclaurin's Theorem and standard expansions – Taylor's theorem – Indeterminate forms and L'Hospital's rule.

UNIT- III:- FUNCTIONS OF SEVERALVARIABLES

Limits and continuity-Partial derivatives – definition-geometrical interpretation and rules of partial differentiation – Higher order partial derivatives – Homogeneous functions – Euler's theorem for homogenous functions – Total derivatives and chain rules – Differentiation of implicit functions and composite functions – Maxima and Minima– Method of Lagrangian multipliers.

UNIT- IV:- INTEGRAL CALCULUS

Integration by trigonometric substitution – The definite integral as the limit of a sum- Bernoulli's rule – Reduction formulae – Properties of definite integrals – beta and gamma Functions and problems – Work done by variable forces – mean values – Root mean square values of in sin x and Cos nx.

UNIT -V:- MULTIPLE INTEGRALS

Double and triple integrals – Cartesian coordinates – Region of integration and change of order of integration – Spherical polar and cylindrical coordinates Theorems of parallel and perpendicular axes. Applications – Area – Volume - Mass of wire - lamina and solid - Centre of Gravity of wire – lamina and solid – Moment of Inertia using multiple integrals.

TOTAL : 60 Hours

12 Hrs

TEXT BOOKS:

1. Bali N. P and Manish Goyal, —Text book of Engineering Mathematics, Third edition, Laxmi Publications (p) Ltd., 2008.

2. Grewal. B.S, —Higher Engineering Mathematics, 40th Edition, Khanna Publications, Delhi, 2007. **REFERENCES:**

1. Dass, H.K., and Er. Rajnish Verma," Higher Engineering Mathematics", S. Chand Private Ltd., 2011.

2. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2012.

3. Peter V. O'Neil," Advanced Engineering Mathematics", 7th Edition, Cengage learning, 2012.

4. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, NewDelhi, 2008.

5.Sivarama Krishna Das P. and Rukmangadachari E., "Engineering Mathematics", Volume I, Second Edition, PEARSON Publishing, 2011.

12 Hrs

PROGR	AM		B.E (I	Departr	nent O	f Naval	Archit	ecture	And O	ffshore	Engine	eering)			
Course (Code		Cours	se Nan	ne					L		Γ	Р		С
UBPHC	01		Engir	neering	g Physi	cs-I				3	(0	0		3
Year and	d Sem	ester	I Yea	ar & I	Semes	ter			C	ontact	Hours	Per W	/eek		
Prerequi	site co	ourse	Nil						3	3 Hrs					
Course	catego	ory		nities a Science			nagem rses	ent	Р	rofessio	nal Coi	re	Profess	sional E	Clective
			Ba	sic Sci	ence	Eng	gineerir	ng Scier	nce	Open	Electiv	7 e	Μ	[andato	ory
Course (Course			a 2. T e After 1. S 2. E 3. I 4. I 5. C 6. A	pplica To lear lectric succes Summa Explair Ilustra Demon Dutline	tions. n the b al mac ssful co rize th n the co te the p strate t e the ba the f	asic print hines. omplet e laws oncept oropert the bas usic pri	rinciple tion of and p s of hy ties of sic prin	es of E Cours rincipl drosta matter nciples s of ele	Electro e, the es of t tics an of hea ectrici	solids a magne studen basic m d hydr at and l ty and magnet	tic ind ts will techani odynar ight electric	uction, be abl ics mics cal ma	, Electric to the second secon	ricity a	nd
PPOs /	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
COs CO1	2	2	-	1	2	-	-	-	-	-	-	2	2	2	3
CO2	2	-	2	2	2	-	-	-	-	-	-	2	2	3	3
CO3	2	2	-	1	2	-	-	-	-	-	-	-	2	-	-
CO4	2	2	2	-	2	-	-	-	-	-	-	2	2	2	2
CO5	3	2	2	2	3	-	-	-	-	-	-	2	2	3	2
	3	3	3	3	3	-	-	-	-	-	_	3	2	3	
CO6 AVERAGE	2.3	2.4	2.3	1.8	2.3				_			2.2	2	2.6	2 2.4

UNIT I: MECHANICS

Force-inertia – Newton's laws of motion- impulse and impact – Friction – cause of friction – types of friction – laws of friction – coefficient of friction – angle of friction. Motion-types of motion – simple harmonic motion – simple pendulum – circular motion –centripetal and centrifugal force – conical pendulum-working of a steam engine governor based on the principle of conical pendulum. Newton's law of universal gravitation – Satellite-principle of launching of satellite – orbital velocity – time period

9 Hrs

of beams - bending moment - Cantilevers - depression of a cantilever - non uniform bending and uniform bending – theory and experiment. **UNIT IV: HEAT AND LIGHT** 9 Hrs

Laws of thermodynamics - Specific heat capacity - Specific heat capacity of gases - CP and CV -Relation between them – Transmission of heat – conduction – coefficient of thermal conductivity – Lee,s disc experiment - cylindrical flow of heat - convection - radiation - Black body radiation - distribution of energy - Wien's displacement law- Rayleigh Jeans law. Interference - Double slit experiment-Diffraction due to single slit and circular aperture. Limit of resolution, Resolving power of optical instruments.

- escape velocity. Planetary motion and Kepler's Laws - Deduction of Kepler's third law - Law of

equilibrium of a floating body – metacentre – metacentric height of a ship – experiment. Hydrostatic pressure, differential manometer - Centre of pressure - Centre of pressure of a rectangular lamina immersed in a homogenous liquid at rest – Centre of pressure of a triangular lamina with one side parallel to the surface-Surface tension – angle of contact – capillarity – derivation of surface tension. Viscosity – Viscous Force-Stokes Law - coefficient of viscosity - experiment to find coefficient of viscosity.

Elasticity - stress and strain - Hooke's law - modulus of elasticity - different types - Poisson ratio Torsion - torque per unit twist - work done in twisting - Torsion pendulum - theory and experiment - bending

UNIT V: ELECTRICITY

TEXT BOOKS:

gravitation from Kepler's third law.

UNIT II: HYDROSTATICS AND HYDRODYNAMICS

Bernoulli's Theorem - Venturimeter - Plimsol lines.

UNIT III: PROPERTIES OF MATTER

Heating effect of current – Joules law of heating – Applications – fuse – thermopile. Ampere's Law, Biot Savart law – Magnetic field at a point due to straight conductor carrying current – Kirchhoff's current and voltage laws - Whetstone's network - Electromagnetic induction - Faraday's laws of Electromagnetic induction - Lenz law - Self induction - Mutual induction . DC Generator - principle, construction and working – AC Generator – principle, construction and working. Transformer – principle, construction and working – Losses in transformer – methods to reduce the losses.

TOTAL: 45 Hours

- 1. A Nelson, "Engineering Mechanics" Tata McGRaw Hill, 2009
- 2. M. Narayanamurthi, M. Nagarathnam, "Statics, Hydrostatics and Hydrodynamics", The National Publishing Company, 8th Edition, 2008.
- 3. R. Murugeshan, Properties of matter and acoustics, S. Chand & Co, New Delhi 2012.
- 4. D.S. Mathur, Elements of properties of matter, S.Chand & Company Ltd., New Delhi 2010.
- 5. Brijlal, N. Subramanyam and P.S. Hemne "Heat and thermodynamics", S.Chand & Co, New Delhi 2008.
- 6. N. Subramanian, Brijlal and M.N. Avadhanulu, A text book of Optics, S. Chand & Co, New Delhi, 2012.

REFERENCES:

- 1. R Feynmann, R Leighton, M Sands, "The Feynmann Lectures on Physics", Volume 1, Pearson Education; 1st edition 2012.
- 2. D Halliday, R Resenic and J Walker "Fundamentals of Physics", Wiley India, 6th edition, 2006.
- 3. Brijlal and Subramaniyam, "Properties of matter", S. Chand & Co, New Delhi, Revised edition,2008.
- 4. R W. Fox, A T. McDonald, P J. Pritchard John, "Introduction to Fluid Mechanics", Wiley & Sons, 6th edition, 2008.
- 5. E M. Purcell and Morin, "Electricity and Magnetism", 3rd Edition, Cambridge University Press, 2011
- 6. A Ghatak, "Optics", McGraw-Hill Education; 1st Edition, 2009

PROGR	AM		B.E (I	Departr	nent O	f Naval	Archi	tecture	And O	ffshore	Engine	eering)			
Course (Code		Cours	se Nan	ne					L	, r	Γ	Р		С
UBCHC	201		Engir	neering	g Chem	nistry				3	(0	0		3
Year and	d Semo	ester	I Yea	ar & I	Semes	ter			C	Contact	Hours	Per W	/eek		
Prerequi	site co	ourse	Nil						2	3 Hrs					
Course	catego	ory		nities a Science			nagem rses	ent	P	rofessio	onal Co	re	Profes	sional F	lective
			Ba	sic Sci	ence	Eng	gineerii	ng Scier	ice	Open	Electiv	7 e	N	landato	ory
Course (Course			2. T s 3. T a After 1. I 2. C 3. I 4. I 5. I n	Chemic To und torage To deve pplica succes llustrat Dutline dentify llustrat Disting nateria	cals, an erstand device elop po tions. ssful co te the f the co the ty te the b uish t ls	d tread l princes and lymer complet complet concepts opes of pasic p he pr	tment ciple in the im based tion of mentals s of wa fuels rincipl coducti	of water nvolved portan materi Cours of phater tre and ch es of e	er for i d in cc ce of f ials an e, the ase rul atmen aracte lectroo chnolo	h resp industr prosio fuels. d funct studen e and t t techn rizatio chemic ogies	ial pur n contri ional r ts will reducer iques n of va cal reac of me	pose. col, the nateria be abl d phase rious c tions a tallic	e conce ils town e to e rule constitu and red and r	ept of or ards di uents lox rea	energy fferen
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	-	-	-	-	2	-	-	-	-	2	1	2	2
CO2	2	2	-	-	-	-	3	-	-	-	-	-	-	-	-
CO3 CO4	2 2	1	-	-	-	-	3	-	-	-	-	-	-	-	-
CO4 CO5	2	2	-	-	2	-	-	-	-	-	-	-	- 2	2	2
CO5	3	2	3	-	2	-	3	-	_	-	-	-	2	2	3
AVERAGE	2.3	1.6	3	-	2	-	2.8	-	-	-	-	2	1.6	2	2.3
	RELATIO	1	1		1	GHT (L	1	l	l	1	1		I	I	

UNIT- I PHASE RULE

Terminology-Phase rule – one component system, reduced phase rule – application of reduced phase rule to binary alloy system-Hazard of Inorganic, Organic cargos carried on board vessels with respect to flammability, toxicity, reactivity and solubility.

UNIT- II WATER & IT TREATMENTS

9 Hrs

Sources of water - hard and soft water-determination of hardness - Softening of water - lime soda process Ion exchange process - Boiler feed water - removal of oil - blow down operation - Caustic Embrittlement -Internal conditioning - Water for domestic purposes screening - aeration, sedimentation, Chlorination, break point chlorination - Disinfection with ozone - desalination - Waste water treatment- marine sediments.

UNIT -III FUEL & COMBUSTION

Conventional & non-conventional energy resources and energy conversion - classification and properties of fuel - calorific value determination using bomb calorimeter - Solid fuels - Analysis - proximate and ultimate analysis, hydrogenation & carbonization of coal - Liquid fuels - characterization of various constituents viz petrol diesel with regard to their application in IC engine (knocking)Gaseous fuels- coal gas, producer gas, biogas, water gas and flue gas analysis using Orsat apparatus - Toxic and other ill effects of cargos on human and environment.

ELECTROCHEMISTRY UNIT -IV

Electrodes - Standard & single electrode potential - Nernst equation - Cell terminology - cell reaction -Galvanic cells - fuel cells - Lead acid battery - Nickel cadmium battery - Electrochemical Reaction: Electrolysis - Electroplating - galvanizing - Corrosion Control on Board Ship: Thermodynamics & Kinetics of corrosion - various forms of corrosion - corrosion prevention methods.

Lubricants: Classification and properties of lubricating oils (Viscosity, flash, fire point & cloud and pour points) Effects of pressure on melting & boiling point - Relevance of gas laws to LPG carrier and reefer ships. Physical and Chemical Properties of Fuels and Lubricants - Production of Oils from Crude Oil - Properties and characteristics of fuels and lubricants - Shore side and shipboard sampling and testing - Interpretation of test results - Contaminants including microbiological infection - Treatments of fuels and lubricants including storage, centrifuging, blending, pretreatment and handling.

UNIT-V

Production of steel - Bessemer converter process - Open hearth process - Chemical addition to steels production of non-ferrous alloys, brass, bronze, aluminum alloys - Special reference to ship building (ship propellers etc) - Cement - manufacturing of cement - setting & hardening of cement concrete - reinforced concretes - Basic Metallurgy - Metals and Processes - Properties and Uses - Non-Metallic Materials - Characteristics and limitations of process used for fabrication and repair - Process -Heat Treatment of Carbon Steel - Technology of Material - Metallurgy of Steel and Cast Iron - Properties and application of material used in machinery on board ship.

Organic Compounds: Hydrocarbon- petroleum & its fractionated products - extraction of aromatic compounds from Petroleum - Aromatic compounds - Benzene - polycyclic hydrocarbons- Naphthalene, anthracene, Naphthacene - Fiber and Reinforced plastics.

Total: 45 Hours

TEXT BOOK:

- 1. Jain P.C. and Monica Jain, "Engineering Chemistry", Dhanpat Rai Publishing Company (P) Ltd., New Delhi, 2010
- 2. Kannan P., Ravikrishnan A., "Engineering Chemistry", Sri Krishna Hi-tech Publishing Company Pvt. Ltd. Chennai, 2009

9 Hrs

9 Hrs

REFERENCES:

- 1. Dara S.S, Umare S.S, "Engineering Chemistry", S. Chand & Company Ltd., New Delhi 2010
- 2. Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company, Ltd., New Delhi, 2008.
- 3. Gowariker V.R., Viswanathan N.V. and Jayadev Sreedhar, "Polymer Science", New Age International P (Ltd.,), Chennai, 2006.
- 4. Ozin G. A. and Arsenault A. C., "Nanochemistry: A Chemical Approach to Nanomaterials", RSC Publishing, 2005.

PROGRAM	Μ		B.E (1	Naval A	Archited	cture &	Offsh	ore Eng	ggneeri	ng)					
Course Co	ode		Cours	se Nan	ne					L		Γ	Р		С
UBITC01			Funda	amenta	als of C	Compu	ter								
			Progr	ammii	ıg					3	(C	0		3
Year and S	Seme	ester	-		Semes	ter			C	ontact	Hours	Per W	/eek	1	
Prerequisit	te co	ourse	Nil						3	3 Hrs					
Course cat			Huma	nities a	nd	Ma	nagem	ent	P	rofessio	nal Co	re	Profes	sional E	lective
	U	-	Social	Science	es	cou	rses								
				• •		-		. .							
			Ba	sic Sci	ence	Eng	gineerir	ng Scier	ice	Open	Electiv	ve	N	landato	ory
							1								
Course Ob	ojecti	ives	1. 7	[o exp]	lain the	e probl	lving (concen	ts usin	g a coi	nputer	·			
				-		-	0	-	mpute	0	-		solving	g tools	
									of C1				C		
										and Fl			a C pr	ogram	•
						-			rogran				-	C	
Course O	Jutco	omes	After	succes	ssful co	omplet	tion of	Cours	se, the	studen	ts will	be abl	e to		
			1. (Dutline	the ba	sic org	ganizat	ion of	compu	iter and	l intro	duction	n to nu	mber s	ystem
			2. I	Demon	strate j	proble	m-solv	ving co	ncepts	of cor	nputer				
			3. E	Explair	the co	oncept	s of da	ta stru	cture						
			4. I	llustra	te the s	structu	re of C	C Lang	uage						
			5. N	Make u	se of s	yntax	for wr	iting p	rogran	ns in C	langu	age ma	aterials	5	
			6. I	nfer th	e knov	vledge	of cor	nputer	and p	rogran	nming	in C			
PPOs / COs PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 2	2	2	2	-	2	-	-	-	-	-	-	-	-	-	-
	3	3	2	2	1	-	-	-	-	-	-	-	-	-	-
	3	3	3	2	2	-	-	-	-	2	-	-	-	-	-
	2	2	2	-	1	-	-	-	-	2	-	-	-	-	-
	2	2	2	-	3	-	-	-	-	2	-	2	-	-	-
	0	3	3	2	3	-	-	-	-	2	-	2	-	-	-
CO6	3	-			2	-	-	-	- 1	2	-	2	- 1	_	I _
CO6 AVERAGE 2	2.5	2.5	2.3	2											
CO6 AVERAGE 2 CORREL	2.5 LATIO	2.5 DN LEVH	ELS			IGHT (L	OW)	2. 1	MODERA	ATE (ME	DIUM)	3.	SUBSTA		
CO6	2.5 LATIO	2.5 DN LEVH	ELS			IGHT (L	OW)	2. 1	MODER	ATE (ME	DIUM)	3.	SUBSTA		HIGH) Hrs
CO6 AVERAGE 2 CORREL	2.5 LATIO NTH	2.5 DN LEVE	ELS ATIO	N	1. SL			1						9	Hrs

UNIT- II:- INTRODUATION TO PROBLEM SOLVING AND PROGRAMMING9 I

General Problem - Solving Concepts - Problem Solving Concepts for the Computer - An Introduction to
Programming Structure - Problem Solving with the Sequential Logic Structure - Problem Solving with
Decisions - Problem Solving with Loops

UNIT- III:- DATA STRUATURES

Primary Data Types - One-dimensional Arrays - Two-dimensional Arrays - Table Look-Up Technique -Sequential Search, Binary Search - Sorting Techniques - Selection Sort, Bubble Sort, Shell Sort, Stacks, and Queues - File Concepts

UNIT- IV:- PROGRAMMING STRUATURE OF C LANGUAGE

Importance of C - Basic Structure of a C Program – Constants, variables and data types- Operators and Expressions - Input and Output Operations - Branching and Looping - Arrays and Strings - User-defined Functions

UNIT -V:- PROGRAMMING IN C LANGUAGE

Structures and Unions – Pointers - File Management in C - Development of C programs - Executing a C Program - compilation and linking - Common Programming Errors - Program Testing - Program Debugging

Total: 45 Hours

TEXT BOOKS:

- 1. Maureen Sprankle & Jim Hubbard, "Problem Solving & Programming Concepts", Sixth Edition, Prentice Hall, 2012.
- 2. E. Balagurusamy, "Programming in ANSI C", Seventh Edition, McGraw Hill India, 2016.
- 3. Kernighan, B.W and Ritchie, D.M, "The C Programming language", Second Edition, Pearson Education, 2006.

REFERENCES:

- 1. Ashok Kamthane, "Programming in C", Third Edition, Pearson Education India, 2015.
- 2. Herbert Schildt, "C: The Complete Reference", Fourth edition, McGraw Hill Education, 2000.
- 3. Byron S Gottfried, "Programming with C", Schaum's Outlines, Second Edition, Tata McGrawHill, 2006.
- 4. Dromey R.G., "How to Solve it by Computer", Pearson Education, Fourth Reprint, 2007.

9 Hrs

9 Hrs

PROGR	AM		B.E (1	Departr	nent Of	f Naval	Archit	tecture	And C	Offshore	Engine	eering)					
Course	Code		Cours	se Nan	ne					L	,	Γ	Р		С		
UBBTC	201		Envir	onmer	ntal Stu	idies				2	(0	0		2		
Year and	d Sem	ester	I Yea	ar & II	Seme	ster			(Contact	Hours	Per W	/eek				
Prerequi	isite co	ourse	Nil							2 Hrs							
Course				nities a Science			nagem rses	ent	I	Professio	onal Co	re	Profess	sional H	Clective		
			2. To study the integrated themes and biodiversity, natural resources, pollu														
			1. To study the interrelationship between living organism and environment.														
Course	Object	ives	2. 7	 1. To study the interrelationship between living organism and environment. 2. To study the integrated themes and biodiversity, natural resources, pollut control and waste management. After successful completion of Course, the students will be able to 1. Implement scientific, technological, economic and political solutions environmental problems. 													
Course	Outer	omes	1. 2. 3. 4. 5. 6.	Impler enviro Identif Under human Analyz Discus	ment s nmenta y the i stand t world ze the s the d fy the	cientif al prob nterrel he im l vision leveloj integ	Fic, teo plems. lations portan the support pment rated	chnolog hip bet ce of c rround and in themes	gical, tween envirc ing er prove s suc	econo living onment nvironn ement i h as b	mic an organi by ass nent, it n std. (nd pol sm and sessing s funct of livin	itical d envir g its im tions an ng.	onmer apact of nd its y	nt. on the value.		
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
C01	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
CO2	3	-	-	-	-	-	-	-	-	-	-	-	2	-	-		
CO3	2	3	2	-	1	-	-	-	-	-	-	2	-	-	-		
CO4	2	2	-	2	2	-	-	-	-	-	-	2	3	-	-		
CO5	3	2	2	2	1	-	-	-	-	-	-	3	-	-	-		
CO6	3	3	2	2	3	-	-	-	-	-	-	2	2	-	-		
AVERAGE	2.7	2	2	2	1.8	-	-	-	-	-	-	2.3	2.3	-	-		
CORI	RELATIO	ON LEV	ELS	1.	SLIG	HT (LOV	V)	2. M	IODER	ATE (ME	DIUM)	3. 8	SUBSTAN	NTIAL (H	HIGH)		

UNIT I:

9Hrs

 $Environmental\ studies\ -\ terminologies\ -\ need\ for\ public\ awareness\ -\ Natural\ resources\ -\ Renewable\ and\ non\ -\ renewable\ resources\ -\ Characteristics,\ uses\ and\ conservation\ of\ natural\ resources\ -\ Forest\ resources,$

Water resources, Mineral resources, Food resources, Energy resources and Land resources – Role of an individual in conservation of natural resources – equitable use of resources for sustainable lifestyles. UNIT II: 9Hrs

Concept of an ecosystem - Structure and function of an ecosystem - Producers, consumers and decomposers - Energy flow in the ecosystem - Ecological succession - Food chains, food webs and ecological pyramids - Introduction, types, characteristic features, structure and function of the different ecosystems – Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

UNIT III:

Introduction – Definition : genetic, species and ecosystem diversity – Biogeographical classification of India-Value of biodiversity : consumptive use, productive use, social, ethical, aesthetic and option values - Biodiversity at global, National and local levels - Inida as a mega-diversity nation Hot-sports of biodiversity- Threats to biodiversity - Endangered and endemic species of India - Conservation of biodiversity : In-situ and Ex-situ conservation of biodiversity. 9Hrs

UNIT IV:

Environmental Pollution - Cause, effects and control measures of different types of pollution-Solid waste Management -Role of an individual in prevention of pollution - Disaster management. Social Issues and the Environment – from Unsustainable to Sustainable development – Urban problems related to energy

- Water conservation - Resettlement and rehabilitation of people - its problems and concerns-Environmental ethics - Climate change, global warming, nuclear hazards, ill-effects of fireworks -Wasteland reclamation - Laws and acts in India for environment protection, Public awareness.

UNIT V:

Population growth-variation among nations-Population explosion – Family Welfare Programme – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare- Role of Information Technology in Environment and human health. Field work and Field Visit.

Total: 30 Hours

TEXT BOOK:

1. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004.

2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2006. **REFERENE BOOKS:**

- 1. Agarwal K.C. Environmental Biology, Nidi Publications Limited, Bikaner, India, 2001.
- 2. Erach Bharucha. Textbook of Environmental Studies for Undergraduate Courses. University Grants Commission, New Delhi, 2013.
- 3. N. Arumugam and V Kumaresan, Environmental Studies (UGC Syllabus), Saras Publications, Nagercoil, India, 2014.
- 4. D.K. Asthana and Meera Asthana, A Textbook of Environmental Studies. S. Chand Publishing, New Delhi, 2010.
- 5. B.S. Chauhan, Environmental Studies. Laxmi Publications, New Delhi, 2015

9Hrs

PROGR	AM		B.E (1	Departr	nent O	f Naval	Archi	tecture	And O	ffshore	Engine	eering)			
Course C	Code		Cours	se Nan	ne					L		Γ	Р		С
UBMCC	CPA		Engir	neering	g Grapl	nics				2	(C	2		3
Year and	l Sem	ester	I Yea	ar & I	Semes	ter			C	Contact	Hours	Per W	/eek		
Prerequi	site co	ourse	Nil						4	4 Hrs					
Course	catego	ory	Huma	nities a	nd	Ma	nagem	ent	P	rofessio	nal Co	re	Profess	sional E	lective
	-		Social	Science	es	cou	rses								
			Ba	sic Sci	ence	Eng	gineerir	ng Scier	ice	Open	Electiv	ve	Μ	l <mark>andat</mark> o	ry
							٦								
Course (Dbject	ives	1. I	Develo	p the a	bility	of stud	lents to	rstand	graphi	c skills	s for			
	, in the second s		С	1. Develop the ability of students to understand graphic skills for communication of Concepts.											
			2. '	To ana	lyze ai	nd des	ign ide	eas of e	engine	ering p	roduct	s.			
Course	Outco	omes	After	succes	ssful co	omplet	tion of	Cours	e, the	studen	ts will	be abl	e to		
			1. I	dentify	the th	ree Di	mensi	onal o	bjects	in two-	-dimen	sional	media	L	
			2. 0	Constru	ict the	proje	ction of	of poir	nts, str	aight l	ines a	nd det	ermina	ation o	f true
				ength a											
				llustra											
						-	-			nd deve	-	nt of s	urface	S	
							-	•		mple s					
			6. E	Examir	the the c	liffere	nt ison	netric v	views	and pro	ojectio	ns			
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	2	-	-	-	-	1	-	-	-	-	-
CO2	3	3	2	3	1	-	-	-	-	2	-	-	-	2	-
CO3	2	2	3	2	2	-	-	-	-	3	-	-	-	2	-
CO4	3	3	2	2	1	-	-	-	-	1	-	-	3	-	-
CO5	3	2	2	3	3	-	-	-	-	2	-	-	2	-	2
CO6	3	3 2.5	2	2	3	-	-	-	-	3	-	2	-	-	2
AVERAGE		2.5 ON LEVI	2.2	2.3		- IGHT (L	-	- 2. M	-	2 ATE (ME	-	2 3.	2.5 SUBSTA	2	_

UNIT-I PLANE CURVES AND ORTHOGRAPHIC VIEWS

Introduction-Use of drafting instruments-Drawing conventions-size-Line types-Lettering and dimensioning Curves used in engineering practices: Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves Visualization concepts: Representation of

Three Dimensional objects in two dimensional media-Visualization of objects from pictorial views to orthographic views

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES

Orthographic projection: Principal views and principal planes of projection-First angle projection-Third angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes -Determination of true lengths and true inclinations by rotating line method-Projection of plane surfaces

UNIT III PROJECTION OF SOLIDS

Projection of simple solids placed in Different positions-perpendicular to HP or VP-parallel to either HP or VP and inclined to the other-Inclined to both VP and HP

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 6 Hrs Sectioning of simple solids in simple vertical position when the cutting plane is inclined to the one of the principal planes-Development of lateral surfaces of simple solids by Parallel line method and radial line method

UNIT V ISOMETRIC PROJECTION AND ISOMETRIC VIEWS

Principles of isometric projection-isometric projection of simple solids-Guide lines to read the isometric view visualizing of plane surfaces inclined to the direction of view.

TOTAL: 60 Hours

TEXT BOOKS:

- Bhatt N.D. and Panchal V.M., Engineering Drawing. Charotar Publishing House, 50th Edition, 2010.
- Gopalakrishna K.R., Engineering Drawing. (Vol. I & II combined), Subhas Stores, Bangalore, 2007.
- 3. Luzzader, Warren.J. and Duff,John M., Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005

REFERENCES:

- 1. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009.
- Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.
- 3. Natrajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2009.
- 4. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.

6 Hrs

6 Hrs

PROGRAM	B.E (1	Departr	nent O	f Naval	Archi	tecture	And (Offshore	Engine	eering)					
Course Code	Cour	se Nan	ne					L		Г	Р		С		
UBCHCPA	Engir	neering	g Chen	nistry l	Labora	tory		0	(0	2		1		
Year and Semester	I Yea	ar & I	Semes	ter				Contact	Hours	Per W	/eek				
Prerequisite course	Nil							2 Hrs							
Course category	Huma	nities a	nd	Ma	nagem	ent		Professio	onal Co	re	Profes	sional F	lective		
	Social	Science	es	cou	rses										
	Ba	sic Sci	ence	Eng	gineerir	ng Scier	nce	Open	Electiv	ve	N	Iandato	ry		
Course Objectives	1. 7	To make the student to develop practical skills in the determination of war quality parameters through volumetric analysis.													
	C	quality	param												
			-						n of mo	olecula	r weig	ht and	degree		
Course Outcomes		of disso							40	h a a h 1	a 4a				
Course Outcomes				-				studen and Hy							
								less and			•	of wate	r		
		-						orary a							
		BOD,T					emp	jiui jiui	14 1 01	inditoii	t Huit		002,		
							f acid	, base a	nd Fer	rous ic	on				
	5. I	Determ	ine Si	ngle E	lectroc	le pote	ntial	of Galv	anic c	ell and	l Mole	cular v	veight		
	a	and deg	gree of	dissoc	ciation	of a p	olym	er							
	6. I	Explair	how t	to dete	rmine	Proxir	nate a	analysis	of fue	l and	its Cal	orific v	value		
PPOs / PO1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1 2 -	-	2	-	-	-	-	2	3	-	2	1	2	2		
CO2 2 2	-	1	-	-	2	-	3	2	-	-	-	-	-		
CO3 2 1	-	2	2	-	2	-	2	3	-	-	-	-	-		
CO4 2 1 CO5 3 2	-	3	2 2	-	3	-	3	2	-	-	- 2	- 2	- 2		
CO5 3 2 CO6 3 2	3	2	2	-	- 3	-	3	2	-	-	2	2	3		
AVERAGE 2.3 1.6	3	2	2	-	2.5	-	2.5	2.5	-	-	1.7	2	2.3		
CORRELATION LE	VELS			IGHT (L	OW)	2. I		RATE (ME	DIUM)	3.		NTIAL (HIGH)		

List of Experiments:

- 1. Estimation of Bicarbonate Alkalinity
- 2. Estimation of Hydroxide Alkalinity
- 3. Estimation of Total Hardness of Water
- 4. Estimation of Chloride Content of Water
- 5. Estimation of Temporary and Permanent Hardness
- 6. Estimation of COD & BOD of Water, TDS and TSS (Demo only)
- 7. Conduct metric Titration of a strong acid and base.
- 8. PH titration of a strong acid and strong base
- 9. Potentiometric titration of Ferrous Ion
- 10. Determination of Single Electrode potential (Galvanic Cell)
- 11. Determination of Calorific value of a solid fuel
- 12. Determination of Molecular weight of a polymer.
- 13. Determination of degree of dissociation of a polymer.
- 14. Proximate analysis of a solid fuel / Liquid fuel

TOTAL : 30 Hours

rse Name damentals Of (gramming Lab ear & I Semest manities and al Sciences	oratory ter	L 0 Contact H	T 0 Iours Per	Р 2	C
gramming Labo ear & I Semest manities and	oratory ter	Contact H	-		1
ear & I Semest	ter	Contact H	-		1
anities and			Jours Per	•	1
				Week	
		2 Hrs			
	Management courses	Profession	al Core	Profession	nal Elective
asic Science	Engineering Science	Open H	lective	Man	datory
	\checkmark				
To compile an To identify the To debug the	ograms to solve the pr ad execute programs in e syntax errors and sen program in C ograms to solve the pr	C nantic error	°S		
Develop logics oots of quadra Develop logic t he area and Pe Show maximum Determine the Determine whe	to print Fibonacci Seri crimeter of the Circle, 7 m, minimum, Sum and sum and multiplication other a string is palind nts in a given string	, finding lar es and sum Triangle, ar d average o n of two ma rome or no	rgest of gi of odd nu nd Square of element atrices t and find	iven number umbers and s of an arra number of	l to find ay
	he area and Pe Show maximum Determine the Determine whe nd of consona	he area and Perimeter of the Circle, ' Show maximum, minimum, Sum and Determine the sum and multiplication Determine whether a string is palind nd of consonants in a given string	he area and Perimeter of the Circle, Triangle, and Show maximum, minimum, Sum and average of Determine the sum and multiplication of two mat Determine whether a string is palindrome or no and of consonants in a given string	he area and Perimeter of the Circle, Triangle, and Square show maximum, minimum, Sum and average of element Determine the sum and multiplication of two matrices Determine whether a string is palindrome or not and find nd of consonants in a given string	Determine whether a string is palindrome or not and find number of

PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	1		-	-	-	-	2	-	1	-	-	-
CO2	3	2	3	2	-	-	-	-	-	2	-	2	-	-	-
CO3	3	2	3	2	2	-	-	-	-	1	-	2	-	-	-
CO4	2	2	2	1	2	-	-	-	-	1	-	2	-	-	-
CO5	2	2	2	2	2	-	-	-	-	2	-	2	-	-	-
CO6	2	3	3	2	3	-	-	-	-	2	-	2	-	-	-
AVERAGE	2.3	2.2	2.5	1.7	2.3	-	-	-	-	1.7	-	1.8	-	-	-
COR	RELATIO	ON LEVI	ELS		1. SL	IGHT (L	OW)	2. N	MODERA	ATE (ME	DIUM)	3.	SUBSTA	NTIAL (HIGH)

LIST OF PROGRAMS:

- 1. Program to Swap of Two numbers without using Third variable
- 2. Program to find the Largest of the given three numbers
- 3. Program to find the roots of the Quadratic Equation
- 4. Program to find the Reverse of the given number
- 5. Program to print the Fibonacci Series
- 6. Program to display series and find the sum of $1+3+5+\ldots+n$
- 7. Program to find the Area and Perimeter of the Circle, Triangle, and Square using switch and while statements
- 8. Program to find the maximum and minimum numbers in an array
- 9. Program to show the Sum of 10 elements of an array and show the Average
- 10. Program to find the sum of two matrices
- 11. Program to find the Multiplication of two matrices
- 12. Program to find whether a string is palindrome or not.
- 13. Write a program to find number of vowels and number of consonants in a given string
- 14. Program to swap the numbers using pointer
- 15. Program to perform Mathematical operation using function

Total – 30 Hours

PROGR	AM		B.E (1	Departr	nent Of	f Naval	Archit	ecture	And C	offshore	Engine	eering)			
Course	Code		Cours	se Nan	ne					L		Г	Р		С
UBLEC	PB		Soft s	skills-I						0	(0	4		2
Year and	d Sem	ester	I Yea	ar & I	Semes	ter			(Contact	Hours	Per W	/eek		
Prerequi	isite co	ourse	Nil						4	4 Hrs					
Course	catego	ory		nities a Science			nagem rses	ent	P	Professio	onal Co	re	Profess	sional E	lective
			Ba	sic Sci	ence	Eng	gineerir	ng Scien	ice	Open	e Electiv	Ve	Μ	landato	ry
Course			t 2. 7 3. 1 After 1. I 7 2. I 3. I 4. M 5. I	o lectu Fo help ontext Making mporta succes Develo naking Define nfer th Make u Develo	p learn s. g them ance in ssful co p skill g gramm their p e delic use of l p good	nd com ners d n realis today omplet s in in natica erspec acy of istenin l attitu	nprehe evelop se the 's scer tion of nforma l errors tive m 'using ag and de and	nd the their import aario. Cours al conv s ore op the lin speaki behav	em by speak tance e, the versation guisti ng ski ior	g skills asking sking sk of Eng studen ion; co nally cs skill lls for levelog	g ques cills ar clish as ts will mpreh	tions, nd spe s Globs be able end th	seek c ak flu al lang e to neir vio	ently i guage a ews w	ations. n real and its
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	1	2	1	2	2	-	2	-	-	-
CO2	-	-	-	-	-	2	1	2	2	3	-	2	-	-	-
CO3	-	-	-	-	-	2	1	2	2	2	-	3	-	-	-
CO4	-	-	-	-	-	2	2	1	2	1	-	3	-	-	-
CO5	-	-	-	-	-	3	2	1	3	2	-	1	-	-	-
CO6	-	-	-	-	-	2	1	2	1	2	-	2	-	-	-
AVERAGE	-	-	-	-	-	2.3	1.5	1.5	2	2	-	2.2	-	-	-

SLIGHT (LOW)

1.

UNIT 1: GRAMMAR AND FOUNDATON

CORRELATION LEVELS

Training the students on basic grammar and foundation and laying the standard platform-A complete standard syllabus of Cambridge is used-The main part of the 1st semester is to cover the major tenses (Present tense, Present Continuous, Past Tense, Past Continuous, Present Perfect, and Present Perfect continuous).

UNIT II: FOCUS ON LANGUAGE - VOCABULARY

General Vocabulary-Dictionary-Word Formation: Prefix and Suffix-Synonyms and antonyms- Idioms and Phrases- Diplomatic Phrases – Food Phrases- Vocabulary-Words commonly misspelt – Lab-Test.

UNIT III: INTERACTIVE ENGLISH

The main objective is English for International communication-It course contains conversations, snapshots, readings, activities, a greater variety and amount of listening materials and more visuals to introduce vocabulary, more opportunities to build fluency, and up-to-date art and design- The course covers the fours skills of listening, speaking, reading and writing, as well as improving pronunciation and building vocabulary.

UNIT IV: LISTENING AND SPEAKING

Types of Listening -Listening and note taking-Pronunciations-Stress and Intonation- Conversation technique-Dialogue Writing -Professional Communication-Interview-Group Discussion –Power point Presentation-Debate , Oratorical Lab

UNIT V: INTERVIEW SKILLS AND PERSONALITY DEVELOPMENT 14 Hrs

Out of box thinking -Lateral Thinking- Intrinsic and Extrinsic Motivators- Factors influencing Attitude-Challenges and lessons from Attitude- Etiquette-Value of time- Diagnosing Time Management- Weekly Planner To do list- Prioritizing work.

TOTAL: 60 Hours

TEXT BOOKS:

1. Essential Grammar in use- Raymond Murphy ,Cambridge , New Third Edition **REFERENCE BOOKS:**

1. New Interchange (English for International Communication) Jack C. Richards

18 Hrs

4 Hrs

10 Hrs

2. MODERATE (MEDIUM) 3. SUBSTANTIAL (HIGH)

SEMESTER: II

PROGRAM	B.E (Department Of Naval Architecture And Offshore Engineering)										
Course Code	Course Name		L	Т	Р	С					
UBLEC02	Technical English -	II	2	0	0	2					
Year and Semester	I Year & II Semest	er	Contact Hours Per Week								
Prerequisite course	Nil		2 Hrs								
Course category	Humanities and Social Sciences										
	\checkmark										
	Basic Science	Engineering Science	Open l	Elective	Man	datory					
Course Objectives	reading and wr	upporting their ski iting in English ealize the importance		pment –I	Listening,	speaking,					
Course Outcomes	 Identify the imposed Make use of Eng Develop skills in Build knowledge 	 After successful completion of Course, the students will be able to 1. Identify the importance of technical English 2. Make use of English grammar and enhancing vocabulary 3. Develop skills in reading 4. Build knowledge on writing letters and descriptive writings 5. Develop speaking and listening skills 									

PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	2	2	-	2	2	-	2	-	-	-
CO2	-	-	-	-	-	3	2	-	1	2	-	1	-	-	-
CO3	-	-	-	-	-	2	1	-	2	1	-	2	-	-	-
CO4	-	-	-	-	-	2	2	-	2	2	-	2	-	-	-
CO5	-	-	-	-	-	2	2	-	2	1	-	2	-	-	-
CO6	-	-	-	-	-	1	3	-	1	2	-	2	-	-	-
AVERAGE	-	-	-	-	-	2	2	-	1.7	1.7	-	1.8	-	-	-
COR	RELATI	ON LEVI	ELS	1.	SLIG	HT (LOV	V)	2. N	IODERA	TE (ME	DIUM)	3. S	UBSTAN	NTIAL (F	HIGH)

UNIT I: COMMUNICATION & FOCUS ON LANGUAGE

Process of Communication -Language as a tool of Communication-Importance of Technical Communication.

UNIT II: VOCABULARY & ENGLISH GRAMMAR

General Vocabulary-Dictionary-Word Formation: Prefix and Suffix-Synonyms and antonyms- Idioms and Phrases-Homophones -Parts of Speech-Subject Verb Agreement-Tenses, Articles, Prepositions-Common errors in English General Vocabulary - Adverbs- Gerund and Infinitive – Word Formation: Prefix and Suffix - Noun - Compound Noun- Adjective - Degrees of Comparison - Double Adjective -Voice -Tense - Verbs - Homograph, Homophone - Commonly Confused Words - Collocation -Punctuation marks.

UNIT III: READING SKILL

Intensive Reading-Skimming & Scanning - Extensive Reading - Meta cognitive reading - Topic sentence and its Role-Reading and Interpretations- Critical Reading – Reading and summarizing

UNIT IV: WRITING SKILL

Descriptive Writing – Paragraph-Technical descriptions-Essays-Letter Writing – Formal and Informal-Business Letters-Job Application Letter-Types of reports-Instructions and Checklists Paragraph Writing-Descriptive Writing -Paragraph - Definition Writing - Extended Definition - Purpose Statement -Sequence words – E mail writing – Flow chart – pie chart – note taking – Dialogue writing – Circular writing- Latter to the editor – personal letter writing – circular writing

UNIT V: LISTENING AND SPEAKING 6 Hrs

Types of Listening -Listening and note taking-Pronunciations-Stress and Intonation- Conversation technique-Dialogue Writing -Professional Communication-Interview-Group Discussion -Power point Presentation-Lab Listening and note taking – Role play – Group Discussion

TOTAL: 30 Hours

TEXT BOOK:

- 1. Department of English, Anna University. Mindscapes: English for Technologists and Engineers. Orient Blackswan, Chennai. 2012.
- 2. English and communication skills—S.P.Dhanavel. Orient Black swan (2010).

REFERENCE BOOKS:

1. Essential Grammar use – Raymond Murphy, Cambridge (2007).

6 Hrs

6 Hrs

6 Hrs

- 2. Anderson, Paul V. Technical Communication: A Reader-Centered Approach. Cengage. New Delhi. 2008.
- 3. Muralikrishna & Sunita Mishra. Communication Skills for Engineers. Pearson, New Delhi. 2011.
- 4. Smith-Worthington, Darlene & Sue Jefferson. Technical Writing for Success. Cengage, Mason USA. 2007.

PROGRAM	B.E (Department Of Naval Architecture And Offshore Engineering)										
Course Code	Course Name		L	Т	Р	С					
UBMTC02	Engineering Mathe	matics-II	3	1	0	4					
Year and Semester	I Year & II Semes	ter	Contact Hours Per Week								
Prerequisite course	Nil		4Hrs								
Course category	Humanities and Social Sciences	Management courses	Profession	al Core	Professio	nal Elective					
	Basic Science	Engineering Science	Open]	Elective	Mar	ndatory					
Course Objectives Course Outcomes	 equations. 2. To provide the differential equations. 3. To acquainter problems in equations in equations. 3. To understand for the successful conditions. After successful conditions. 1. Infer knowledge 2. Illustrate the upper successful conditions. 3. Solve problems 4. Demonstrate the successful conditions. 	he required skill to ap e required ideas to sol quations. the student with the ngineering discipline. d the standard techniq ew domain to handle t mpletion of Course, the ge on ordinary different se of ordinary different s using vector calculu he properties of analytic transforms in engine	lve the pro concepts ues of com <u>he problen</u> he students ntial first o ntial higher is tic functior	blems on of vector pplex varia <u>n in easier</u> s will be a order equa c order equa	higher orde calculus able proble by using t ble to tions	er ordinary needed for ms.					

				 Apply differential equations, vector calculus and Laplace transforms i engineering applications 										ns in	
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	2		-	-	-	-	-	-	-	2	2	2
CO2	3	2	3	2		-	-	-	-	-	-	3	2	2	2
CO3	2	3	2	2	1	-	-	-	-	-	-	-	2	-	2
CO4	3	2	3	2		-	-	-	-	-	-	2	2	2	2
CO5	2	3	2	3		-	-	-	-	-	-	2	3	2	3
CO6	3	2	3	2	1	-	-	-	-	-	-	2	3	2	2
AVERAGE	2.7	2.3	2.7	2.7 2.2 1					-	-	-	2.3	2.3	2	2.2
CORI	RELATIO	ON LEVI	ELS	LS 1. SLIGHT (LOW)					MODERA	ATE (ME	DIUM)	3.	SUBSTA	NTIAL (HIGH)

UNIT I -ORDINARY DIFFERENTIAL EQUATIONS-FIRST ORDER AND APPLICATION 12Hrs

Definition - order and degree - formation of differential equation - Solution of first order - first degree equations in variable separable form - homogeneous equations - other substitutions - Equations reducible to homogeneous and exact differential equations - Equations reducible to exact Integration Factor - Linear differential equation of first order first degree, reducible to linear - Applications to electrical circuits and orthogonal trajectories.

UNIT II -ORDINARY DIFFERENTIAL EQUATIONS-HIGHER ORDER AND

APPLICATIONS

Higher (nth) order linear differential equations - definition and complementary solution- Methods of obtaining PI, Method of variation of parameters - Method of undetermined coefficients - Cauchy's Homogeneous LDE and Legendre's equations - System of Ordinary Differential Equations Simultaneous equations in symmetrical form.

UNIT III -VECTOR CALCULUS

Gradient Divergence and Curl – Directional derivative – irrotational and solenoidal vector fields –Vector integration – Green's theorem in a plane, Gauss divergence theorem and stokes' theorem (excluding proofs) – Simple applications involving cubes and rectangular parallelepipeds.

UNIT IV- ANALYTIC FUNCTIONS

Functions of a complex variable – Analytic functions – Necessary conditions, Cauchy – Riemann equation and Sufficient conditions (excluding proofs) – Harmonic and orthogonal properties of analytic function – Harmonic conjugate – Construction of analytic functions – Conformal mapping - bilinear transformation.

UNIT V- LAPLACE TRANSFORM

Laplace transform – Conditions for existence – Transform of elementary functions – Basic properties– Transform of derivatives and integrals – Transform of unit step function and impulse functions – Transform of periodic functions. Definition of Inverse Laplace transforms as contour integral –

12 Hrs

12 Hrs

12 Hrs

Convolution theorem (excluding proof) – Solution of linear ODE of second order with constant coefficients using Laplace transformation techniques.

TOTAL: 60 Hours

TEXT BOOK:

- 1. Bali N. P and Manish Goyal, —Text book of Engineering Mathematics, 3rd Edition, Laxmi Publications (p) Ltd., 2008.
- 2. Grewal. B.S, —Higher Engineering Mathematics, 40thEdition, Khanna Publications, Delhi, 2007.

REFERENCE BOOKS:

- 1. Ramana B.V, —Higher Engineering Mathematics, Tata McGraw Hill Publishing Company, New Delhi, 2007.
- 2. Glyn James, —Advanced Engineering Mathematics, 3rdEdition, Pearson Education, 2007.
- 3. Erwin Kreyszig, —Advanced Engineering Mathematics, 7thEdition, Wiley India, 2007.
- 4. Jain R.K and Iyengar S.R.K, —Advanced Engineering Mathematics, 3rdEdition, Narosa Publishing House Pvt., 2007.

PROGRAM	B.E (Department Of	B.E (Department Of Naval Architecture And Offshore Engineering)										
Course Code	Course Name		L	Т	Р	С						
UBPHCO2	Engineering Physic	cs-II	3	0	0	3						
Year and Semester	I Year & II Semes	ter	Contact I	Hours Per	Week							
Prerequisite course	Nil		3 Hrs									
Course category	Humanities and Social Sciences	Management courses	Profession	al Core	Professio	nal Elective						
	$\frac{\textbf{Basic Science}}{}$	Engineering Science	Open]	Elective	Mandatory							
Course Objectives		ould understand abou significance for the de		U		waves and						

Course	Outco	omes	After	succes	ssful c	omple	tion of	Cours	e, the	studen	ts will	be abl	e to		
			1. I	Demon	strate	the app	olicatio	ons of a	sound	waves					
			2. E	Explair	the p	rincipl	es of la	aser an	d its a	pplicat	ions				
			3. I	llustra	te mil	ler ind	lices a	nd X-	Ray p	ower	diffrac	tion n	nethod	to id	entify
			с	rystal	structu	ire			• 1						•
			4. 0	Compa	re the	electri	cal cor	ductiv	vity in a	semico	onducto	ors and	l super	condu	ctors
				Contrast dielectric and magnetic materials											
				Infer the principles of light and sound waves in various applications											
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	-	-	-	-	-	-	-	-		1	2	2
CO2	2	1	2	2	-	-	-	-	-	-	-		2	1	2
CO3	3	2	1	2	-	-	-	-	-	-	-	-	1	-	-
CO4	2	3	2	1	1	-	-	-	-	-	-		1	2	2
CO5	3	3	2	2		-	-	-	-	-	-	1	2	2	2
CO6	3	2	2	1		-	-	-	-	-	-	2	2	2	2
AVERAGE	2.5	2.2	1.7	1.6	1	-	-	-	-	-	-	1.5	1.5	1.8	2
CORI	RELATI	ON LEV	ELS	1. SLIGHT (LOW) 2. MODERATE (MEDIUM) 3. SUBSTANTIAL (HIGH)									HIGH)		

UNIT - I: ACOUSTICS AND ULTRASONICS: 9 Hrs

Wave-types of waves-wave motion. Sound- classification of sound – characteristics of musical sound. Loudness – Weber Fechner law – Decibel – Reverberation – Reverberation time – Sound absorption coefficient- Sabine's formula for determining reverberation time (Rate of Growth and Rate of Decay) – determination of sound absorption coefficient – Factors affecting acoustics of buildings (Optimum reverberation time, loudness, focusing, eco, echelon effect, resonance and noise) and their remedies. Ultrasonics- production- piezo-electric method – SONAR-Ultrasonic flaw detector as non-destructive testing technique.

UNIT-II: LASER AND FIBRE OPTICS: 9 Hrs

Laser-principle-properties – Einstein coefficient (A and B)-Nd-YAG laser – CO2 laser- Applications of laser – Holography-construction and reconstruction of a hologram – Principle and propagation of light in an optical fibre-types of optical fibres – applications-fibre optic communication system (block diagram) – fibre optic sensors.

UNIT-III: CRYSTAL PHYSICS: 9 Hrs

Lattice-unit cell – Bravais lattice – lattice planes – Miller indices – 'd' spacing in cubic lattice – calculation of number of atoms per unit cell – atomic radius-coordination number – packing factor for SC, BCC, FCC and HCP structures – Diamond and graphite structures (qualitative treatment) – X-ray - Powder diffraction method to identify crystal structure parameters.

UNIT-IV: SEMICONDUATORS AND SUPERCONDUATORS 9 Hrs

Semiconductors – intrinsic and extrinsic semiconductor. Fermi level –Variation of Fermi level with temperature-electrical conductivity. Band gap determination-Hall effect – Determination of Hall coefficient – Applications. Superconductivity: Properties – Type I and Type II superconductors – BCS theory of superconductivity-High Tc superconductors-Applications of superconductors – SQUID, cryotron, magnetic levitation.

UNIT-V: DIELECTRIC, MAGNETIC AND NEW ENGINEERING MATERIALS 9 Hrs

Electrical susceptibility – dielectric constant – electronic, ionic, orientational and space charge polarizations-frequency and temperature dependence on polarization-internal field – Claussius-Mosotti relation – uses of dielectric materials. Magnetic properties – diamagnetic – paramagnetic – ferromagnetic materials – super paramagnetism – Transducers. Properties and applications of metallic glasses – nano materials – shape memory alloys – bio materials.

TEXT BOOKS

TOTAL: 45 Hours

- 1. S. O Pillai "Solid State Physics", New Age International Pvt Ltd; 7th edition, 2015.
- 2. Ajoy Ghatak, "Optics", McGraw-Hill Education; 1st edition 2009.
- 3. Ajoy Ghatak, "Introduction to Fiber optics", Foundation Books, 2002.

REFERENCES BOOKS:

- 1. Charles Kittel," Introduction to Solid state physics", Wiley; Eighth edition 2012.
- 2. Ghatak and Thyagarajan, "Laser Fundamentals and Applications", Springer, 2011.
- 3. Richard Feynmann, Robert Leighton and Matthew Sands,"The Feynmann Lectures on Physics", Volume 1, Student Edition, Narosa Publishing house, 2003.
- 4. Richard Feynmann, Robert Leighton and Matthew Sands "The Feynmann Lectures" on Physics, Volume 2, Student Edition, Narosa Publishing house, 2003.

PROGRAM	B.E (Department Of]	.E (Department Of Naval Architecture And Offshore Engineering)										
Course Code	Course Name		L	Т	Р	С						
UBEEC01	Basics of Electrical	& Electronics										
	Engineering		3 0 0 3									
Year and Semester	I Year & II Semest	er	Contact Hours Per Week									
Prerequisite course	Nil		3 Hrs									
Course category	Humanities and Social Sciences	Management courses	Profession	al Core	Profession	nal Elective						
	Basic Science	Engineering Science	Open E	lective	Man	datory						
		\checkmark										
Course Objectives	analyzing el	ze the basic laws, D ectrical circuits. and the characteristi										

				devi	ces, M	oving	coil ar	nd mov	ing iro	on inst	rumen	ts.			
Course	Outco	omes	1. 2. 3. 4.	 fter successful completion of Course, the students will be able to Know the Laws and analysis with different source in DC circuits. Illustrate the operation of single phase AC Circuits. Gain level on three phase AC Circuits. Understand the performance characteristics of Semiconductor Devices. Understand the basic concept of Electrical instruments. 											es.
				 Obtain knowledge on basis of Electrical & Electronics Engineering 											
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	3	2	1	-	-	-	-	-	-	2	2	2	2
CO2	3	3	2	2	2	-	-	-	-	-	-	2	2	2	2
CO3	2	3	3	2	-	-	-	-	-	-	-	2	2	3	3
CO4	3	3	2	3	-	-	-	-	-	-	-	1	3	2	2
CO5	3	3	2	3	2	-	-	-	-	-	-	2	2	3	3
CO6	3	3	3	2	-	-	-	-	-	-	-	1	3	2	2
AVERAGE	2.8	2.8	2.5	2.3	1.7	-	-	-	-	-	-	1.7	2.3	2.3	2.3
CORI	RELATIO	ON LEVI	ELS	1. SLIGHT (LOW) 2. MODERATE (MEDIUM) 3. SUBSTANTIAL (HIGH)											

UNIT I: DC CIRCUITS

Importance of Electrical Engineering in day-to-day life - Electrical elements and their classifications - KCL and KVL equations - Loop current and node voltage method - Steady state analysis with independent and dependent sources - parallel and series circuits and star delta conversion.

UNIT II: ANALYSING SINGLE PHASE AC CIRCUITS

Common Signals and their Wave Form: RMS Value, Average Value, Form Factor and Peak Factor -Single-phase A.C Series Circuits: Types, Phasor Diagram, Power Factor, Impedance, Power Triangle -Single Phase A.C Parallel Circuits: Types, Phasor Diagram, Power Factor, Power Triangle – A.C Network Theorem's: Thevinin's and Norton's Theorem– Superposition Theorem – Maximum Power Transfer Theorem - Mesh Current and Node Voltage Method with A.C sources.

UNIT III: ANALYSING THREE PHASE AC CIRCUITS

Three Phase Balanced and Unbalanced Voltage Sources – Analysis of Three Phase 3-Wire and 4-Wire Circuits with Star and Delta Connected Loads, Balanced & Unbalanced – Phasor Diagram of Voltages and Currents – Power and Power Factor Measurements in Three Phase Circuits.

UNIT IV: SEMICONDUATOR DEVICES

Characteristics of PN Junction Diode-Zener effect-Zener Diode and its Characteristics- Voltage regulation-Bipolar Junction Transistor-CB, CE, CC Configurations and Characteristics- Basic Construction of 'N' channel & 'P' channel JFET-Half wave and Full wave rectifiers.

UNIT V: BASIC ELECTRICAL MEASUREMENTS

Construction and Operating Principles of Moving Coil and Moving Iron Instruments (Ammeter and Voltmeter), Dynamometer Type Wattmeter and Basic Torque Equations, Electrodynamics frequency meter, Energy Meter and Megger – Measurement Errors.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

TEXT BOOKS:

- 1. Arumugam and Prem Kumar, Electric Circuit Theory, Khanna Publishers, 2002.
- 2. William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits Analysis", Tata McGraw Hill publishers, 6 th edition, New Delhi, 2003
- 3. R.S.Sedha, A Textbook of Applied Electronics, 3rd revised edition Edition, 2008.
- 4. A.K.Sawhney-A Course in Electrical and Electronics Measurements and Instrumentation, 19th Revised Edition 2011.

REFERENCE BOOKS:

- 1. Joseph A. Edminister, Mahmood Nahri, "Electric circuits", Schaum's series, Tata McGraw-Hill, New Delhi, 2001.
- 2. Sudhakar A and Shyam Mohan SP, "Circuits and Network Analysis and Synthesis", Tata McGraw Hill, 2007.
- 3. Charles K. Alexander, Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", Second Edition, McGraw Hill, 2003.

PROGRAM	B.E (Department Of	Naval Architecture And	d Offshore E	Ingineering	g)			
Course Code	Course Name		L	Т	Р	С		
UBMCC03	Engineering Mecha	anics	3	1	0	4		
Year and Semester	I Year & II Semes	ter	Contact Hours Per Week					
Prerequisite course	Nil		4 Hrs					
Course category	Humanities and Social Sciences	Management courses	Profession	al Core	Profession	nal Elective		
	Basic Science	Engineering Science	Open H	lective	Man	ndatory		
		\checkmark						

Course	Object	ives	1.		-		•					•	•	0	eering ms in
				-			chanic	•	u man	inci ai	iu io	50170	Dasie	proble	5 III
			2	C		U			d than		o of w	orle on	danan	~~ .	
0	0								d the p					зу	
Course	Outco	omes				-			e, the						
			1.	-				• •	nciple	s deal	ing w	ith for	rce, di	isplace	ment,
				velo	city an	nd acce	eleratio	n							
			2.	Buil	d the k	cnowle	dge or	the e	quilibr	ium of	rigid	bodies			
			3.	Exa	mine 1	rigid b	ody su	bjecte	d to dy	namic	forces				
			4.	Use	the fu	indame	ental c	oncept	s of k	inemat	tics an	d kine	tics of	partic	les to
							g probl	-						1	
			5		0	-	on and		ects						
			6						work	and en	ergy				
PPOs /	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
COs					P05	PUo	P07	PUð	PO9	POIU	POII	POIZ		PS02	P\$05
CO1	2	2	2	1	-	-	-	-	-	-	-	-	2	-	-
CO2	3	3	2	1	-	-	-	-	-	-	-	-	2	-	-
CO3	2	2	-	2	-	-	-	-	-	-	-	2	-	2	-
CO4	3	3	2	1	-	-	-	-	-	-	-	3	3	-	-
CO5	3	3	2	2	-	-	-	-	-	-	-	2	-	2	3
CO6	3	3	3	2	-	-	-	-	-	-	-	3	3	-	3
AVERAGE	2.5	2.7	2.2	1.5	-	-	-	-	-	-	-	2.5	2.5	2	3
CORI	RELATIO	ON LEV	ELS	1.	SLIG	HT (LOV	V)	2. N	10DERA	TE (ME)	DIUM)	3. 8	SUBSTAN	NTIAL (I	IIGH)

UNIT I: BASICS & STATICS OF PARTICLES

Introduction - Units and Dimensions - Forces - System of forces - Resultant forces - Parallelogram law of forces - Triangular law of forces - Polygon law of forces - Resolution and composition of forces -Principles of transmissibility. Single equivalent force - Equilibrium of particles - Moment and couple -Scalar components of moment - Varigon's Theorem.

UNIT II: EQUILIBRIUM OF RIGID BODIES

Equilibrium of forces - Law of mechanics - Lami's theorem. - Free body diagram - Requirement of Stable Equilibrium – Equilibrium of rigid bodies in 2D – Examples - Type of supports and their support reactions.

UNIT III: FRICTION

Static and Dynamic Friction - Laws of friction - Equilibrium of a body on a rough Horizontal plane, inclined Plane and inclined plane subjected to a force acting along the inclined plane - Applications of friction - Simple contact friction (Ladder friction) - Screw friction - weight lifted by screw jack - Belt friction - Rolling Resistance.

UNIT IV: PROPERTIES OF SURFACES AND SOLIDS

Determination of Areas and Volumes-First moments of area and the Centroid of sections- Rectangle, circle, triangle from integration-T section, I section, Angle section, Hollow section using standard formula- Second and product moments of plane area- Rectangle, triangle, circle from integration-T section. I section, Angle section, Hollow section by using standard formula parallel axis theorem and perpendicular axis theorem- Mass moment of Inertia.

12 Hrs

12 Hrs

12 Hrs

UNIT V: DYNAMICS OF PARTICLES AND RIGID BODIES

Dynamics of Particles - Displacement, velocity and acceleration, their relationship – Relative motion-Curvilinear motion – Newton's law – work-energy equation of particles - Impulse and Momentum – Law of conservation of momentum – D'Alembert's Principle – Types of collision - Collision of Elastic Bodies – Newton's law of collision of bodies - co-efficient of restitution. Dynamics of Rigid Bodies – General plane motion – Velocity and Acceleration – Absolute and relative motion method – Equilibrium of Rigid bodies in Plane motion.

TOTAL : 60 Hours

TEXT BOOKS:

- 1. K.V. Natarajan, "Engineering Mechanics", Dhanalakshmi publications, Revised Edition, 2008.
- R.S Khurmi, —A Textbook of Engineering Mechanics, S. Chand Publishers, 20th Revised Edition, 2014.

REFERENCES:

- 1. S.S. Bhavikatti, —Engineering Mechanics, New Age International Publishers, 4th revised edition, 2012.
- 2. Palanichamy & Nagan, —Engineering Mechanics Statics & Dynamics, Tata McGraw-Hill, Latest Edition, 2001.
- 3. S. Rajasekaran, G. Sankara Subramania, "Fundamentals of Engineering Mechanics", Vikas Publishing House Pvt. Ltd., 2006.
- 4. Beer, F.P and Johnson Jr. E.R, —Vector Mechanics for Engineers, Vol.1 Statics and Vol.2. Dynamics, TataMcGraw-Hill International Edition, 2001.

PROGRAM	B.E (Department Of	Naval Architecture And	l Offshore E	ngineering	g)	
Course Code	Course Name		L	Т	Р	С
UBMCC11	Thermodynamics		3	0	0	3
Year and Semester	I Year & II Semest	ter	Contact H	Iours Per	Week	
Prerequisite course	Nil		3Hrs			
Course category	Humanities and Social Sciences	Management courses	Profession	al Core	Profession	nal Elective
	Basic Science	Engineering Science $$	Open E	lective	Man	datory

Course Objectives			1. This course provides basic knowledge about thermodynamics and relation and													
			their application to various processes.													
Course Outcomes			The Students will be able to													
Course	outer	Jines	1. Understand thermodynamics laws and their application													
			2. To understand concept of entropy and availability													
			3. Know about the properties of steam and their uses of steam table and mouier													
			chart													
			4. Understand thermodynamics relation													
_			5. Understand about psychometric chart													
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	2	2	2	1	-	-	-	-	2	-	-	-	2	2	-	
CO2	2	2	3	2	-	-	-	-	1	2	-	2	3	1	2	
CO3	2	2	2	2	1	-	-	-	2	2	2	2	2	2	2	
CO4	2	2	2	2	1	-	-	-	1	2	-	1	3	1	2	
CO5	2	2	2	2	2	-	-	-	3	1	3	3	3	2	2	
CO6	2	2	3	2	3	-	-	-	2	3	3	3	3	1	2	
AVERAGE	2	2	2.3	1.8	1.8	-	-	-	1.8	2	2.7	2.2	2.7	1.5	1.7	
CORI	CORRELATION LEV			1.	SLIG	HT (LOV	V)	2. N	IODERA	TE (ME	DIUM)	3. SUBSTANTIAL (HIGH)				

UNIT - I : BASIC CONCEPTS AND FIRST LAW

Basic concepts - concept of continuum, comparison of microscopic and macroscopic Approach.Path and Intensive and extensive, total and specific quantities. point functions. -System and their types.Thermodynamic Equilibrium State, path and process -Quasi-static, reversible and irreversibleprocesses. -Heat and work transfer, definition and comparison, sign convention Displacement work and other modes of work - pv diagram.Zeroth law of thermodynamics - concept of temperature and thermal equilibrium- relationship between temperature scales -new temperature scales.First law of thermodynamics -application to closed and open systems - steady and unsteady flow processes

UNIT II:SECOND LAW AND AVAILABILITY ANALYSIS

Heat Reservoir, source and sink.-Heat Engine, Refrigerator, Heat pump. -Statements of second law and its corollaries. Carnot cycle Reversed Carnot cycle, Performance. -Clausius inequality. - Concept of entropy, t-s diagram, Tds Equations, entropy change for - pure substance, ideal gases - different processes, principle of increase in entropy. Applications of II Law. High and low grade energy. Available and non-available energy of a source and finite body. Energy and irreversibility. Expressions for the energy of a closed system and open systems. Energy balance and entropy generation. Irreversibility. I and II law Efficiency.

UNIT III :PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE 9 Hrs Formation of steam and its thermodynamic properties, p-v, p-T, T-v, T-s, h-s diagrams. p-v-T surface.Use of Steam Table and Mollier Chart. Determination of dryness fraction. Application of I and II law for pure substances.Ideal and actual Rankine cycles, Cycle Improvement Methods - Reheat and Regenerative cycles, Economizer, preheater, Binary and Combined cycles.

UNIT IV : IDEAL AND REAL GASES, THERMODYNAMIC RELATIONS 9 Hrs Properties of Ideal gas- Ideal and real gas comparison- Equations of state for ideal and real gases-Reduced properties-Compressibility factor-. Principle of Corresponding states.Generalized

9 Hrs

Compressibility Chart and its use-. Maxwell relations, Tds Equations, Difference and ratio of heat capacities, Energy equation, Joule-Thomson Coefficient, Clausius Clapeyron equation, Phase Change Processes. Simple Calculations.

UNIT V: GAS MIXTURE AND PSYCHROMETRY

9 Hrs

Mole and Mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – Molar mass, gas constant, density, change in internal energy, enthalpy, entropy and Gibbs function.Psychometric properties, Psychometric charts. Property calculations of air vapour mixtures by using chart and expressions. Psychometric process – adiabatic saturation, sensible heating and cooling, humidification, dehumidification, evaporative cooling and adiabatic mixing. Simple Applications

TOTAL : 45 Hours

TEXT BOOKS:

- 1. Nag.P.K., -Engineering Thermodynamics, 4thEdition, Tata McGraw-Hill, New Delhi, 2008.
- Cengel. Y and M.Boles, "Thermodynamics An Engineering Approach", 7th Edition, TataMcGraw Hill, 2010

REFERENCE BOOKS:

- 1. Natarajan E., "Engineering Thermodynamics: Fundamentals and Applications", AnuragamPublications, 2012
- 2. Holman.J.P., "Thermodynamics", 3rd Edition, McGraw-Hill
- 3. Rathakrishnan. E., "Fundamentals of Engineering Thermodynamics", 2nd Edition, Prentice-Hall of India Pvt. Ltd
- 4. Chattopadhyay, P, "Engineering Thermodynamics", Oxford University Press, 2010
- 5. Arora C.P, —Thermodynamicsl, Tata McGraw-Hill, New Delhi, 2003

PROGRAM	B.E (Department O	f Naval Architectur	e And Offshore E	ngineering)					
Course Code	Course Name:	L	L T P						
UBPHCPA	Engineering Physic	s Laboratory	0	0	2	1			
Year / Semester	I Year & II Semeste	er	Contact hours	per week					
Prerequisite course	Nil		2 Hrs						
Course category	Humanities and Social Sciences	Management courses	Professional C	ore	Professional E	Professional Elective			

	CORRELATION LEVELS					IGHT (L		2. MODERATE (MEDIUM)				3. SUBSTANTIAL (HIGH)				
					2.50	2.00	_	_	_	2.00	2.00	-	2.20	2.00	2.00	2.40
	AVERAGE	2.50	2.20	2.33	2.50	2.00	-	_	_	2.00	2.00	-	2.20	2.00	2.60	2.40
	CO5	3	2	2	2	3	-	-	-	2	2	-	2	2	3	2
		3	2	2	_	3		-			3				3	_
_	CO4	3	2	2	3	2				2	2		2	2	2	2
-	CO3	2	2	3	3	1	-	-	-	2	2	-	-	2	-	-
_	CO2	2	-	2	2	2	-	-	-	2	1	-	2	2	3	3
	CO1	2	2	2	2	1	-	-	-	1	2	-	2	2	2	3
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	PPOs /		3. D 4. Ir 5. Il 6. E	etermi nfer mo ar lustrat xplain	ne the odulus e how the co	surfac of ela to mea ncepts	te tensi sticity	ion and of tors he thic	l co-ef sion pe kness	ficient	of vis m and wire	cosity Youn	of wat g's mc	er dulus g the ax	of elas	sticity c
			1. E	xplain	the ca	libratio	on of V	/oltme	ter and	d Poter	ntiome	ter			its wa	velengt
Course Objective		 Students should obtain the skill to design experiments to demonstrate various concepts of physics for determination of properties of materials After the successful completion of the course, the students will be able to: 														
7					danta al		htoin t		to dooi	~~~~~		to to do	monstr	oto von		noonto
			Basi	c Scien	nce Engineering Science			g	Open Elective				Mandatory			

LIST OF EXPERIMENTS

- 1. Calibration of low range voltmeter potentiometer
- Construction of low large volumeter potention products
 Torsion pendulum Rigidity modulus of elasticity
 Spectrometer- Grating wavelength of mercury spectral lines
- 4. Newton's rings Radius of curvature of a convex lens
- 5. Air wedge Thickness of a wire
- 6. Surface tension of water -Capillary rise method
- 7. Uniform bending Young's modulus of elasticity of a bar
- 8. Coefficient of viscosity of water graduated burette
- 9. Non uniform bending -Young's modulus of elasticity of a bar
- 10. Field along the axis of a coil

Total: 30 Hours

PROGRAM	B.E (Department Of Naval Architecture And Offshore Engineering)

Course Code	Cou	rse Nan	ne:					L		Т		Р		С	
UBEECPA		ics of ineerin				etronic	5	0		0		2		1	
Year and Semeste	-	ar & II	-				Cor	ntact ho	ours per	week					
Prerequisite cours	e Nil						2 H	rs							
Course category		nanities al Scien		Mar cour	nagemo rses	ent	Pro	fessiona	al Core		Pr	ofessio	nal Ele	ctive	
	Basi	ic Scien	ice	Engi Scier	ineering nce	2		OI	oen Elec	ctive		N	Aandat	ory	
Course Objective Course Outcome	d 2. <u>F</u> After 1.	To acqu lifferen Expertis the su Demor power Compa	t quan se in ha ccessf	tities. andling ul com instru ower fa	g the ir pletion ments actor	nstrum n of the such	ents in e cours as am	se, the meter	<u>l.</u> studen and v	ts will oltmet	be abl er for	e to: measu		of resistar	nce,
	3. 4. 5.	Explai Illustra Contra	n how ite the st the	to mea charac workin	asure p teristic g prine	ower i cs of Pl ciple o	nput to N diod f half	o three le, Zen wave a	phase er dioc ind full	induct de and l wave	ion mo JFET rectifi	otor us er usin	ig CR(att mete D	
PPOs / COs PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1 2	2	2	2	-	-	-	-	2	-	-	-	2	2	-	
CO2 2	2	3	2	-	-	-	-	2	2	-	2	3	2	2	
CO3 2	2	2	2	2	-	-	-	2	2	2	2	2	2	2	
CO4 2	2	2	2	1	-	-	-	1	2	-	1	3	2	2	
CO5 2	2	2	2	2	-	-	-	3	1	3	3	3	2	2	
CO6 2	2	3	2	3	-	-	-	2	3	3	3	3	2	2	
AVER AGE 2.00	2.00	2.33	2.00	2.00	-	-	-	2.00	2.00	2.67	2.20	2.67	2.00	2.00	
CORRELAT	TION LEV	ELS		1. SL	IGHT (L	OW)	2. N	MODERA	ATE (ME	DIUM)	3. 9	SUBSTA	NTIAL (I	HIGH)	

List of Experiments

- 1. Measurement of 'Low and High' resistances by Voltmeter and Ammeter method.
- 2. Obtain the current and voltage distribution in A.C. 'R-L-C' series circuits and draw the vector diagrams.
- 3. Obtain the current and voltage distribution in AC 'R.L.C' parallel circuits and draws the vector diagrams.
- 4. Measure the power and power factor of a single-phase load by 3 voltmeter method & ammeter method.
- 5. Measure the power input to 3-phase induction motor using two watt meters.
- 6. Characteristics of PN Junction Diode.
- 7. Characteristics of Zener Diode
- 8. Characteristics of JFET
- 9. Study of Half wave and Full wave Rectifiers
- 10.Study of CRO and LISSAJOUS pattern

TOTAL: 30 Hours

	AM		B.E (I	Departr	nent Of	f Naval	Archit	ecture	And O	ffshore	Engine	ering)			
Course (Code		Cours	se Nan	ne					L]	[Р		С
UBWSC	CPA		Engin	neering	g Practi	ice Lal	ooratoi	:y-I		0	()	4		2
Year and	d Sem	ester	I Yea	ar & II	Seme	ster			C	Contact	Hours	Per W	/eek		
Prerequi	site co	ourse	Nil						4	4 Hrs					
Course	catego	ory		nities a Science			nagem rses	ent	Р	rofessio	nal Coi	re	Profess	sional E	Clective
			Ba	sic Sci	ence	Eng	gineerin	ig Scien	ice	Open	Electiv	e	Μ	l <mark>andat</mark> o	ory
							٦	/							
Course (Course	•		ele Th 1.	ectric and the Stud	arc we	lding o vill be e opera	able to tion of	cetyle:	ne wel	h hands lding a drilling join th	nd fitti machi	ng nes.	ce on	machi	nıng,
			3.				mpone	nts usi	ng lat	he and	drillin	g macl			
			4.	Dev Plan	elop th assem	e Proc bling	mpone ess of and dis	nts usi chippi smantl	ng lat ng, fil ing of		drillin ack sav	g macl ving, c	lrilling		U
PPOs / COs	PO1	PO2	4. 5.	Dev Plan	elop th assem	e Proc bling	mpone ess of and dis	nts usi chippi smantl	ng lat ng, fil ing of	he and ling, ha	drillin ack sav	g macl ving, c	lrilling		U
	P01	PO2	4. 5. 6.	Dev Plan Con	elop th assem struct s	Proc bling simple PO6 2	mpone cess of and dis lap, b P07 2	nts usi chippi smantl utt and	ng lat ng, fil ing of tee jo	he and ling, ha compo ints us PO10 2	drillin ack sav onents ing arc	g macl wing, c weldi	lrilling ing equ	ipmer	nts
COs	PO1 - -	PO2 - -	4. 5. 6.	Dev Plan Con	elop th assem struct s	PO6 2 2	mpone cess of and dis lap, b P07 2 1	nts usi chippi smantl utt and PO8 2 2	ng lat ng, fil ing of tee jo PO9 2 2	he and ling, ha compo pints us PO10 2 3	drillin ack sav onents ing arc PO11	g macl ving, c e weldi PO12 1 -	lrilling ing equ	ipmer	nts
COs CO1 CO2 CO3	-	PO2 - - -	4. 5. 6. PO3	Dev Plan Con P04	elop th assem struct s	Proceed Proceed Proceed Proceed Proceed Proceed Proceeding Proceed	PO7 2 1	rts usi chippi smantl utt and PO8 2 2 2 2	ng lat ng, fil ing of tee jo PO9 2 2 1	he and ling, ha compo- pints us PO10 2 3 2	drillin ack sav onents ing arc PO11 -	g macl ving, c vweldi P012 1 - 1	lrilling ing equ	ipmer PSO2	nts PSO3
COs CO1 CO2 CO3 CO4	-	PO2 - - - -	4. 5. 6. PO3 - -	Dev Plan Con P04 - -	elop th assem struct s	Proceed below of the proceed b	mpone esss of and dis lap, b PO7 2 1 1 2	rts usi chippi smantl utt and PO8 2 2 2 2 3	ng lat ng, fil ing of tee jo 2 2 1 2 1 2	he and ling, ha compo pints us PO10 2 3 2 3	drillin ack sav onents ing arc PO11 -	g macl ving, c weldi P012 1 - 1 2	lrilling ing equ	PSO2	nts PSO3
COs CO1 CO2 CO3 CO4 CO5	-	-	4. 5. 6. <u>PO3</u> - - -	Dev Plan Con PO4 - - -	elop th assem struct s PO5 - - -	PO6 2 2 2 2 3	PO7 2 1 2 2 2 2	rts usi chippi smantl utt and PO8 2 2 2 2 3 1	ng lat ng, fil ing of tee jo 2 2 1 2 3	he and ling, ha compo- pints us PO10 2 3 2 3 2 3 2 2	drillin ack sav onents ing arc P011 - -	g macl ving, c ving, c veldi P012 1 - 1 2 2	lrilling ng equ PSO1 - - -	PSO2 - -	PSO3 - - -
COs CO1 CO2 CO3 CO4	-	-	4. 5. 6. PO3 - - - -	Dev Plan Con PO4 - - -	elop th assem struct s PO5 - - - -	Proceed below of the proceed b	mpone esss of and dis lap, b PO7 2 1 1 2	rts usi chippi smantl utt and PO8 2 2 2 2 3	ng lat ng, fil ing of tee jo 2 2 1 2 1 2	he and ling, ha compo pints us PO10 2 3 2 3	drillin ack sav onents ing arc PO11 - - -	g macl ving, c weldi P012 1 - 1 2	hrilling ing equ PSO1 - - - -	PSO2	PSO3

MACHINING:

Introduction and familiarization of operation of laths, drilling machines, shaping, milling and grinding machines - Safety- personal, tools, machines and environmental - Measuring tools and methods of measurement, reading of sketches and drawing, cutting tools, tool geometry - setting of tools methods of fixing of jobs on chucks, vices, jigs and fixtures - Speeds and feeds of machines - Operations of machines - Practical exercises on machines to develop and improve hands on skills.

FITTING:

Introduction and familiarization of various hand tools- Measuring, marking, cutting, holding and assembly tools, materials, parts, uses and safety of tools and personal safety - Process and procedures for measuring, Understanding of sketches and drawing - Marking and job holding methods - Process

of chipping, filling, hack sawing, drilling, tapping, dieying, assembling and dismantling of components - Practical exercises to develop and improve hands on skills.

ELECRIC ARC WELDING

Introduction, familiarization of different types of welding machines- welding Transformer, functions, tools, and equipment and environmental - Basic procedures of striking the arc - different methods of joining metals- different welding joints in different positions - welding defects - testing of welding joints - Practical exercises of welding of different thickness of metals in different positions to develop and improve hands on skills.

OXY - ACETELENE WELDING

Introduction – familiarization of tools and equipments - Gas cylinders, regulators, hoses and gas welding and gas cutting blow pipes - DS Processors - Procedures for setting up the equipments - Checking for leakage of gases, setting of jobs filler rods, flux, flame setting and controls of flame safety - personal safety protection, safety of cylinders, tool equipments and environmental safety-Procedures for gas welding, brazing and gas cutting - Different methods of joints in different positions and defects of joints, testing of joints - Practical exercises to develop and improve hands on skill of gas welding, brazing and gas cutting.

TOTAL: 60 Hours

	M	B.E (Department Of Naval Architecture And Offshore Engineering) Course Name: L T P C														
Course Co	ode	Cou	irse Na	me:					L		Т		Р		С	
UBLECP	C	Sof	t skill	—II					0		0		3		2	
Year and S	Semester	ΙYe	ear & I	I Seme	ster				Contac	ct hour	s per w	eek				
Prerequisi course	te	-							3 Hrs							
Course ca	ategory		nanities al Scier			lanage ourses	ment		Profess	sional (Core		Profe	ssional	Electiv	e
	\checkmark															
	ngineer	ing Scie	ence		Open	Electiv	7e		Mar	ndatory	,					
Course Ot	ojective	1. 2.	lectur	res and	l comp	rehend	their d them	by as	king q	uestion	ns, see	k clarif	ficatio	ns.		
Course Ou	itcome	3. 4. Afte 1. 2. 3. 4. 5.	Addra Maki impor r the s Apply and w Infer Deve Deve	ess the ng the rtance uccess y Artic vriting the kn lop ski lop list lop go	interv m real in toda ful con cles, P skills owled ills on tening od atti	view co ize the ay's sc mpletion repositing ge on p interact and sp tude, p	o their s confider impor cenario on of th tions, I public ctive E peaking behavi	ntly tance he cou Pronou speaki nglish g skills our an	of Eng urse, th uns, A ing and s for effective ind com	glish as e stud djectiv d cond ffectiv	s Glob ents w res and uct of e prese ation s	al lang ill be a l Adve meetin	uage a ble to: erbs in ags	and its		
Course Ou PPOs / COs	PO1	3. 4. Afte 1. 2. 3. 4.	Addra Maki impor r the s Apply and w Infer Deve Deve	ess the ng the rtance uccess y Artic vriting the kn lop ski lop list lop go	interv m real in toda ful con cles, P skills owled ills on tening od atti	view co ize the ay's sc mpletion repositing ge on p interact and sp tude, p	onfider impor cenario on of th tions, I public ctive E peaking	ntly tance he cou Pronou speaki nglish g skills our an	of Eng urse, th uns, A ing and s for effective ind com	glish as e stud djectiv d cond ffectiv	s Glob ents w res and uct of e prese ation s	al lang ill be a l Adve meetin	uage a ble to: erbs in ags	and its		
PPOs /	,	3. 4. Afte 1. 2. 3. 4. 5. 6.	Addra Maki impor r the s Apply and w Infer Deve Deve Build	ess the ng the rtance uccess y Artic vriting the kn lop ski lop list lop go l interv	interv m real in toda ful con cles, P skills owled ills on tening od atti	view co ize the ay's sc mpletion repositing ge on p interact and sp tude, t cills an	onfider impor cenario on of th tions, I public ctive E peaking behavi	ntly tance he cou Pronou speaki nglish g skills our an onalit	of Eng urse, th uns, A ing and s for en d com y deve	glish as e stude djectiv d cond ffectiv munic lopme	s Glob ents w ves and uct of e prese ation s	al lang ill be a l Adve meetin entation skills	uage a ble to: erbs in ngs n PSO	their	speaki	
PPOs / COs	,	3. 4. Afte 1. 2. 3. 4. 5. 6.	Addra Maki impor r the s Apply and w Infer Deve Deve Build	ess the ng the rtance uccess y Artic vriting the kn lop ski lop list lop go l interv	interv m real in toda ful con cles, P skills owled ills on tening od atti	view co ize the ay's sc mpletion reposition ge on p interace and sp tude , t cills an PO6	onfider impor cenario on of th tions, I public ctive E behavi d perso	ntly rtance he cou Pronou speaki nglish g skills our an onality PO8	of Eng urse, th uns, A ing and s for el ad com y deve P09	glish as e stud djectiv d cond ffectiv munic lopme PO10	s Glob ents w ves and uct of e prese ation s	al lang ill be a l Adve meetin entation skills	uage a ble to: erbs in ngs n PSO	their	speaki	
PPOs / COs CO1	,	3. 4. Afte 1. 2. 3. 4. 5. 6.	Addra Maki impor r the s Apply and w Infer Deve Deve Build	ess the ng the rtance uccess y Artic vriting the kn lop ski lop list lop go l interv	interv m real in toda ful con cles, P skills owled ills on tening od atti	view co ize the ay's sc mpletion reposit ge on p interact and sp tude, t cills an PO6	onfider impor cenario on of th tions, I public ctive E behavi d perse P07 2	ntly rtance he cou Pronou speaking nglish g skills our an onality PO8	of Engurse, thurs, Auns,	glish as e stud- djectiv d cond ffectiv munic lopme P010 2	s Glob ents w res and uct of e prese ation s nt PO11	al lang ill be a l Adve meetin entation skills	uage a ble to: erbs in ngs n PSO	their	speaki	
PPOs / COs CO1 CO2	P01 - -	3. 4. Afte 1. 2. 3. 4. 5. 6.	Addra Maki impor r the s Apply and w Infer Deve Deve Build	ess the ng the rtance uccess y Artic vriting the kn lop ski lop list lop go l interv	interv m real in toda ful con cles, P skills owled ills on tening od atti	view co ize the ay's sc mpletion reposit ge on p interact and sp tude, T cills an PO6 2 3	onfider impor cenario on of the tions, I public ctive E behavi d person PO7 2 2	ntly rtance he cou Pronou speaking nglish g skills our an onality PO8 2 2	of Engurse, thurse, th	glish as e stude djectiv d cond ffectiv munic lopme P010 2 3	s Glob ents w res and uct of e prese ation s nt PO11 -	al lang ill be a l Adve meetin entation skills P012 -	uage a ble to: erbs in ngs n PSO	their	speaki	
PPOs / COs CO1 CO2 CO3	P01 - - -	3. 4. Afte 1. 2. 3. 4. 5. 6.	Addra Maki impor r the s Apply and w Infer Deve Deve Build	ess the ng the rtance uccess y Artic vriting the kn lop ski lop list lop go l interv	interv m real in toda ful con cles, P skills owled ills on tening od atti	view co ize the ay's sc mpletion repositing ge on p interact and sp tude , 1 cills an PO6 2 3 3	onfider impor cenario on of the tions, I public ctive E behavi d person P07 2 2 1	ntly rtance he cou Pronou speaking nglish g skills our an onality PO8 2 2 2	of Engurse, thurs, A ing and s for end of com y deve PO9 2 2 2 2	glish as e stude djectiv d cond ffectiv munic lopme 2 3 3 2	s Glob ents w res and uct of e prese ation s nt PO11 - -	al lang ill be a l Adve meetin entation skills P012 - - 2	uage a ble to: erbs in ngs n PSO	their	speaki	

	AVERAGE	-	-	-	-	-	2.50	2.00	2.00	2.33	2.50	-	2.00	-	-	-
	CORI	RELATIO	ON LEVI	ELS		1. SL	IGHT (L	OW)	2. N	IODERA	TE (ME	DIUM)	3.	SUBSTA	NTIAL (I	HIGH)
-																

UNIT 1: GRAMMAR AND FOUNDATON

Training the students on second phase of grammar such as Articles, Prepositions, Pronouns, Modal Auxiliaries, Parts of Speech, Adjectives and Adverbs .

UNIT II: INTRO TO PROFESSIONAL ETHICHS

Stepping the students to advanced learning resource and introducing them about International standards How to conduct meetings, huddle, public speaking, free speech. Dress code.

UNIT III: INTERACTIVE ENGLISH

The main objective is English for International communication. It course contains conversations, snapshots, readings, activities, a greater variety and amount of listening materials and more visuals to introduce vocabulary, more opportunities to build fluency, and up-to-date art and design.

UNIT IV: LISTENING AND SPEAKING

Types of Listening -Introduction to International Standards of listening skills. Presentation skills: delivery (emphasis and phrasing) / making it interesting / body language / referring to visual aids

UNIT V: INTERVIEW SKILLS AND PERSONALITY DEVELOPMENT 14Hrs

Familiarize the students with types of Interviews such as mock interviews, campus Interview, Skype interview, telephonic Interview, Panel Interview,

TOTAL: 45 Hours

TEXT BOOKS:

1. Essential Grammar in use- Raymond Murphy, Cambridge, New Third Edition

REFERENCE BOOKS:

1. New Interchange (English for International Communication) Jack C. Richards

14 Hrs

14 Hrs

8 hrs

10 Hrs

SEMESTER III

PROGRAM	BE-Naval Arch	itecture & Off	shore	Engin	eering	5					
Course Code	ENGINEERING	MATHEMATI	CS	L		Т		Р		С	
UBMTC03	III			3		1		0		4	
Year and Semester	II Year (]	II Semester)				Co	ntact h	ours pe	er weel	C	
Prerequisite course]	NIL					(4Hrs)			
Course	Humanities and Social Sciences	Managem courses		Prof	essior	nal Core	•	Profe	essiona	l Electi	ve
category	Basic Science	Engineeri	-	OĮ	oen El	ective			Manda	atory	
	\checkmark										
Course Objective	engineerir	the effective nodel several p	ts use t with e math	in solv Fourie	ving b er trar cal too	oundar nsform ols for tl	y valu technic he solu	e probl ques us ations c	ems. sed in v	wide va al differ	riety of rential
Course Outcome	After completion 1. Define equation 2. Interpret 3. Formula 4. Describ 5. Explain 6. Apply	cal pro	blems								
POS/COS PO1	PO2 PO3 PO4		PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 1	1 1 1	1 1	-	-	-	2	1	1	2	2	-
CO2 1	1	1 2	2	2	-	1	2	2	3	2	1

CO3	3	3	3	2	2	1	-	-	-	1	1	1	3	3	2
CO4	3	3	-	0	2	2	1	-	-	0	0	1	1	0	2
CO5	3	3	-	-	2	-	-	1	-	1	0	1	0	2	2
CO6	3	3	2	0	2	-	1	0	-	1	2	1	1	2	2
AVERAGE	2.3	2.3	2.0	0.8	1.7	1.5	1.3	1.0	0.0	1.0	1.0	1.2	1.7	1.8	1.8
CORREI LEV		1 SLIGHT(LOW)					2.	MODER	ATE(MEDIU	M)	3. SU	JBSTAI	NTIAL(HIGH)

UNIT I - PARTIAL DIFFERENTIAL EQUATIONS PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equation - Solution of PDE by direct Integration- Solution of

equation Pp + Qq = R- Nonlinear equations of First order – Four types -

f(p,q) = 0, f(z, p,q) = 0, f(x, p) = f(y,q) and z = xp + yq + f(p,q)

UNIT II - FOURIER SERIES

Definition of Fourier's series – Fourier Coefficients – Expansion of functions in Fourier series – Even and odd functions – Half range Fourier series for any interval (-l, l). Harmonic analysis – Estimation of Fourier coefficients given values of function in it domain

UNIT III - APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (excluding insulated edges)

UNIT IV - FOURIER TRANSFORMS

Definition-Fourier Integral Theorem-Fourier Transform-Properties of Fourier transform (Without proof)-Convolution-Relation between Fourier and Laplace transforms.

UNIT V - Z - TRANSFORMS

Definition- standard Z-transforms- Standard results- properties of Z- transform (Without proof)-Initial value and Final value theorem- Inverse Z-transform –Convolution theorem-Convergence-Evaluation of Z-transform

Total : 60 Hours

TEXT BOOKS

1. Veerarajan. T., "Transforms and Partial Differential Equations", Tata McGraw Hill Education Pvt. Ltd., New Delhi, Second reprint, 2012.

2. Grewal. B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi, 2012.

3. Narayanan.S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students" Vol. II & III, S. Viswanathan Publishers Pvt Ltd. 1998

REFERENCES

1. Bali.N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 7th Edition, Laxmi Publications Pvt Ltd , 2007.

2. Ramana.B.V., "Higher Engineering Mathematics", Tata Mc-GrawHill Publishing Company Limited, NewDelhi, 2008.

3. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2007.

4. Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, Wiley India, 2007.

5. Ray Wylie. C and Barrett.L.C, "Advanced Engineering Mathematics" Tata Mc Graw Hill Education Pvt Ltd, Sixth Edition, New Delhi, 2012.

6. Datta.K.B., "Mathematical Methods of Science and Engineering", Cengage Learning India Pvt Ltd, Delhi, 2013

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRA	AM	BE-I	Naval	Archi	tecture	e & O	ffshore	e Engine	ering						
Course C	ode	FUN	DAMI	ENTAI	LS OF	NAVA	AL.	L		Т		Р		С	
UCNA3	01	ARC	HITEO	CTURI	Ξ			3		1		0		4	
								I							
Year an Semeste			II Y	ear (I	II Sen	nester)			Cor	ntact ho	ours per	week		
Prerequis course				١	NIL						(4	Hrs)			
Course			anitie al Scie		M	anage cours		Prof		nal Core	e	Profe	ssional	Electiv	ve
	Course category		ic Sci	ence	E	nginee Scien	-	Oj	√ pen El	ective]	Mandat	ory	
Course Objectiv		2.	obtai	-		-		• •		-			-		
Course Outcom															
CO1	1	PO2 1	PO3 -	PO4 -	PO5	PO6	PO7 2	PO8	PO9 -	PO10 1	PO11 2	PO12 2	PSO1 3	PSO2	PSO:

CO2	1	1	1	1	1	1	-	-	-	2	1	1	2	2	-
CO3	3	3	3	2	2	1	-	-	-	1	1	1	3	3	2
CO4	2	2	1	1	1	-	1	-	1	2	2	0	2	3	1
CO5	3	3	3	2	1	-	-	-	1	2	2	2	2	3	2
CO6	3	2	2	2	3	-	1	2	1	3	3	2	2	3	2
AVERAGE	2.2	2.0	2.0	1.6	1.5	1.3	1.3	2.0	1.0	1.8	1.8	1.3	2.3	2.7	1.6
CORRE LEV		N	1.	SLIGH	HT(LO	W)	2.	MODER	ATE(I	MEDIU	M)	3. SU	BSTAN	TIAL(F	HIGH)

UNIT I – SHIP TYPES AND THEIR TERMINOLOGY

Introduction to the development of the merchant ship in the context of developing world trade, Basic design feature and ship terminology, Classification of ship by types and functions.

UNIT II - GENERAL ARRANGEMENT FOR DIFFERENT VESSELS

General arrangement related to the ship type including cargo and passenger ship, fishing vessels, warships, workboats and vessels for pleasure.

UNIT III - LINES PLAN AND INTEGRATION RULES

Lines plan – fairing process- table of offsets, Views of lines plan, stem and stern profiles, Forms of coefficients, Interaction rules – Trapezoidal rule, Simpson's rule (1-4-1, 1-3-3-1 and 5, 8,-1 rule), 6 ordinate rule, Tchebycheff's rule

UNIT IV - HYDROSTATIC CALCULATIONS

Calculations of areas, volumes, centroids, moment of inertia and second moment of inertia and other hydrostatic parameters

UNIT V - SECTIONAL AREA AND BONJEAN CURVES

Freeboard and load line regulation, Bonjean Curves, Sectional Area Curve, Cutting and Mould Loft

Total : 60 Hours

TEXT BOOKS

1. Lewis, E.U.; "Principles of Naval Architecture", (2nd Rev.), SNAME, New Jersey, U.S.A.

2. Rawson & Tupper; Basic Ship Theory.

REFERENCES

1. Tupper, E.C.: Introduction to Naval Architecture, Butterworth- Heinemann, UK, 1998.

2. Ship construction by DJ Eyres

Designed by "Department of Naval Architecture & Offshore Engineering"

PROGRAM	BE-Naval Archit	ecture & Offshore B	Engineeri	ng		
Course Code	STRENGTH OF N	IATERIALS	L	T	P	C
UBMCC09			3	0	0	3
Year and Semester	II Year (II	I Semester)		Contac	ct hours per we	eek
Prerequisite course	Ν	١IL			(3Hrs)	
Course	Humanities and Social Sciences	Management courses	Profess	sional Core	Professio	onal Elective
category						
	Basic Science	Engineering Science	Oper	n Elective	Ma	ndatory
		\checkmark				
	1.Gaining k	nowledge on simp	le stress	and strain		
Course Objective	2.Designing	a block based on	stress ar	nd strain		
	3.Design a c	cylinder, column a	nd beam	l		
	After completion	of the course, the s	tudents w	vill be able to:		
	1. Define s sections.	tress, strain and its	types are	and how to f	ind stress and	strain for various
Course		the principal stress ce shear force, bend				
Outcome	bending	moment diagram for	r various	types of bean	n and loads	C
	4. Solve ber in a bean	nding equation, shea	r stress e	quation and fi	nd bending str	ess & shear stress
		thin cylinder, colum	nns and f	ind the thickr	ness of cylinde	r & bucking load

		(be	nding	and co	ombin		ral mem sses usir als.		0			-		
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	-	-	1	2	1	1	-	2	0	0	0	1	0
CO2	3	3	0	0	1	1	0	-	-	3	0	0	1	2	2
CO3	3	3	1		-	2	1	-	2	0	0	0	1	2	3
CO4	3	3	2	0	2	1	2	1	0	0	0	-	2	3	3
CO5	2	2	-	0	1	1	1	1	0	1	0	0	2	2	2
CO6	3	3	3	3	3	1	1	2	2	2	1	0	2	3	3
AVERAGE	2.8	2.8	1.5	0.8	1.6	1.3	1.0	1.3	1.0	1.3	0.2	0.0	1.3	2.2	2.2
CORREI LEV	LATIC ELS	N	1.	SLIGH	IT(LO)	W)	2.	MODER	ATE(I	MEDIU	M)	3. SU	BSTAN	TIAL(H	HIGH)

UNIT 1 - STRESS AND STRAIN

Rigid bodies and deformable bodies – Tension, compression and shear stresses, Hooke's law, Modulus of Elasticity, Deformation of simple and compound bars - Stress and strain in bars with varying sections- taper section. Temperature stresses, Factor of safety, Elastic constant – Volumetric strain, Relationship between three elastic constants.

UNIT 2 - PRINCIPAL STRESSES AND STRAINS

Stress on an oblique section, General two dimensional stress system, Principal planes and principal stresses, Strain on an oblique section, Determination of principal strains Principal strain in three dimensions. Principal stresses determined from principal strains, Mohr's Circle for stress and strain.

UNIT 3 - SHEAR FORCE AND BENDING MOMENT

Beam – Types of beams, Loads – types of loads. Shear force, bending moment, Sign conventions, shear force and bending moment diagrams for cantilever, simply supported and over hanging with different loads, point of contra flexure, Maximum bending stress

UNIT 4 - BENDING AND SHEAR STRESSES IN BEAMS

Theory of simple bending, bending stress, neutral axis, Relation between bending stress and radius of curvature, relation between bending moment and radius of curvature, bending stress in symmetric section, bending stress in unsymmetrical section. Shear stress- shear stress at a section in a loaded beam, distribution of shear stress for various sections

UNIT 5 - TORSION

Strength and stiffness of solid or hollow shafts. Stress due to torsion. Power transmitted by shafts and Coupling bolts. Torsion applied to stepped shafts, compound shafts and partial hollow shafts, Torsion Applied to closely coiled springs, Plastic yielding of materials in torsion. Springs with axial load, Calculations for mean diameter of springs, wire diameter & number of coils. Close coiled helical spring.

Total : 45 Hours

TEXT BOOKS

1. Strength of Materials by Dr.R.K.Bansal

REFERENCES

- 1. Strength of Materials by Dr. S. Ramamrutham
- 2. Strength of Materials by R.S.Khurmi
- 3. Strength of materials by S.Senthil

1.

Designed by

"Department of Mechanical Engineering"

PROGRA	AM	BE-1	Naval	Archit	ecture	e & Of	fshore	Engine	ering						
Course C	ode	FUI	ID MI	ЕСНА	NICS			L		Т		Р		С	
UBMCC	204	1L0			nes			3		0		0		3	
									I						
Year an Semeste			II Y	ear (I	II Sen	nester)			Cor	ntact ho	ours per	r week		
Prerequis course				١	NIL						(3	Hrs)			
Course			anitie al Scie		M	lanage cours		Prof	essior	nal Core	e	Profe	ssional	Electiv	'e
Course categor															
		Bas	ic Scie	ence	E	nginee Scien	-	OI	pen El	ective]	Mandat	ory	
						\checkmark									
Course	e	1	.Knov	wing t	he pr	operti	es and	l charac	terist	ics of f	luids				
Objectiv	ve	2	. Und	erstar	nding	ans a	nalyzi	ng the p	erfor	mance	of pur	nps an	ıd turbi	nes.	
		Afte	r comp	pletion	of the	e cour	se, the	students	s will	be able	to:				
			2. Ide	entify	types	of flo	w and	of fluid 1 bound	ary la	yer cor	ncepts	will be			
Course Outcom								lyze the ght and c					ll be lea	arnt	
		4		entify ough		• •	s of pi	imps alc	ong wi	th their	applic	ations	and ana	lyze th	e flow
			5. Juo 5. Ap	dge the	e perfo rincipl	orman es of f	luid m	efficien echanic	s to th	e opera	tion, de	esign, a	and sele		
POS/COS	PO1	PO2	PO3	PO4	ry suc PO5	h as p PO6	PO7	blowers PO8	, fans, PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	-	-	2	1	2	1	3	1	-	-	1	2	2

CO2	2	2	-	3	2	2	-	1	3	2	-	-	1	-	-
CO3	2	2	-	-	3	-	-	1	3	2	-	-	1	3	3
CO4	-	-	2	3	3	-	-	-	3	2	-	-	2	2	2
CO5	-	3	-	-	1	-	-	1	3	2	-	-	2	2	2
CO6	2	3	3	3 3 2 2				2	3	3	-	2	2	3	3
AVERAGE	2.3	2.6	2.5	2.5 3.0 2.2 1.7				1.2	3.0	2.0	0.0	2.0	1.5	2.4	2.4
CORRE	LATIC ELS	N	1.	SLIGH	IT(LO	W)	2.	MODER	ATE(I	MEDIU	M)	3. SU	BSTAN	TIAL(H	IIGH)

UNIT 1 - FLUID PROPERTIES AND FLOW CHARACTERISTICS

Units and dimensions- Properties of fluids- mass density, specific weight, specific volume, specific gravity, viscosity, compressibility, vapor pressure, surface tension and capillarity. Flow characteristics – concept of control volume - application of continuity equation, energy equation - Equation of motion – Eulers' equation of motion – Bernoulli's equation. - Momentum equation

UNIT 2 - FLOW THROUGH CIRCULAR CONDUITS

Hydraulic and energy gradient - Laminar flow through circular conduits and circular annuli-Boundary layer concepts – types of boundary layer thickness – Darcy Weisbach equation – friction factor- Moody diagram- commercial pipes- minor losses – Flow through pipes in series and parallel

UNIT 3 - BUOYANCY AND FLOATATION

Buoyancy – center of Buoyancy – Metacentre – Metacentric height – Analytical method for determining meta centre – Condition for Equilibrium of a floating and sub-merged Bodies – experimental method of determination of Meta centric height

UNIT 4 - PUMPS

Impact of jets - Euler's equation - Theory of roto-dynamic machines – various efficiencies– velocity components at entry and exit of the rotor- velocity triangles - Centrifugal pumps– working principle - work done by the impeller - performance curves – Reciprocating pump working principle – Rotary pumps –classification.

UNIT 5 - TURBINES

Classification of turbines – heads and efficiencies – velocity triangles. Axial, radial and mixed flow turbines. Pelton wheel, Francis turbine and Kaplan turbines- working principles - work done by water on the runner – draft tube. Specific speed - unit quantities – performance curves for turbines – governing of turbines.

Total : 45 Hours

TEXT BOOKS

Dr. R.K.Bansal "A text book of Fluid Mechanics and Hydrulic Machines ", Laxmi Publications.
 Modi P.N. and Seth, S.M. "Hydraulics and Fluid Mechanics", Standard Book House, New Delhi 2004.

REFERENCES

1.K. L., "Engineering Fluid Mechanics", Eurasia Publishing House (p) Ltd., New Delhi2004

2. Robert W.Fox, Alan T. McDonald, Philip J.Pritchard, "Fluid Mechanics and Machinery", 2011

Designed by	"Department of Mechanical Engineering"

PROGRA	М	BE-N	Naval .	Archit	ecture	& Of	fshore	Enginee	ring						
Course Co	de	PRIN	ICIPLE	ES OF	MARI	NE		L		Т		Р		С	
UBEE30	8	ELEO	CTRIC	AL TE	CHNC	DLOGY	ľ	3		0		0		3	
Year and	1	[
Semester			II Y	ear (I	II Sen	nester)			Cor	ntact ho	ours per	week		
Prerequisi course	ite			1	NIL						(3	Hrs)			
			nanitie al Scie		M	lanage cours		Prof	ession	nal Core	e	Profe	ssional	Electiv	e
Course category	7														
enegory			ic Scie	ence	E	nginee Scien	-	Ol	pen El	ective]	Mandat	ory	
						~									
Course Objective	e	2	2. Kn Ins 3. Un	iowing sulatio idersta	g abou n Resi inding	it Mar istance the D	ine Sw e c Macl	Ac Mo vitch Bo nines & allations	ards, 1 Lighti	Neutral .ng Syst	Syster	n, Eme Ship	ergency		y And
								students							
Course Outcome	e	 Explain the principle Of Operation Ac Motors and Ac Motor Starters Use Ac & Dc Generators and Obtain Its Characteristics. Operate Switch Boards, Lighting Systems And Measuring Devices. Practice the Operation and Maintenance of Commonly Used Batteries, gene On Board Ship 											erators		
			5. Inf 5. Pra ass	fer Haz actice sociate	zards (engin d aux	Of Liv neering kiliary	g perta systei	trical Sy aining t ns (e.g. he marit	o ma prop	rine ar ulsion,	nd faci	lities p	power	system	
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	-	-	3	-	-	1	3	2	-	-	2	3	-
CO2	3	3	-	-	3 2 -				3	2	-	-	3	2	1

		-				-	_	-	-	-				-	
CO3	3	3	-	-	2	3	2	2	3	3	-	-	-	3	-
CO4	3	3	-	-	3	3	-	2	3	3	-	-	1	3	-
CO5	3	3	-	-	3	3	-	3	2	2	-	-	-	3	-
CO6	3	3	1	-	3	2	2	3	2	2	-	-	1	3	2
AVERAGE	3.0	3.0	0.0	0.0	2.8	2.6	2.0	2.0	2.7	2.3	0.0	0.0	1.8	2.8	1.5
CORREL	LATIC 'ELS	DN	1.	SLIGH	IT(LO	W)	2.	MODER	ATE(I	MEDIU	M)	3. SU	BSTAN	TIAL(H	HGH)

UNIT 1 - AC MOTORS & AC MOTOR STARTERS

Understand The Principle Of Operation Of A Direct On Line Starter (Dol) Starter, Star Delta Starter, Auto transformer Starter, Understand The Need And Means For Motor Protection. Understand The Construction And Characteristics Of A Squirrel Cage Induction Motor. Understand The Principle Of Operation Of A Single Phase Motor

UNIT II - AC GENERATOR

Understand the Construction And Principle Of Operation Of A Three Phase Ac Generator, Ac Regulation on Ac Generator, Ac Generator Active And Reactive Load Sharing, Generator Synchronizing Procedure (Simulator)

UNIT III - SWITCH BOARD & EMERGENCY SUPPLIES

Understand The Function Of The Main Switchboard, Need And Methods Ac System Protection. Understand The Types Of Neutral Systems And Earth Fault, The Operation And Maintenance of Commonly Used Batteries On Board Ship, Operation Of The Emergency Generator. Understand Insulation Resistance Measurement.

UNIT IV- DC MACHINES & SHIP LIGHTING SYSTEM

Understand The Construction And Principle Of Operation Of A Dc Generator And Dc Motor. Understand Different Types Of Lightings Installed on-board Ships. Understand Principle Of 3 Phase Alternating Voltage Generation.

UNIT V - ELECTRICAL INSTALLATIONS & SAFETY AND INSTRUMENTATION

Understand Hazards Of Live Electrical Systems And Safe Electrical Practice. Fuse Protection, General Maintenance. Temperature, Pressure, Torque, Rpm Measuring Devices – Methods Working Principles

Total : 45 Hours

TEXT BOOKS

2. Marine E	lect		rechn	ology	211u 1	Lunio	n Dy.	Listan	A. I C	manue	2, 5110	JII I UL	manera	5, 2013	•
Designed b	ŊУ		" De	partm	ent of	Elect	rical E	ngineer	ng"						
PROGRA	М	BE-N	Naval	Archit	ecture	& Of	fshore	Engine	ering						
Course Co	de	МАТ	ΓERIA		IENCI	F		L		Т		Р		С	
UBMCC()6	IVIA I		L SC.				2		0		0		2	
Year and	1	[
Semester			II Y	ear (I	II Sen	nester)			Cor	ntact ho	ours per	week		
Prerequisit course	te			1	NIL						(2	Hrs)			
			anitie al Scie		М	anage cours		Pro	fessior	nal Core	e	Profe	ssional	Electiv	e
Course category	Course category														
	category	Bas	ic Scie	ence	E	nginee Scien	-	0	pen El	ective		I	Mandat	ory	
						\checkmark									
Course Objective	e		Gainir applic	-		ge ab	out va	rious m	ateria	ls used	l in pro	oductio	on of er	ngineer	ring
		After	r comp	oletion	of the	e cours	se, the	students	s will t	be able	to:				
Course Outcome	e	22	 Ur De De Int Ide Ur 	ndersta etermin erpret entify ndersta	and the ne the the b the me and the	e variou variou ehavio echania ne bas	bus hea s prop or of m sm of of sic asj	eir alloys at treatm perties of naterials corrosio pects o stry	f engin under n and	ethods leering force a factors	applied materia nd thei influen	on ma als r testing cing co	terials g metho prrosior	1	their
POS/COS	PO1				PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	-	3	-	-	3	-	-	2	3	2	-	-	-	1	1
CO2	1	1	-	-	3	1	2	3	3	2	-	-	-	1	-
CO3	3	3	-	-	3	2	2	2	3	3	-	-	1	2	2
CO4	3	3 3 2 2						3	3	3	-	-	2	3	2

CO5	-	3	-	-	3	3	3	0	3	2	-	2	3	3	3
CO6	3	3	-	-	3	3	3	2	3	3	-	3	3	3	3
AVERAGE	2.5	2.7	0.0	0.0	3.0	2.2	2.4	2.0	3.0	2.5	0.0	2.5	2.3	2.2	2.2
CORREI LEV	-	N	1.	SLIGH	IT(LO	W)	2.	MODER	ATE(I	MEDIU	M)	3. SU	BSTAN	TIAL(H	łIGH)

UNIT 1 - MATERIALS SCIENCE AND ENGINEERING

Introduction, Developments in materials, engineering profession and materials, Classification of materials, criteria for selection of materials for the required application, ferrous materials: Cast iron, Steel, Stainless Steel, Prominent alloy steel. Non-Ferrous materials: Copper, Brass, Bronze, Aluminium, Lead, Tin, Titanium. Materials for High and Low temperature service, classification of heat resistant materials

UNIT 2 - PROPERTIES OF MATERIALS

Mechanical Properties: Hardness, Strength, Toughness, Stiffness, Ductility, Malleability, Harden ability, creep and fatigue Electrical properties: Conduction, Semiconductors and insulators Optical properties: Absorption, Reflection, Transmission and Refraction optical fibres and lasers. Magnetic properties: Various types of magnetic materials, Diamagnetic, Paramagnetic, Ferromagnetic, Ferrites, hard and soft magnetic materials Thermal properties: Thermal expansion, Heat capacity, Thermal conduction, Thermal Stresses.

UNIT 3 - HEAT TREATMENT

Heat treatment - Annealing, Normalizing, Hardening, Tempering Case Hardening – Carburizing, Nitriding, Cyaniding and carbon nitriding, Flame hardening, Induction Hardening

UNIT 4 - MATERIAL TESTING

Study of fractures of engineering materials - Elastic deformation, Plastic deformation, Stress- Strain diagrams; Properties obtained from the tensile test Destructive testing - Tensile testing, compression testing, Impact Testing, Hardness test, Jominy end quench test for harden ability of steel. Non-destructive testing – Visual Inspection, Hammer test, Radiography, Magnetic particle inspection, Liquid Dye penetration test, Ultrasonic inspection test

UNIT 5 - MATERIALS ENVIRONMENT INTERACTIONS

Principles of corrosion, factors influencing corrosion, Basic Mechanism of corrosion, Electrochemical corrosion, direct dissolution mechanisms, Dry and wet corrosion, galvanic corrosion. Methods of corrosion control, cathodic and anodic protection, corrosion inhibitors. Surface coatings, corrosion monitoring.

Total : 30 Hours

TEXT BOOKS

1 Callister william D.Jr, "Material Science and Engineering an Introduction", John Wiley & sons inc.

2 O.P.Khanna, "Material Science and Metallurgy", Dhanpat Rai Publications, 2014 edition.

REFERENCES

1 Schaeffer J.P: Saxena A, Antolovich S.D, Sanders T.H. Jr., Warner S.B., "The Science & Design of Engineering Materials", McGraw-Hill International

2 Askeland Donald R. and Phule P.P., "The science and engineering materials", Thomson learning.

Designed by	"Department of Mechanical Engineering"

PROGRA	M	BE-N	Naval A	Archit	ecture	& Off	shore	Engineer	ing						
Course Co	ode	SHIP	DESI	GN CA	LCUL	ATIO	N	L		Т		Р		С	
UCNA3I	PA		WING CADD -		AFTIN	(G - I		0		0		4		2	
Year and Semeste			II Y	ear (I	II Sen	nester)			Co	ntact ho	ours per	week		
Prerequis course				1	NIL						(4	Hrs)			
			nanitie al Scie		M	lanage cours		Prof	ession	nal Core	•	Profe	ssional	Electiv	e
Course category									~						
categor.		Bas	ic Scie	ence	E	nginee Scien	· ·	OI	pen El	ective]	Mandat	ory	
Course Objectiv								et tables a l drawing							
		After	r comp	letion	of the	cours	e, the	students	will be	e able to	o:				
Course Outcom		2 3 4	2. Red 3. Ske 4. Con	cognize etch ste nstruct	e basic em and the cor	comma stern p mplete	ands in rofile lines p	SRA seri AutoCAI lan of the) given	vessel 1	nanually	y and C	AD		
								in at the ea any vesse		manuall	v and in	softwar	e.		
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	2	1	-	2	3	2	1	2	3	3	3
CO2	3	3	3	3	3	1	-	1	3	2	1	1	1	3	3
CO3	2	2	2	2	2	-	1	2	1	2	1	-	3	3	3
CO4	3	3	3	3	2	1	1	1	1	1	1	1	3	3	3

CO5	3	3	3	3	3	2	1	1	1	1	1	1	3	3	3
CO6	3	3	3	3	3	2	1	1	1	1	1	1	3	3	3
AVERAGE	2.8	2.8	2.8	2.8	2.5	1.2	2.7	3.0	3.0						
CORREI LEV		N	1.	SLIGH	T(LOV	W)	2	MODER	ATE(N	MEDIUI	M)	3. SU	BSTAN	TIAL(H	IGH)
LIST OF A	IST OF ASSIGNMENTS Selection of Main particulars based on Parent ship analysis														
1.Selection of	Selection of Main particulars based on Parent ship analysis														
2.Generate t	Selection of Main particulars based on Parent ship analysis Generate the Offset table from the BSRA														
3. Draw the	lines pl	lan of t	he give	en vess	el man	ually									
4. Develop t	he Offs	set tabl	e manu	ally fro	om the	lines p	lan								
5. Create the	e CAD	drawin	g of lir	nes plar	n using	AUTO	OCAD								
6. Prepare th	ne faire	d offse	t table	and the	lines p	olan									
													Total	: 30 1	Hours

TEXTBOOKS:

- 1. Robert Taggard, ship design & construction, The society of naval architecture & marine engineers, 1980
- 2. Eric C.tupper, Introduction to naval architecture, reed Elsevier India pvt lmt,2010
- 3. Principles of naval architecture, vol I II & III.

REFERENCES:

1. Principles of Naval Architecture, vol I II & III.

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAM	-	BE-N	Naval	Archi	tecture	e & O	ffshor	e Engin	eering						
Course Code	•	STRI	ENGT	H OF I	MATE	RIALS	5	L		Т		Р		С	
UBMCCPG	j	LAB	ORAT	ORY				0		0		2		1	
Year and Semester			II Y	ear (I	II Sen	nester)			Cor	ntact ho	ours per	r week		
Prerequisite course				ľ	NIL						(2	Hrs)			
Course		an	imanit d Soc cience	ial	М	anage cours		Pro	fessior	nal Cor	e	Profe	ssional	Electiv	ve
category	-	Bas	ic Scie	ence	E	nginee Scien	-	0	pen El	ective]	Mandat	tory	
Course Objective							ally w spring	vhat is l g.	nardne	ess & s	strengt	h of m	aterial	s and ł	IOW
Course Outcome			 Op an De Es Es Ev Ev 	berate alyze etermi timate est tor valuate	the edu the da ne tou e Hard sion o e fatig ne th	quipm ta obt ghnes ness o n met ue on	ent's a ained. s of m of meta al mild s	al	ow hov	w to co	onduct				
POS/COS PC	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 3	3	S	3	-	-	3	-	-	3	3	-	3	3	-	-
CO2 3	3	3	3	-	-	3	-	-	3	3	-	3	2	-	-
CO3 3	3	2 2 3 -			-	3	3	-	3	2	-	-			

CO4	3	3	3	-	-	3	-	-	3	3	-	3	3	-	-
CO5	3	3	3	-	-	3	-	-	3	3	-	3	3	-	-
CO6	3	2	2	-	-	3	-	-	3	3	-	3	2	-	-
AVERAGE	3.0	2.7	2.7	0.0	0.0	3.0	0.0	0.0	3.0	3.0	0.0	3.0	2.5	0.0	0.0
CORREL	LATIC ELS	N	1.	1. SLIGHT(LOW)				MODER	ATE(I	MEDIU	M)	3. SU	BSTAN	TIAL(H	HIGH)

LIST OF EXPERIMENTS

- 1. Tension test and Compression test on a mild steel rod in a Universal Testing machine
- 2. Izod Impact test on metal specimen
- 3. Charpy Impact test on metal specimen
- 4. Hardness test on metals Brinell
- 5. Hardness test on metals Rockwell Hardness Number
- 6. Compression test on helical springs
- 7. Torsion test on mild steel rod
- 8. Fatigue test on mild steel
- 9. Compression test on a Concrete block

Total: 30 Hours

TEXT BOOKS

1 Callister william D.Jr, "Material Science and Engineering an Introduction", John Wiley & sons inc.

2 O.P.Khanna, "Material Science and Metallurgy", Dhanpat Rai Publications, 2014 edition.

REFERENCES

1 Schaeffer J.P: Saxena A, Antolovich S.D, Sanders T.H. Jr., Warner S.B., "The Science & Design of Engineering Materials", McGraw-Hill International

2 Askeland Donald R. and Phule P.P., "The science and engineering materials", Thomson learning.

Designed by	"Department of Mechanical Engineering"

PROGRAM	A BE	-Naval	Archit	ecture	e & O	ffshore	e Engine	ering								
Course Cod		ft Skill	а III				L		Т		Р		С			
UBLECPI		It Skill	8-111				2		0		3		2			
										I		I				
Year and Semester		II Y	ear (I	II Sen	nester)		Contact hours per week								
Prerequisite course	e		Ν	JIL				(3Hrs)								
Course		Iumanit and Soc Science	ial	М	anage		Prof	Professional Core Professional Ele					Electiv	ve		
category		\checkmark														
	В	asic Sci	ence	E	nginee Scien	-	Oj	pen El	ective		1	Mandat	ory			
		1. M	aking	stude	ents to) learr	the ad	vance	ed Eng	lish						
Course Objective		 Ra M 	aising aking	up th them	eir co awai	onfide e of t	nce lev he coor	el porate	e world		he exp	pectatio	ons			
			-	-			ous Inte									
Course Outcome	Af	 After completion of the course, the students will be able to: 1. Constructivism : Conceptualizing the nuances of the tenses in situational usage 2. Learning Theory : Enhancing verbal and collaborating other communicative activities 3. Critical thinking: coordinating and building fluency in the individuals lexical 4. Cooperative learning : Interactive participation of the self with other individuals 5. Active Participation: to confidently step into and command situations with Clair 6. Enhances the versatility of the students on all skills 											cative al duals			
POS/COS F	PO1 PO2		PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		

CO1	-	-	-	-	-	-	-	2	3	2	3	-	1	1	1
CO2	-	-	-	-	-	-	-	3	3	2	3	-	1	1	1
CO3	-	-	-	-	-	-	-	2	3	3	3	-	1	2	1
CO4	-	-	-	-	-	-	-	3	3	3	3	-	2	2	1
CO5	-	-	-	-	-	-	-	-	3	2	3	-	2	2	1
CO6	-	-	-	-	-	-	-	2	3	3	3	-	2	2	1
AVERAGE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.4	3.0	2.5	3.0	0.0	1.5	1.7	1.0
CORREI LEV	LATIC TELS)N	1.	SLIGH	IT(LO	W)	2.	MODER	ATE(1	MEDIU	M)	3. SU	BSTAN	TIAL(H	łIGH)
UNIT1:G	RAN	IMA	RAN	DFO	UND	ATO	N							10	Hrs

UNIT1:GRAMMARANDFOUNDATON

Training the students on basic grammar and foundation and laying the standard platform. A complete standard syllabus of Cambridge is used. The main part of the 1st semester is to cover the major tenses (Present tense, Present Continuous, Past Tense, Past Continuous, Present Perfect, and Present Perfect continuous.

UNIT II: BODY LANGUAGE AND LEXICAL RESOURCE WITH BASIC WRITTEN SKILS 8hrs

Posture, eye contact, gestures with hands and arms, speech, tone of the voice

One word substitutes, E-mail communication, creating blogs, free writing on any given topic, writing definitions.

UNITIII:INTERACTIVEENGLISH

The main objective is English for International communication. It course contains conversations, snapshots, readings, activities, a greater variety and amount of listening materials and more visuals to introduce vocabulary, more opportunities to build fluency, and up-to-date art and design. The course covers the fours skills of listening, speaking, reading and writing, as well as improving pronunciation and building vocabulary.

UNITIV:LISTENINGANDSPEAKING

Types of Listening -Listening and note taking-Pronunciations-Stress and Intonation-Conversation technique-Dialogue Writing -Professional Communication-Interview-Group Discussion – Power point Presentation-Lab

UNITV: INTERVIEW SKILLS AND PERSONALITY DEVELOPMENT

8 Hrs

8 Hrs

6 Hrs

Personality development – Self motivation, Self actualization, Stress management, Interview skills, Negotiation skills, familiarization and strategies of telephonic, skype, one on one, panel, exit interviews

Total: 45 Hours

TOTAL: 60 PERIODS

TEXT BOOKS:

- 1. Essential Grammar in use- Raymond Murphy ,Cambridge , New Third Edition
- 2. Communication skills

REFERENCE BOOKS:

1. New Interchange (English for International Communication) Jack C. Richards

Designed by	"AMET CENTRE FOR IELTS"

SEMESTER: IV

PROGRAM	BE-Naval Archit	ecture & Offshore I	Engineeri	ng									
			8	0		1							
Course Code			L	Т	Р	С							
UBMTC04	PROBABILITY A	ND STATISTICS	3	1	0	4							
Year and Semester	II Year (I	V Semester)	Contact hours per week										
Prerequisite course	N	ΠL	-		(4Hrs)								
Course	Humanities and Social Sciences Management courses Professional Core Professional Elective												
category													
	Basic Science	Engineering Science	Open	Elective	Mar	ndatory							
	~												
	and functions	lls in handling situ of random variab	les.	C									
Course	-	o the notion of sar			-								
Objective	-	knowledge of statistical techniques useful in making rational decision in management problems.											
	3. Knowing the statistical methods designed to contribute to the process of												
	making scientific judgments in the face of uncertainty and variation.												
Course	After completion of the course, the students will be able to:												
Outcome	 Use statistical methods involving one and several random variables. Define two dimensional random variables and distributions 												

		2	 Analyze and identify the nature of sampling distributions which are much importance in management problems Use statistical methods which are applied especially in the realm of scientific experiments and the testing of hypothesis Infer Statistical quality control measures and attributes Apply key concepts of probability and statistics in various engineering problems 												
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	-	-	2	-	-	1	3	2	-	-	1	-	-
CO2	2	2	-	-	2	2	-	1	3	2	-	-	-	-	-
CO3	3	3	-	1	1	-	2	3	2	3	3	2	2	-	-
CO4	3	3	-	3	-	2	1	3	3	2	3	-	-	-	1
CO5	2	2	-	-	3	3	-	2	2	2	3	-	-	-	-
CO6	3	3	-	-	3	3	-	2	3	2	3	1	1	-	2
AVERAGE	2.7	2.7	2.7 0.0 2.0 2.2 2.5 1.5 2.0 2.7 2.2 3.0 1.5 1.3 0.0 1.5										1.5		
CORRE LEV	LATIC 'ELS	DN	N 1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL								TIAL(H	HIGH)			

UNIT I - RANDOM VARIABLES

Axioms of Probability-Conditional Probability-Total Probability-Bayes Theorem-Random Variable-Probability Mass Function-Probability Density Functions-Properties- Binomial, Poisson and Normal distribution

UNIT II - TWO DIMENSIONAL RANDOM VARIABLES

Joint distributions – Marginal and conditional distributions – Covariance –Correlation and regression – Transformation of random variable – central limit theorem

UNIT III - TESTING OF HYPOTHESIS

Sampling distributions –Testing hypothesis for mean ,variance, proportions and difference using normal ,t-,chi square and F- distributions –Tests for independence of attributes and goodness of fit.

UNIT IV - DESIGN OF EXPERIMENTS

Analysis of variance – One way classification – Completely randomized design – Two way classifications- Randomized Block design – Latin square

UNIT V - STATISTICAL QUALITY CONTROL

Control charts for measurements (X and R charts) – Control charts for attributes (p, c and np Charts) – Tolerance limits - Acceptance sampling

Total : 60 Hours

TEXT BOOKS

1. J. S. Milton and J.C. Arnold, "Introduction to Probability and Statistics", Tata McGraw Hill, 4th edition, 2007. (For units 1 and 2)

2. Grewal. B.S, "Higher Engineering Mathematics", 40thEdition, Khanna Publications, Delhi, 2007

3. R.A. Johnson and C.B. Gupta, "Miller and Freund"s Probability and Statistics for Engineers", Pearson Education, Asia, 7th edition, (2007)

REFERENCES

1. Walpole, R. E., Myers, R. H. Myers R. S. L. and Ye. K, "Probability and Statistics for Engineers and Scientists", Seventh Edition, Pearsons Education, Delhi, 2002.

2. Navidi, W, "Statistics for Engineers and Scientists", Special Indian Edition, Tata McGraw Hill Publishing Company Ltd, New Delhi,2008.

3. Spiegel, M.R, Schiller, J and Alu Srinivasan, R, "Schaum"s Outlines Probability and Statistics", Tata McGraw-Hill Publishing Company Ltd. New Delhi ,2007

Designed by	"Department of Mathematics"

PROGRAM	BE-Naval Archite	cture & Offshore Ei	ngineerir	ng									
Course Code	STABILITY OF SH	IIPS - THEORY &	L	Т	Р	C							
UCNA401	CALCULATIONS		3	1	0	4							
Year and Semester	II Year (I	V Semester)	Contact hours per week										
Prerequisite course	NIL (4Hrs)												
	Humanities and Social SciencesManagement coursesProfessional CoreProfessional Elect												
Course category				\checkmark									
	Basic Science	Engineering Science	Oper	Open Elective Mandatory									
Course Objective	Understanding damaged cond	g and evaluating the litions	ship sta	bility parame	ters in static, dy	namical and							
Course Outcome	 After completion of the course, the students will be able to: Infer the different aspects related to Ship Stability Judge effect of weights on Centre of gravity (by shifting, lifting, loading & unloading) Evaluate ship stability in various loading conditions during the design life time of the ship Find the stability of a vessel under a given damaged condition either by added weight method or by the lost buoyancy method Perform the stability analysis of a ship (eg : M. V. HINDSHIP) 												

		6	6. The overall outcome of this course is to understand in totality the ship stability criteria under a given loading condition and sea state as required by SOLAS and other regulating authorities.												
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	-	-	3	-	-	2	1	3	-	2	3	1	3
CO2	3	3	-	-	1	2	-	2	1	3	-	2	3	2	3
CO3	3	3	-	-	3	1	1	-	1	1	-	2	2	3	3
CO4	3	3	-	2	3	2	-	2	-	2	-	2	3	3	3
CO5	3	3	-	2	-	3	-	2	-	1	-	2	3	3	3
CO6	3	3	-	-	2	2	1	2	-	1	-	2	3	3	3
AVERAGE	2.8	2.8	0.0	2.0	2.4	2.0	1.0	2.0	1.0	1.8	0.0	2.0	2.8	2.5	3.0
CORRE LEV	LATIC /ELS	N 1. SLIGHT(LOW)					2. MODERATE(MEDIUM)					3. SUBSTANTIAL(HIGH)			

UNIT I - INTRODUCTION TO SHIP STABILITY

Introduction to state of equilibrium; Stability of ships - Stable and Unstable and Neutral condition for floating and submerged body; Stability terms - Tonnes per centimetre (TPC), Fresh Water Allowance (FWA), Dock Water Allowance (DWA), Metacentre, Metacentric radius, Metacentric height, Metacentre curve, Righting moment and lever.

UNIT II - CARGO EFFECT ON STABILITY

Effect of weights on C.O.G (shifting, lifting, loading & unloading); Equivolume inclinations - shift of C.O.B. due to inclinations; Moments due to wind, shift of cargo, passengers, turning and non-symmetrical accumulation of ice; Effect of superstructure on stability

UNIT III - TRANSVERSE STABILITY

Initial stability GM, GZ at small angles of inclinations, wall sided ships; Free Surface effects, Effect of grain on Cargo; inclining experiment; MCH (Moment Changing Heel).

Large angle stability - Diagram of statically stability (GZ - curve), Characteristics of GZ - curve, static equilibrium criteria; Methods for calculating the GZ – curve, Cross curves of stability; Dynamical stability - diagram of Dynamical stability, Dynamical stability criteria. Stiff/ Tender ship, Wind and heeling effect, IMO criteria

UNIT IV - LONGITUDINAL STABILITY

Trim, longitudinal metacentre, longitudinal centre of flotation; Moment to change trim, Trimming moment; Trim calculations - addition, removal and transference of weight, change of density of water, ballasting, launching

Stability while docking and grounding

UNIT V - DAMAGE STABILITY

Damage stability - Deterministic and Probabilistic approach; Recommendations of classification societies and governmental authorities - Intact and damage stability rules, Bilging of compartment

Flooding calculation, Floodable length

Practical: Stability check of M. V. HINDSHIP – Trim and Stability Booklet and launching calculations

Total : 60 Hours

TEXT BOOKS

1. Edward V Lewis, Principle of Naval Architecture, Vol-1, III EDITION, The Society of Naval Architects and Marine Engineers, 1988

2. K. J. Rawson & E. C. Tupper, Basic Ship Theory, V Edition, Butterworth Heinmann, 2001

REFERENCES

- 1. E. C. Tupper, Introduction to Naval Architecture, III Edition, Butterworth Heinmann, 2002
- 2. C. B. Barrass and Captain D. R. Derrett, Ship Stability for Masters and Mates, Elsevier, 2006

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAM	BE-Naval Archite	cture & Offshore E	ngineering	,									
Course Code	THEORY OF ST	RUCTURES	L	Т	P C								
UCNA402			3	0	0	0 3							
Year and	II Voor (II	/ Semester)											
Semester	II I Cal (I	(Semester)		Conta	ct hours per we	eek							
Prerequisite course	N	IL	(3Hrs)										
	Humanities and Social Sciences	Management courses	Profess	sional Core	Professional Elective								
Course category				\checkmark									
	Basic Science	Engineering Science	Open	Elective	Mandatory								
Course	Knowing the va	rious methods inv	olved in a	analysing ind	leterminate st	ructures.							
Objective	U	ion and generation		• •									
	After completion	of the course, the stu	udents will	l be able to:									
Course		shear force and be			n for indetermi	nate structures							
Course Outcome	2. Infer stiff	applicable to ship and offshore structures2. Infer stiffness matrix for various structural problems which will be used various finite element analysis.											
	 Estimate r Study of s 	natural frequencies ingle degree of free freedom system wh	dom syster	n, two degree	e of freedom sy	stem and multip							

		5	 and large offshore structures under various loading conditions as imposed by regula and irregular seas . 5. Redesign a given structure based on the structural response criteria so that the formation of the structure based on the struc												at the	
			functioning of various machineries and equipment including microprocessors and											rs and		
				-			-	o for smo		· ·		11.0				
		6						(ship or			r longe	r life c	ycles ar	nd hust	le free	
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	cture is d	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
105/005	101	102	105	104	105	100	10/	100	10)	1010	1011	1012	1501	1502	1505	
CO1	3	3	-	-	1	2	-	-	2	2	-	1	3	3	3	
CO2	3	3	-	<u>3</u> <u>2</u> - <u>2</u> <u>1</u> - <u>2</u> <u>2</u> <u>3</u>										2		
CO3	3	3	-	-	3	3	-	2	2	1	-	2	2	3	3	
CO4	3	3	-	-	2	3	1	2	-	2	-	2	3	3	3	
CO5	2	3	1	-	1	3	2	3	-	1	-	3	3	3	3	
CO6	3	3	2	-	3	3	3	2	-	-	-	2	2	3	2	
AVERAGE	2.8	3.0	0 1.5 0.0 2.2 2.7 2.0 2.2 1.7 1.5 0.0 2.0 2.5 3.0 2.0											2.7		
CORRE LEV	LATIO 'ELS	N 1. SLIGHT(LOW)					2	2. MODERATE(MEDIUM)					3. SUBSTANTIAL(HIGH)			

UNIT 1 - ANALYSIS FOR INDETERMINATE STRUCTURES - I

Determination of SFD and BMD for determinate structures, Continuous beams - Clapeyron's theorem or three-moment equation, Moment distribution Method, Torsion of non-circular sections

UNIT II - ANALYSIS FOR INDETERMINATE STRUCTURES - II

Strain energy method, principle of virtual work, flexibility method, stiffness method, strain energy and complementary energy, Castiglione's theorems and applications

UNIT III - SHEAR FLOW

Shear center of simple cross sections and shear flow calculation, Introduction of theory of plasticity

UNIT IV - DYNAMICS OF STRUCTURES

SDOF - Free, damped and forced vibration, Introduction to MDOF system, Continuous system evaluation of natural frequencies.

UNIT V - STIFFNESS MATRIX FORMULATION

Matrix methods - flexibility and stiffness matrices: transformation matrices and its applications.

Total : 45Hours

TEXT BOOKS

- 1. R.S. Khurmi; Theory of structures, S.Chand Publications.
- 2. Dr. B.C. Punmia: Theory of Structures, Laxmi Publications.
- 3. Reddy, C.S; Basic Structural Analysis, Tata-McGraw Hill Publications. Timoshenko & Young; Theory of plates, McGraw Hill Publications.
- 4. Krishna Raju&Gururaja; Advanced Mechanics of solids and structures, Narosa Publications
- 5. Mechanical vibrations by V P Singh

REFERENCE BOOKS

- 1. Roger and Reddy, Mechanics of solids and structures, CRC press, 2012.
- 2. Timoshenko; Strength of Materials, East-West Publications, 1965
- 3. Popov; Engineering Mechanics of Solids, Prentice-Hall Publications.
- 4. L.S.Sreenath, Advanced Mechanics of solids, Tata McGraw Hill, 2010

Designed by	"Department of Naval Architecture & Offshore Engineering"
•	

PROGRAM	BE-Naval Archite	ecture & Offshore l	Engineerii	ng					
Course Code	MARINE MATER	IALS AND	L	Т	Р	С			
UCNA403	METAL JOINING		3	0	0	3			
				J – L					
Year and Semester	II Year (I	V Semester)	Contact hours per week						
Prerequisite course	Ν	IIL			(3Hrs)				
	Humanities and Social Sciences	Management courses	Profess	sional Core	Professional Elective				
Course category				✓					
	Basic Science	Engineering Science	Oper	1 Elective	Mandatory				
Course	Understandi	ng the various ma	aterial and	d welding te	chniques used	d in			
Objective	shipbuilding	, industry							
	After completion	of the course, the s	tudents w	vill be able to:					
	2. Monitor	he appropriate mate Non destructive te T methods							
Course		lifferent metal joini		ques					
Outcome	5. Find wel	different welding puding defects and N cal properties of the	Metallurgi		during welding	ng and asses th			
	6. Produce a cutting of construct	a structure which is operations and also ion related proced ochnologies used in	free from to reliev ures by st	1 locked- in sta ve residual s tudying the va	tresses and di	stortions due t			

POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	-	-	1	3	2	2	-	2	-	2	3	3	3
CO2	1	2	-	1	2	3	1	2	3	-	-	2	2	3	2
CO3	1	1	-	-	1	2	-	1	3	2	-	-	2	3	2
CO4	3	3	-	-	3	2	-	2	3	-	-	2	3	3	3
CO5	3	3	-	-	3	3	-	3	3	-	-	2	2	3	3
CO6	3	3	-	2	3	2	2	2	3	-	-	2	3	3	3
AVERAGE	2.3	2.2	0.0	1.5	2.2	2.5	1.7	2.0	3.0	2.0	0.0	2.0	2.5	3.0	2.7
CORRE	LATIO 'ELS	Ń	1.	SLIGH	IT(LO'	W)	2.	MODER	ATE(I	MEDIU	3. SUBSTANTIAL(HIGH)				

UNIT I - MATERIALS FOR CONSTRUCTION

Introduction to Materials and their properties, Mechanical properties, application and advantages of Al alloy, Fe alloy, wood, FRP/GRP, low carbon steel, material for propeller, rudder, Anchor, Joining technique of Al to M.S, PVC, FRP/GRP, S.S to M.S, Introduction to pile foundation, Classification Society rules for Materials

UNIT II - INTRODUCTION TO WELDING

Introduction to joining technique, Drawback of Rivets, Welding - Classifications of welding, edge preparation, welding positions, types of arc welding – MMAW, SAW, TIG, MIG, PAW, advantages and disadvantages of arc welding, welding defects, Welding symbols, Weldability – definition, concept, purpose, Solid state welding process – Friction Stir Welding, Introduction to Gas welding, Laser beam welding, Combination of Laser and TIG/MIG welding

UNIT III - WELDING PROCEDURE

WPS – essential, sub-essential, non-essential variable for various weldings, P-no, A-no, F-no, various welding joints, sample WPS, notch toughness characteristics, PQR – Sample PQR, WPQT

UNIT IV - WELDING METALLURGY

Electrodes – types of electrodes, coatings, properties, Metallurgical problems of dissimilar metal welding, Welding Metallurgy – Introduction, HAZ, Welding arc, Heat flow, temperature

distribution, cooling rate, Metal Solidification – process and rate, Absorption of gases, Gas - metal reaction, Porosity.

UNIT V - DESTRUCTIVE AND NON-DESTRUCTIVE TESTING

Tensile Test – specimen preparation for transverse tensile test, All weld metal tensile test, test procedure, Bend Test – types of bend test – free bend, guided bend, transverse bent, Hardness test Non Destructive Test – Visual Inspection, Liquid Penetration Test, Radiographic Test – Introduction, principle, X-Ray radiography procedure, gamma ray, Magnetic Particle Test, Ultrasonic Test – principle, procedure, limitations, application, advantages.

Total : 45 Hours

TEXT BOOKS

1. George E Dieter – Mechanical Metallurgy, Mc GRAW HILL, edition 3

2. O.P.Khanna - A Textbook of Welding Technology, DhanpatRai & Sons.

- 1. Richard Little Welding and Welding Technology, McGraw Hill, (2001), 1st edition.
- 2. Welding handbook American Welding Society, (1983), 7th edition, volume 1 & 2, USA

Designed by	"Department of Naval Architecture & Offshore Engineering"
-------------	---

PROGRAM	BE-Naval Archite	ecture & Offshore I	Engineerii	ng				
Course Code			L	Т	Р	С		
UCNA404	MARINE HYDRO	DYNAMICS	4	0	0	4		
	1							
Year and Semester	II Year (Γ	V Semester)		Contac	ct hours per we	ek		
Prerequisite course	N	ΠL	-		(4Hrs)			
	Humanities and Social Sciences	Management courses	Profess	sional Core	Professional Elective			
Course category				\checkmark				
	Basic Science	Engineering Science	Oper	1 Elective	Mandatory			
Course Objective	-	basic understand drodynamics	ing of the	e fluid mech	anics applical	ble for the ship		
Course Outcome	 Define f evaluatin Identify sections Explain application Analyze Estimate Make use 	of the course, the s low characteristics g the hydrodynamic different componer concepts behind w on in Naval Archite unsteady flow and i force Exerted by a e of various hydrod dary layer, wave pr	around cs related nts and est wave kind cture and ts charact flowing f ynamic g	various floa to ships and timation of fo ematics usin Offshore Eng teristics luid on struct overning law	tting shapes, to offshore structur orces on cylindur g linear wave gineering ure under varions s and their usa	ures. rical and aerofoi theory and it ous conditions		

POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	-	-	3	2	-	2	3	2	-	2	2	2	2
CO2	3	3	-	-	2	2	3	2	3	1	-	2	2	2	3
CO3	2	2	-	-	3	1	-	-	2	-	-	3	2	1	3
CO4	3	3	-	-	3	2	-	2	3	-	-	2	2	1	2
CO5	3	3	-	-	3	3	2	2	1	-	-	2	2	1	3
CO6	3	2	-	-	3	2	-	2	3	1	-	3	3	2	3
AVERAGE	2.5	2.5	0.0	0.0	2.8	2.0	2.5	2.0	2.5	1.3	0.0	2.3	2.2	1.5	2.7
CORREL		N	1.1	SLIGH	IT(LO	W)	2.	MODER	ATE(I	MEDIU	3. SUBSTANTIAL(HIGH)				

UNIT I - FLUID KINEMATICS

Introduction, Types of fluid flow; Lagrangian and Eulerian methods of flow description, substantial derivative, streamlines, pathlines, vorticity; potential and stream function; Equation of continuity - Cartesian and Polar coordinates; Equation of motion – Euler's equation of motion – Bernoulli's equation and its practical applications – Bernoulli's equation from Euler's equation, Problems

UNIT II - IDEAL FLOW

Uniform flow, Source, Sink, Pressure distribution in a plane source flow, Principle of superposition, Doublets – stream function and velocity Potential - Source and Sink pair in uniform flow, doublet in uniform flow, Flow past a circular cylinder with and without circulation - Magnus effect – Flow over a streamlined body – Problems

UNIT III - VISCOUS FLOW AND BOUNDARY LAYER

Viscosity of fluids, Flow through a pipe of circular section, Poiseuille law, flow of fluid between parallel plates – Coutte's law, Navier stroke's equation of motion; Boundary layer, Reynolds Number; Boundary layer along a flat plate; Separation of Boundary Layer - Problems

UNIT IV - FORCES ON SUBMERGED BODIES

Force Exerted by a flowing fluid on a stationary body, drag, lift forces – expression, Drag on sphere, cylinder, development of lift on circular cylinder, Aerofoils- Lift, drag, circulation, pressure distribution-theory of thin aerofoils – Problems

UNIT V - INTRODUCTION TO WAVE HYDRODYNAMICS

Regular and random wave description, waves and their properties, Irregular Sea – Analysis methods, Regular waves - Linear wave theory, Boundary conditions, assumptions, Governing Equations, – Dispersion relation, water particle kinematics, orbital motion; Group velocity and its dynamical significance, waves behaviour in deep water and shallow water, wave pressure, energy and power; Wave deformation basics - Problems

Total : 60 Hours

TEXT BOOKS

- 1. S.K Som, Gautham Biswas, S Chakraborty, Introduction to Fluid Mechanics and Fluid Machines, Mc Graw Hill, 2011
- 2. R.K Bansal, A textbook of Fluid Mechanics, Laxmi Publications, 2008
- 3. J.S Mani, Coastal Hydrodynamics, PHI Learning Private Limited, 2012

- 1. Fluid Mechanics, Walther Kaufmann, Tata McGraw-Hill Publishing Co, Ltd., 1963.
- 2. Boundary Layer Theory, Schlichting, Springer Verlag, 2001
- 3. Applied Hydrodynamics, Vallentine, Newness Butterworth, 1967.
- 4. Marine Hydrodynamics, Newman, J. N., Cambridge, MA: MIT Press, 1977

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRA	M	BE-1	Naval	Archit	ecture	e & Of	fshore	Engine	ering						
Course C	ode	FUN	DAME	ENTAL	S OF	OFFSI	HORE	L		Т		Р		С	
UCNA4	05	STR	UCTUI	RES				3	3 0 0						
		1													
Year an Semeste			II Y	ear (I	V Sen	nester)	Contact hours per week							
Prerequis course				١	NIL						(3	Hrs)			
			anitie al Scie		M	anage cours		Prof	essior	nal Core	e	Profe	ssional	Electiv	e
Course categor									\checkmark						
		Bas	Basic Science Engineering Science					Ol	pen El	ective		I	Mandat	ory	
									~						
Course Objectiv				-		• -		xed and method		ing off	shore	structu	res, the	eir	
Course Outcom		 After completion of the course, the students will be able to: 1. Distinguish the different types of offshore structures and their components 2. Identify the type of loads taken place on structure and mooring lines 3. Choose suitable material for offshore structures 4. Select the types of mooring and risers 5. Choose type of installation methods taken place in offshore industry 6. Identify different types of offshore structures elements, material used for struct and installation methods. 											cture		
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	-	-	1	1	-	2	1	2	-	2	3	2	2
CO2	3	3	-	-	2	2 2 -		1	2	2	-	2	3	3	3

CO3	3	3	-	-	1	3	2	2	-	2	-	2	3	3	3
CO4	3	3	-	-	3	2	3	2	1	1	-	2	2	3	3
CO5	3	3	-	-	3	3	3	2	-	-	-	2	2	3	3
CO6	3	2	-	-	3	3	2	2	-	-	-	3	3	3	3
AVERAGE	2.7	2.7	0.0	0.0	2.2	2.3	2.5	1.8	1.3	1.8	0.0	2.2	2.7	2.8	2.8
CORRE LEV	-	N	1.	1. SLIGHT(LOW)				MODER	ATE(I	MEDIU	3. SUBSTANTIAL(HIGH)				

UNIT I - FIXED STRUCTURES

Introduction to Offshore Structures: Deepwater challenges – Functions of Offshore Structures – Offshore Structure Configurations – Bottom – Supported Fixed Structures

UNIT II - FLOATING STRUCTURES

Introduction to Floating Structures: Tension Leg Platform, Spar, Semi-Submersible, FPSO, Articulated Structures - Complaint Structures – Floating Structures and Complex Platform

UNITS III - MATERIAL FOR OFFSHORE CONSTRUCTION

Introduction – Structural Steel – Topside Materials – Advanced Composite materials – Corrosion Control – Material Reliability and Monitoring – Fracture Control, Introduction to different loads acting on structures, Structural arrangements in Fixed and Floating Structures

UNITS IV – MOORING AND RISERS

Introduction to Mooring and Risers - Mooring configurations: single-leg mooring, spread mooring, Turret mooring; mooring components: wire ropes, synthetic fibre ropes, chains, drag and suction anchors, piles; winches and windlass, Umbilical, Riser – different types of risers; Riser components, Industry standards and classification rules, General layout Considerations

UNITS V - OFFSHORE INSTALLATION

Introduction – Fixed Platform Substructures – Floating Structures – Foundations – Subsea Templates – Platform Installation Methods.

Total: 45 Hours

TEXT BOOKS

- 1. Subrata K Ckakrabarti., Handbook of Offshore Engineering Vol
- 2. Dawson, T.H., Offshore Structural Engineering Prentice Hall, 1983

REFERENCE BOOKS

Graff, W.J., Introduction to Offshore Structures, Gulf Publ. Co. 1981

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRA	AM	BE-N	Naval	Archit	ecture	& Of	fshore	Enginee	ering						
Course C	ode		DESI WING					L		Т		Р		С	
UCNA4	PA		CADD		ΑΓΙΠ	NO - 11		0		0		2		1	
Year an Semeste			II Y	ear (l	V Sen	nester)			Cor	ntact ho	ours per	week		
Prerequis course				1	NIL						(2	Hrs)			
			anitie al Scie		M	anage cours		Prof	essior	nal Core	e	Profe	ssional	Electiv	e
Course categor									~						
-		Bas	ic Scie	ence	E	nginee Scien	-	Oj	pen El	ective		1	Mandat	ory	
Course Objectiv		2	2. То	study	& per	rform	the rol	culations e of Cro of Shell	ss cur	ves of s	tability	r			
Course Outcom			1. Ev 2. Sk 3. Illu 4. Sk 5. Es	aluate etch tl ustrate etch E timate	vario ne hyd the C onjea the W	us hyd rostat ross c n curv /etted	lrostati ic curv urves es mai surfac	students ic particu res manu of stabili nually ar e area ar n plan	ilars in ally an ty for id in A	n ship nd in sc various AutoCA	oftware s heelin D	g condi		ndition	S
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	-	-	-	-	-	3	2	1	-	1	2	2

			-			-				-	-			-	
CO2	2	2	1	-	-	-	-	-	3	2	1	-	1	2	3
CO3	2	2	1	-	-	-	-	-	2	2	1	-	1	2	2
CO4	2	2	1	-	-	-	-	-	3	2	1	-	1	2	2
CO5	2	2	1	-	-	-	-	-	3	2	1	-	1	2	3
CO6	2	2	1	-	-	-	-	-	2	2	1	-	2	3	3
AVERAGE	2	2	1	0	0	0	0	0	2.7	2	1	0	1.2	2.2	2.5
CORREI LEV		N	1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH) MENTS											HIGH)	
 Hydrosta Plotting Cross cu Bonjean Calculat Shell Ex 	of Hye rves o curve ion of	drosta f Stab s calc Wette	tic cur ility fo ulation d surf	ves fo or vari n and j ace are	r vario ous He plottin ea and	ous loa eeling g for Paint	ding c condi variou surfac	condition tions s loading		ition					
	•	•		C	•							T	otal :	30 Hot	irs
1. Rob 2. Eric REFEREN	Total : 30 Hours Image: State of the														
Designed	by		" Department of Naval Architecture & Offshore Engineering"												

PROGRA	٩M	BE-I	Naval	Archi	tecture	e & Of	ffshore	e Engine	ering							
Course C	ode	COL		E L AT		FODV	T	L		Т		Р		С		
UCNA4	PB	SOF	ΓWAR	E LAI	SORA.	IORY	- 1	0		0		2		1		
		1						1								
Year an Semeste			II Y	ear (I	V Sen	nester)			Cor	ntact ho	ours pei	r week			
Prerequis course				1	NIL						(2	Hrs)				
			anitie al Scie		M	anage cours		Prof	essior	nal Core	e	Profe	ssional	Electiv	e	
Course categor									~							
		Bas	ic Scie	ence	E	nginee Scien	-	OI	pen El	ective]	Mandat	ory		
			17	•			<u> </u>			1.		Mandatory using appropriate				
Course Objectiv			Know Softw	U	le var	ious s	urface	e genera	ition t	echniq	lues us	ing ap	propria	ate		
Course Outcom			 Cr Cr Pe Ge So 5. Pe De 	eate a eate L rform enerate ftware rform evelop	primi ines p fairing surfa Area the hu	tive sh lan an g of hu ace of calcul ull 3D	napes (nd Dev ull line the s ations mode		ock,cy ill fori the ap	vlinder. n hydro propria 1sing a	.) ostatics te tools	5	ols ava		in the	
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	2	2	1	-	-	-	-	-	3	2	1	1 - 1 2 3				
CO2	2	2	1	-	-	-	-	-	3	2	1	-	1	2	3	

CO3	2	2	1	-	-	-	-	-	2	2	1	-	1	2	3
CO4	2	2	1	-	-	-	-	-	3	2	1	-	1	2	3
CO5	2	2	1	-	-	-	-	-	3	2	1	-	1	2	3
CO6	2	2	1	-	-	-	-	-	2	2	1	-	1	2	3
AVERAGE	2.0	2.0	1.0	0.0	0.0	0.0	0.0	0.0	2.7	2.0	1.0	0.0	1.0	2.0	3.0
CORREI LEV	-	N	1.	SLIGH	IT(LO	W)	2.	MODER	ATE(I	MEDIU	M)	3. SU	BSTAN	TIAL(F	HIGH)

- Primitive creation plane, block, pyramid, cylinder, cone, sphere, toroid's.
- Curved surface creation swept, extruded, rotated, skinned surfaces, 3 or 4 boundary interpolated patches, tube.
- Curve primitives polylines, splines, lines, arc, ellipse, NACA sections.
- Surface operations subtract, unite, solid intersection, intersect, imprint, join, combine, blend, scale, move, rotate, align, reflect, copy, concatenate, control point editing.
- 2D operations join, trim, cross, offset, fillet.
- Visualization principal curvature, curvature tufts, Gaussian, isophotes, transparency, lights.
- Interactive point and curve editing
- Reference Curves provide a base for hull form development
- Traditional 2D or advanced 3D fairing
- Automatic curve fairing and data reduction
- Special handling of waterline endings and frame feet
- Hull form hydrostatics
- Sectional area curve distortions and scaling
- Lines plans and loft books

Total : 30 Hours

REFERENCES

1. Software manual

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRA	М	AM	ET CI	ENTR	E FO	R IEI	LTS										
Course Co	de	C - C	01-111	13.7				L		Т		Р		С			
UCLECP	Έ	2011	Skill-	· 1V				0		0		3		2			
											I		I				
Year and Semester			II Y	'ear (I	V Sen	nester)			Со	ntact ho	ours per	week				
Prerequisit course	te			1	NIL						(3	Hrs)					
Course			anities al Scie		M	anage cours		Prof	essior	nal Core	e	Profe	Professional Elective				
Course category			\checkmark									Mandatory					
		Bas	ic Scie	ence	E	nginee Scien	-	Oj	pen El	ective]	Mandatory				
Course Objective	e				-	-		culture a e their c		-			S				
Course Outcome			 Im Pre Co Co Fo: Fo: Co Wi 	provis epare t illabor stingu rmulat nstruc ill be r	e on the a ate with the second	he usa s ones th indi ween apply selves o hanc	ge of g elf exp vidual standa variou s with a lle larg	students grammar oressing such as rds and i s forms active pa ge groups	and ve behave to imp llustra of wri rticipa s with	ocabula ioral etl prove prote a cha tten con ation in pout any	ry in al nics conunci nge in 1 nmunic the cla fear.	ation listenin cations ss and t	g and sj that are understa	peaking learnt and con	cepts.		
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	-	-	-	-	-	-	-	3	2	3	3	-	1	2	1		
CO2	-	-	-	-	-	-	-	3	2	3	3	-	1	2	1		

CO3	-	-	-	-	-	-	-	2	3	3	3	-	1	2	1
CO4	-	-	-	-	-	-	-	3	2	3	3	-	1	2	1
CO5	-	-	-	-	-	-	-	3	2	3	3	-	1	2	1
CO6	-	-	-	-	-	-	-	3	2	3	3	-	1	2	1
AVERAGE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.8	2.2	3.0	3.0	0.0	1.0	2.0	1.0
CORRE LEV	-	N	1.	SLIGH	IT(LO	W)	2.	MODER	ATE(I	MEDIU	M)	3. SU	BSTAN	TIAL(H	IIGH)

UNIT1:GRAMMARANDFOUNDATON

Training the students on basic grammar and foundation and laying the standard platform. A complete standard syllabus of Cambridge is used. The main part of the 1st semester is to cover the major tenses (Present tense, Present Continuous, Past Tense, Past Continuous, Present Perfect, and Present Perfect continuous.

UNITII: PROFESSIONALETHICS :

How to address the gathering, people, authorities, open forum, how to conduct the meetings, huddle, calibration. Learning about organizational behaviors, achieving organizational goals, nurturing professional integrity.

UNITIII:INTERACTIVEENGLISH

Second level: The main objective is English for International communication. It course contains conversations, snapshots, readings, activities, a greater variety and amount of listening materials and more visuals to introduce vocabulary, more opportunities to build fluency, and up-to-date art and design. The course covers the fours skills of listening, speaking, reading and writing, as well as improving pronunciation and building vocabulary.

UNITIV:LISTENINGANDSPEAKING

Basics of International listening, reading, writing and speaking skills.

UNIT V: WRITTEN ENGLISH

How to write memos, emails, short notes, drafting of letters, requesting leave, permission, reports, requisitions, approvals and indents.

TOTAL:45 PERIODS

TEXT BOOKS:

1. Essential Grammar in use- Raymond Murphy , Cambridge , New Third Edition

2. Communication Skills

REFERENCE BOOKS:

1. New Interchange (English for International Communication) Jack C. Richards

Designed by	"Department of Naval Architecture & Offshore Engineering"

SEMESTER: V

PROGRAMME	BE	- Naval Archited	cture & Offshore	e Engi	neering						
Course Code	Co	urse Name:				L	Т	Р	С		
UCNA501		SISTANCE AN IPS	ND PROPULS	ION	OF	4	0	0	4		
Year and Semester		Year (V Semeste	r)			hours per	week				
Prerequisite course	NII				(4Hrs)						
		Humanities and Social Sciences	Management courses	Pr	ofessiona Core	1	Professional	rofessional Elective			
Course category					\checkmark						
		Basic Science	Engineering Science	Op	pen Elective Mandatory						
Course Objectives		understand the ir evaluation us	e and propu	lsion an	d						
Course Outcome	Stu	dents will be able	e to								
	1	Estimate the va	rious types of	resist	ance acti	ng on dif	ferent ships.				
	2 Demonstrate the model testing conducted in Towing Tank using Froude's method.										

		3	Com meth	-	he res	sults c	of resist	ance	by mo	odel tes	sting a	nd theo	oretical	series	
		4	Illust	trate t	he fur	Idame	ental as	pects	of shi	p prop	oulsion	•			
		5			-		ry desi				propel	ler wit	h respe	ect to	
			hydro	odyna	mic a	nd str	ength p	part of	f prop	eller					
		6	Desi	gn shi	ip pro	pulsic	on devic	ce							
POS/COS	PPO 1	PPO 2	PPO 3	PPO 4	4 5 6 PPO7 08 9 0 1 2 1 2 3										
CO1	1	2	0	3	1 0 1 0 2 0 0 0 0										
CO2	2	2	1	2	1	0	0	0	1	2	0	1	2	0	0
CO3	2	2	0	1	1	0	0	1	0	1	0	1	0	0	0
CO4	2	2	1	3	2	0	0	0	0	2	0	1	2	0	1
CO5	2	0	1	1	2	0	0	1	0	1	0	0	2	0	1
CO6	2	2	2	3	3 1 0 0 1 0 1 0 1 0 1 0 1										
AVERAGE	1.8	2.0	1.2	2.2	2.2 1.3 0 1.00 1.0 1.5 0 1.0 1.75 0 1.0										
CORRELATION 1. SLIGHT(LOW) 2. MODERA						ERATE	E(MEDI	UM)	SU	BSTAN	3. TIAL(F	HIGH)			

UNIT I - INTRODUCTION TO RESISTANCE

Concept of resistance, flow of non-viscous and viscous fluids past submerged bodies and surface of ships, Introduction to important components of resistance such as frictional resistance, wave making resistance, eddy making resistance and air & wind resistance, Dimensional analysis, conditions of similarity, corresponding speeds of ship and model, Introduction to towing tank experiments and determination of ship resistance

UNIT II - VISCOUS RESISTANCE AND AIR & WIND RESISTANCE

Froude's experiments with planks and plates, Reynold's experiments with pipes, Turbulence stimulation, friction lines, form resistance, boundary layer separation, effect of hull roughness, appendage drag, resistance in shallow water full scale tests and ship model correlation

UNIT III - WAVE RESISTANCE, ESTIMATION OF TOTAL RESISTANCE AND EFFECTIVE HORSEPOWER

Kelvin wave pattern, waves generated by ship, wave interference, Froude's method of resistance prediction. Resistance data presentation, estimation of total resistance and effective power (theoretical method), trail and service allowances (using empirical methods).

UNIT IV - PROPELLER DESIGN AND HULL PROPELLER INTERACTION

Screw propeller terminology and geometry, Dimensional analysis and conditions of similarity, Propeller in open water, Propeller coefficients, hull- propeller interaction, wake and thrust deduction, hull efficiency, relative rotative efficiency, propulsive coefficient. Cavitation, fully cavitating propellers, Introduction to Propeller design, Elementary treatment including basic principles of momentum theory, blade element theory and Circulation Theory

UNIT V - SHIP PROPULSION DEVICES, PREDICTION OF SHIP'S POWER AND STRENGTH OF PROPELLERS

Ship Propulsion devices and their historical development, water jet propulsion, controllable pitch propellers, vertical axis propellers, shrouded propellers, tandem and contra-rotating propellers and paddle-wheels, super conducting electric propulsion, Model propulsion experiments in towing tanks and Cavitation tunnels, Ship trails and service performance analysis, estimation of power based on model experiments and propeller design charts, use of Bp- δ charts, Kt- Kq- J diagrams. Propeller blade strength, methods of calculation, classification society rules, Propeller materials.

Total : 60 hours

TEXT BOOKS

- 1. Lewis, E.U.; "Principles of Naval Architecture", (2nd Rev.), SNAME, New Jersey, U.S.A.
- 2. Harvald S.A., "Resistance and propulsion of Ships", John Wiley & Sons.
- 3. Rawson & Tupper, Basic Ship Theory

- 1. Ship Resistance and Propulsion- Practical estimation of Ship Propulsive Power
- 2. Marine Propellers and Propulsion by J.C.Carlton.

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAMME	BE- N	aval Architecture	& Offshore En	gineering							
Course Code	Course	e Name:			L	Т	Р	C			
UCNA502	STRE	NGTH OF SHIP	PS		4	0	0	4			
Year and	III Ye	ar (V Semester)		Contact hours per wee	ek						
Semester				(4Hrs)							
Prerequisite course	NIL										
Course catago	***	Humanities and Social Sciences	Management courses	Professional Core	Profess	sional E	lective				
Course catego	лу			✓							
		Basic Science	Engineering Science	Open Elective	М	landator	ry				
Course Objectives			nd and evaluate the various loads acting on ship structures and to strength to withstand the applied loads.								
	Stud	ents will be able	to								
Course Outcome	1 E	stimate of variou	is loads and fr	raming arrangement of	of ship						
	2 C	Calculate the sect	ion modulus a	nd scantling calculat	ions						

			3	Explai	n Basi	cs of s	ship vi	bratio	n and	method	ls to de	termin	e the dy	vnamic	
				respon											
			4	Interpr	nterpret structural analysis and stiffening of plates										
			5	Measu	Measure the response of ship for irregular load										
			6	Analyz	the the	ship st	ructur	e unde	er vari	ous loa	ding co	onditio	ns		
POs / COs	PO1	PO2	PO3	B PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	1	2	2	1	1	3	1	1	2	1	1		2	1	3
CO2	1	2	2	1	1	3	1	1	1	1	1		2	2	3
CO3	1	2		1	1		2	2	1	1	1	2		1	1
CO4	3	3	2	2	2	1	2	1		3	1		1	1	2
CO5	1	1		1	1		1	1	1	2	1	2		1	1
CO6	1	1		1	1		1	1	1	2	1	2	2	1	1
Avera g e	1.3	1.8	2.0	1.2	1.2	2.3	1.3	1.2	1.2	1.7	1.0	2.0	1.8	1.2	1.8
CORRELATION LEVELS				1. SLIGHT (LOW)				2. MODERATE (MEDIUM)				3. SUBSTANTIAL (HIGH)			

UNIT 1 – INTRODUCTION TO SHIP STRENGTH

Structural design concept and philosophy, various forces acting on ship structures in still water: Loads, Weight and Weight distribution, Buoyancy and Buoyancy distribution. Load Curve, shear force curve, bending moment curve, and deflection curve, wave bending curve, Basics on thermal loads and their effects

UNIT 2 - STRENGTH OF HULL

Longitudinal strength: Application of beam theory, Hull girder section modulus calculation, Shear stress distribution in cross section, Introduction to shear center and torsion of hull, Transverse Strength

UNIT 3 - PLATE THEORY AND APPLICATION

Thin plate theory for different loading condition and boundary conditions, Solution for different boundary conditions, Application of plain stress theory to ship structural problems, Buckling of plates, Influence of stiffeners (longitudinal and \ or transverse) on the bending and buckling stress of ship's plating

UNIT 4 - IRREGULAR WAVE LOAD AND RESPONSE

Loads in seaway: Moments due to regular waves and oblique waves. Representation of irregular seaway, Short term and long term distribution of loads, Spectral approach to response of ship structures, Effects of slamming and shipping of green seas, Sources of vibration in ship, basic terminology of dynamics, measures to control vibration, natural frequency determination-methods

UNIT 5 – INTRODUCTION TO STATUTORY REGULATIONS AND CLASSIFICATION RULES

IMO convention and relevance to ship design/construction- Basic concepts of SOLAS, MARPOL, STCW, IACS organization & its role in ship design and construction, role of MMD, flag condition of different nation, tonnage regulation

Total: 60 hours

TEXT BOOKS

1. Muckle. W Strength of Ships

2. Lewis, E U. Principles of Naval Architecture (2nd Rev) Vol III 1989 SNAME, New York, Owen Hughes, Ship Structural design

3. Mechanical Vibrations by V.P Singh

- 1. Mechanics of Materials, James M. Gere, Stephon P. Temoshenko
- 2. Ship Construction by D.J.Eyres Merchant Ship Construction by D.A.Taylor
- 3. Alaa Mansour, Don Liu, Principles of Naval Architecture Series: Strength of ships and ocean structures, SNAME, New Jersey, 2008.
- 4. Owen. F. Hughes and Jeom Kee Paik Ship Structural Analysis and Design, SNAME, New York., 2008.
- 5. Mohammed Shama Torsion and Shear Stresses in Ships, Springer Verlag, 2010.

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAMME	BE- N	Javal Architectur	re & Offshore E	ngineering							
Course Code	Cours	e Name:			L	Т	Р	С			
UCNA503	DESI	GN OF OFFSH	HORE STRUC	TURES	4	0	0	4			
							1				
Year and	III Ye	ear (V Semester)		Contact hours per week							
Semester				(4 Hrs)							
Prerequisite course	NIL										
Course Categor	~¥/	Humanities and Social Sciences	Management courses	Professional Core		Professional Elective					
Course Categor	, y	Basic Science	Engineering Science	✓ Open Elective	Mandatory						
Course Objectives		-	-	l in the design pr following the sta		0 00		es for			
	Students will be able to 1 Plan and successfully design an offshore platform										
Course Outcome	1										
	2	Estimate pund analysis	ching shear and	d joint capacity	calcula	tions inc	luding fat	gue			

			3	Desi	gn stri	ucture	again	st acci	dental	loadin	g				
			4	Anal	Analyze the stability of submarine pipelines										
			5	Desi	Design of floating structures and semi floating structures										
			6	Desi	gn an	offsho	ore stru	icture							
POs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	1	1	2	2	1	-	-	-	-	1	-	-	2	2	2
CO2	2	2	3	3	1	-	-	-	-	1	-	-	2	2	2
CO3	2	2	3	3	2	-	-	-	-	1	-	-	2	2	2
CO4	2	2	3	2	2	-	-	-	-	1	-	-	2	2	2
C05	2	3	2	3	2	-	-	-	-	2	-	-	2	2	2
C06	2	3	2	3	2	-	-		-	2	-	-	2	2	2
Avera g e 1.8 2.2 2.5 2.7 1.7 1.3 2.0 2.0 2.0															
COR	CORRELATION LEVELS			1. SLIGHT (LOW)				2. MODERATE (MEDIUM)				3. SUBSTANTIAL (HIGH)			

UNIT I - DESIGN PRINCIPLES AND METHODS

Introduction - Types of offshore structures and structural components, Planning of Offshore Structures; Design criteria and procedures, Design requirements. Loads on offshore structures, Static and dynamic loads - Wind Loads, Wave loads – Morison equation, Current Loads. Design of Fixed platform - based on Maximum base Shear and Overturning Moments. Steel Tubular Member, Design Principles of WSD and LRFD

UNIT II – STATIC AND DYNAMIC LOADS

Design of jacket structure against static loading - Allowable stresses and Partial Safety Factors; Design for combined stresses- as per API RP 2A guidelines. Design for Cyclic Loads- Design Wave approach. Simple tubular joints, design using allowable loads; Fatigue -stress concentration factors; S-N curves and fatigue damage calculations

UNIT III - ACCIDENTAL LOADS

Design against accidental loading (Fir, blast and collision), Plastic design method, Lifting and Transportation analysis, Redundant framing arrangement; Launch and Lift jackets; Simple Deck configurations for Lift and float-over installations; In-service and Pre-service Loads and analysis. Basics involved in the design of superstructure

UNIT IV- SUBMARINE PIPELINES

Design of submarine pipe line and Risers, Route selection and Diameter / wall thickness calculations; Pipeline stability, free span calculations; Concrete coated pipelines and pipe-in-pipe insulated pipelines.

UNIT V- DESIGN OF FLOATING STRUCTURES

Design criteria, Column stabilized structures; design of pontoons; Tension leg platforms; Tethers selection and design; Spar hulls; classic, truss and cell spar; Spar hull compartments and design of shell structures; offshore wind turbine support structures. Overview on decommissioning of offshore platforms

Total: 60 Hours

TEXT BOOKS

- 1. Hand book of Offshore Engineering S.K. Chakrabarti, Elsevier Publications 2005.
- 2. Offshore Structural Engineering Dawson T.H. Printice Hall, 1983

REFERENCE BOOKS

- 1. API RP 2A (WSD or ASD)
- 2. API RP 2A (LRFD)
- 3. Offshore structures design, construction and Maintenance by Mohamed A. EI-Reedy

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAMME	BE-Na	val Architecture	& Offshore En	gineering							
Course Code	Course	e Name:		L	Т		Р	С			
UCNA504		SURVEY AN									
	HEAI	LTH MONITOR	LING	3	0		0	3			
Year and	III Yea	ar (V Semester)		Contact hours per week							
Semester				(3 Hrs)							
Prerequisite course	NIL										
	Humanities and Social Sciences		Management courses	Professional Core		Р	rofessional E	Elective			
Course catego	ory						\checkmark				
		Basic Science	Engineering Science	Open El	ective	Mandatory					
Course	To have fair awareness of Survey procedure and its relevance and to adopt										
Objectives	prot	ective measures	and monitor	hull conditi	on with r	espe	ect to corros	ion			
	At th	At the end of this course students should be able to									
Course Outcome	1	1 Explain about Hull survey and its methods.									
	2	Choose prote	ective coating	ing and other corrosion protection systems.							

			3	Ex	amine	e the c	orros	ion zo	nes in	a vess	sel.				
		-	4	Imt	Imbibe capability to monitor Hull condition										
			5	Def	Define the hull defects and prescribing corrective actions										
			6	Cho	oose p	roper	surve	ey met	hod a	nd asse	ess hul	l defec	ts		
POs /															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	1	-	-	-	1	2	-	-	1	2	-	1	2	2	1
CO2	1	1	-	1	1	1	-	-	-	2	-	1	2	2	1
CO3	1	1	-	1	1	1	-	-	-	2	-	1	2	2	1
CO4	-	-	1	-	1	1	1	-	1	2	1	1	2	2	1
C05	-	-	-	1	1	1	1	-	-	2	1	1	2	2	1
C06	1	1	-	1	1	1	-	-	-	2	-	1	2	2	1
Averag e	0.7	0.5	0.2	0.7	1	1.1	0.3		0.3	2	0.3	1	2	2	1
CORR	ELATIC	ON LEV	ELS	1	. SLIGH	T (LOW	7)	2. M	ODERA	TE (MEI	DIUM)	3.	SUBSTAN	NTIAL (HI	GH)

UNIT 1 – INTRODUCTION TO HULL MATERIAL AND ITS RELEVANCE IN SURVEY

Types of Ship; Operation Cycle of Ships, Overview of Materials for Shipbuilding; Types of Ship building Steel- Grade A, B, DH 36, EH 36. Purpose /utility of high grade steel, Definition of ICE class- its relevance with steel quality. Precautions in dealing with Higher grade steel.

Scantling of ship and its relevance in survey of Ship, relevance of shell expansion drawing in hull survey, Tonnage Survey and Calculations

UNIT II - FUNDAMENTALS OF HULL SURVEY

Survey (Hull and Machinery), Need for hull survey; Periodicity of Hull survey, Types of Hull survey, Methods of hull survey - Visual, Hammer, Ultrasonic thickness gauging, Ultrasonic survey. Method of recording Survey findings, Survey Report, Analysing survey report, K- Factor Calculation, Standards of Hull Health; Classification of Hull status – Sound, Defective, Suspect, Critical

UNIT III – HULL STRUCTURAL SURVEY DURING CONSTRUCTION

Hull Structural standards, IACS standards, Ship Building Standards, Ship Repair Standards (Recap)

Classification Survey during Construction- Steel traceability, Online survey and reporting, inspection of welders and welder certification. Stage wise survey of structure- Dry survey procedure (Include Dimensional and Diagonal checks) and corrective action. QAP on Construction - by Yard QC, Classification Society, Owner's Rep, PSPC criterion for structural parts for painting, Class Survey during Erection – Alignment and tolerances, Dimensional Survey of Hull, Mandatory NDT tests, Load Line survey, Draft mark survey, Prelaunch inspection by class, Anchor arrangement survey by owners, Outfitting Survey – PII, III, FII, Compartment survey, Compartment and Tank testing, Installation Survey of machinery, shafting and others

UNIT IV – SALIENT FEATURES OF SURVEY DURING SHIP REPAIR

Hull Survey during ship repair, Hull defect Survey – Survey of U/w hull external, u/w hull internal structures, Survey of inaccessible areas, Survey of Tiled Deck, Survey of Wet compartment, Inspection of load carrying welded hull fitting. Critical areas of inspection prone to corrosion and deterioration, Recoding of Survey remarks- Survey Report

Defining the hull defect and prescribing corrective action. Relevance of Hull condition status and action to be taken on Hull survey report, Ship Defect List; Hull Maintenance Schedule, Introduction to Principles of Hull survey regulations of Naval ships, Typical survey remarks of Naval Hull survey (DO, DAN, DOSSRR, E&R). Estimating the comprehensive work to be undertaken as per survey report- Ancillary work, Degutting and Regutting work

UNIT V- HULL PROTECTION AND MONITORING

Hull Corrosion Protection system, Fundamentals of protective coating, Defects and effects of coatings, Differential Corrosion, Preferential corrosion, Galvanic Cell, Sacrificial Anodes - Types, ICCP system, Underwater Inspection and Hull survey, Survey of Sacrificial Anodes, Survey of ICCP system components. Hull Health Monitoring- Potential Measurements,

Standard Hull potential, Hanging Anodes, Hull Inspections-Underwater, Underwater internal, ship Structural, Wet compartments, Corrosion Prone Areas and its inspection / monitoring

Total : 45 Hours

TEXT BOOKS

- 1. Eyres, D.J, Ship construction, 1994
- 2. Taylor, D.A, Merchant ship construction ,2002
- 3. Kemp, Ship construction ,2002
- 4. Pursey, H.J , Merchant ship construction ,2002

REFERENCE

1. Guide for hull inspection and maintenance program ABS

2. Ship Surveys and Inspection, Great Britain, National Audit Office.

Designed by	"Department of Naval Architecture & Offshore Engineering

PROGRAMME	BE- Ì	Naval Architectu	are & Offshore	e Engineerir	ng						
Course Code	Cours	se Name:		L	Т	Р	С				
UCNA505		NDATION OF UCTURES	OFFSHORE	3	0	0	3				
Year and		ear (V Semester)		Contact hours per week							
Semester		ear (v Semester)		Contact nours per week							
				(3 Hrs)							
Prerequisite course	NIL										
	Humanities and Social	Management	Profession	Elective							
Course catego	ry	Sciences				√					
		Basic Science	Engineering Science	Open El	ective	Mandatory					
Course ObjectivesTo learn site investigation, categorize and characterize soils for foundation design, estimation of the capacity of foundations and the settlement of the soil under the foundation load. Also the subject teaches the principles that govern flow of water in soils, settlement and heave of soils and shear strength of soils											
Course Outcome	At	the end of this c	ourse students	should be a	able to						

			1	C	hoose	appro	priate	drillin	g, san	pling a	and fiel	d prop	erty me	asureme	ent	
				to	ols foi	ols for different soil profiles.										
			2				-	borato	ory tes	ts to ur	ndersta	nd the s	site-spe	cific be	havior	
					of foundations											
			3		Evaluate laboratory and field data to select appropriate shear strength values to use in foundation analysis											
			4													
	4 Design and Analysis of Shallow Foundations:															
			5	D	esign	and A	nalysis	s of De	eep Fo	oundation	ons					
			6	C	hoose	a suita	ble fo	undati	ion an	d its de	sign fo	or a fixe	ed offsh	ore stru	cture	
POs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3	
CO1	1	1	2	2	1	-	-	-	-	1	-	-	2	2	2	
CO2	2	2	3	3	1	-	-	-	-	1	-	-	2	2	2	
CO3	2	2	3	3	2	-	-	-	-	1	-	-	2	2	2	
CO4	2	2	3	2	2	-	-	-	-	1	-	-	2	2	2	
C05	2	3	2	3	2	-	-	-	-	2	-	-	2	2	2	
C06	2	3	2	3	2	-	-		-	2	-	-	2	2	2	
	1.8	2.1	2.5	2.6	1.6					1.3			2.0	2.0	2.0	
COR	RELATI	ON LEV	ELS		1. SLIGH	IT (LOW)	2. N	IODERA	TE (MED	IUM)	3.	SUBSTAN	NTIAL (HI	GH)	

UNIT I - BASICS OF SOIL MECHANICS

Basic Soil Mechanics: soil classification, three-phase system, fundamental definitions, relationship and interrelationships, permeability & seepage, effective stress principle, consolidation, compaction, shear strength. Basic soil properties, correlation between engineering parameters, bore log. Site investigation objective, Sea bottom surveys, soil investigation and techniques

UNIT II - FOUNDATION OF FIXED OFFSHORE STRUCTURES

Foundation types-foundation design requirements. Deep foundations – pile types, Pile foundation: Jacket main piles, skirt piles, driven piles, drilled and grouted piles, steel and concrete piles. Pile design: axial capacity, point bearing and skin friction, factor of safety, Axial load transfer (t-z) curves, Tip load –Displacement(Q-z) curve .Lateral load on piles, Load-deflection (p-y) curves, and q-z curves, pile group effect, scour around piles, seabed subsidence and design of piles against seabed movement, negative skin friction.

UNIT III - INSTALLATION OF PILE FOUNDATION

Pile Installation: Pile wall thickness, Allowable pile stress, Design pile stresses, Stresses during pile driving stresses, static and dynamic stresses, Fatigue damage calculation n while pile driving, API RP 2A guidelines.

UNIT IV - PILE LOAD TESTING

Pile Testing: Working load test, ultimate load test, pile monitoring during driving, pile integrity testing, high strain dynamic testing, rebound method, pile refusers

UNIT V - SPECIAL OFFSHORE FOUNDATIONS

Introduction to Special Foundations: Mud-mats: bearing capacity, sliding stability, overturning stability, short term and long term settlements, Bucket foundation; Suction anchors; Gravity foundation.

Total: 45 Hours

TEXT BOOKS

- 1. Handbook of Offshore Engineering by S.K. Chakrabarti, Elseviers, 2005.
- 2. Tomlinson, M. J., Pile Design and Construction, E and F Spon, 1994
- 3. Pile Design and Construction by M. J. Tomlinson, E & FN Spon, 1994.
- 4. Foundation analysis and design by J. E. Bowles, McGraw-Hill, 1988

- 1. Construction of Marine and Offshore Structures by Ben C. Gerwick, CRC Press 1999
- Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms –API RP 2A

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAMME	BE- Na	val Architectur	e & Offshore	Engineering								
Course Code	Course	Name:			L	Т	Р	С				
UCNA506		TORY REGULA IFICATION RU		ID 3 0 0								
Year and	III Year	(V Semester)		Contact hours per week								
Semester				(3 Hrs)								
Prerequisite course	NIL											
		Humanities and Social Sciences Manageme courses		Professional Core	Professional Electiv		Electiv	e				
Course Catego	ory					\checkmark						
		Basic Science	Engineering Science	^g Open Elective Mandatory			ory					
Course Objectives	To un	derstand the ro	ole of IMO and	l classification soci	ety and	the rele	vance o	<i>of</i>				
	Code	s & Convention	s in ship cons	truction								
	At the	he end of the course the student should be able to:										
Course Outcome	1	Describe the	importance of	f classification socie	ety in S	hip build	ling					
	2	Practice IMC	conventions									

			3	Pr	Practice IMO codes										
			4	Pr	actice	safety	/ surve	ey and	l draft	survey	7				
			5	5 Practice statutory survey and Periodic survey											
			6	-			•			s and r n mari	-		nich are	e offere	d by
POs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	1	1	-	-	1	2	3	3	1	2	1	-	-	2	-
CO2	3	2	-	-	2	-	-	-	-	-	2	-	-	3	-
CO3	3	2	-	-	2	-	-	-	-	-	2	-	-	3	-
CO4	2	2	-	-	1	-	-	-	1	2	2	-	-	3	-
C05	2	2	-	-	1	-	-	-	1	2	2	-	-	3	-
C06	3	2	2	2	3	-	1	-	1	3	3	2	2	3	2
Avera g e	2.3	1.8	0.3	0.3	1.7	0.3	0.7	0.5	0.7	1.5	2	0.3	0.3	2.8	0.3
CORRELATION LEVELS				1. SLIGH	IT (LOW	7)	2. MODERATE (MEDIUM)				3. SUBSTANTIAL (HIGH)				

UNIT I - INTRODUCTION TO IMO & ILO

Introduction to Development of Codes & Conventions, Classification society rules and roles in ship building-History of Classification society-IACS organization activities –other roles of Classification society in shipping, DG shipping, MMD rules, flag, tonnage regulations

UNIT 2 - IMO CONVENTIONS

IMO conventions & its relevance to ship construction, Basic concepts of SOLAS, MARPOL, STCW

UNIT 3 - IMO CODES

Basic concepts of FSS, LSA, ISM, - FSS, LSA plan - Emergency preparedness and plan

UNIT 4 - SAFETY SURVEY

Introduction to safety survey, Draft survey-Cargo survey-Refit and operational cycle

UNIT 5 - STATUTORY SURVEY

Introduction to statutory survey, Periodic survey, Re classification survey, Damage survey

Total : 45 Hours

- 1. IMO Publications and Documents
- 2. IACS Publications and Documents
- 3. MARPOL and SOLAS Code

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAMME	BE-	BE- Naval Architecture & Offshore Engineering											
Course Code	Cours	se Name:	L	Т	Р	С							
UCNA507		RINE TRANSPO NOMICS	3	0	0	3							
Year and	III Ye	ear (V Semester)		Contact hours per week	k								
Semester				(3Hrs)									
Prerequisite course	NIL												
Course categor	rv	Humanities and Social Sciences	Management courses	Professional Core	Professional Elective								
	.,	Basic Science	Engineering Science	Open Elective]	Mandato	ry						
				✓									
Course Objectives		 Awareness of working of shipping organization Learn about the economics in engineering Student should able to solve transportation problems using different methods 											
Course Outcome	Stuc	lents will be able	to										

			1	Ide	entify t	he va	rious c	cargo t	ranspo	orted w	ith var	ious sh	ips			
			2	Identify the cost estimation for transporting of cargo												
			3	Un	Understand the concept of Marine insurance to follow											
			4	An	Analyse the demand report for various requirements											
			5	Ev	Evaluate the route for transportation and their cost evaluation											
			6	6 Identify the policy methods used in shipping industry												
POs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3	
CO1	-	-	1	1	2	1	-	-	-	2	-	1	1	2	2	
CO2	-	-	2	2	1	1	1	-	-	2	-	1	2	1	2	
CO3	-	-	2	2	1	1	1	1	-	2	-	1	2	1	2	
CO4	-	-	2	2	1	1	1	1	-	2	-	1	2	1	2	
C05	-	-	2	2	2	1	1	1	-	2	1	1	2	1	2	
C06	-	-	2	2	2	1	1	1	-	2	1	1	2	1	2	
Avera g e			1.8	1.8	1.5	1	1	1		2	1	1	1.8	1.1	2	
CORRELATION LEVELS			'ELS	LS 1. SLIGHT (LOW)					2. MODERATE (MEDIUM)				3. SUBSTANTIAL (HIGH)			

UNIT - I - Ships and cargoes

Development in shipping and cargo handling, Principle shipping organization. Liner and tramp shipping services, conference system, Chartering Charter parties, Theory of freight rates. Bill of lading. Carriage of goods by sea act. Introduction to transport economics-Traffic and transportation system- difference between traffic and transportation system measuring traffic transport performance-Regulation of road, rail transport and inland waterway transport

UNIT- II - Economics of transport management

Direct cost of transportation and cost recovery-cost calculation in a transport- Time cost and distance costs- Hour efficient and kilometer efficient variable costs-common costs-costs for peak and off-peak periods-Waiting time in transport firms.Risk management, processes and practice. Underwriting and loss adjustment principles applied to marine insurance, Particular average. General average. P&I clubs. Hull policy

UNIT-III – Transportation Methods

Routing-shortest path method- Round trip method-assignments of origin and destination pricing in a transport firm- optimum size and composition of the vehicle fleet- optimal replacement logistical costs-concept of business logistics- transportation costs- Handling costs- Inventory costs-External costs of transport Ownership of vessel, Shipping company and its administration. Ship management, Open register. Manning of ships. Engagement and discharge of crew, Seamans welfare

UNIT- IV - Transport supply and demand

Demand for transport-Aggregate models- micro economic approach to transport –choice behaviorempirical application- demand analysis Salient features, Registration of ship, Ships paper. Duties regarding pollution, Shipping causalities, Penalties under merchant shipping Act

UNIT- V - Transport policy

Charging for external costs- pricing policy- Infrastructure policy- role of transport economist in government. Economics of new and second hand tonnage, Laying up of ships. Ship acquisition and subsidies repairs and maintenance Difference between repairs and maintenance, Voyage and dry-dock repairs, Types of maintenance (breakdown, planned and condition monitoring)

Total : 45 Hours

Text books:

1. Gust Baluwens, Peter De Baere, Eddy Van de Voorde, "Transport Economics, De boeck publication

Emile Quinet and Roger Vickermand, Principles of Transport Economics, EE publication
 Pradeepta Kumar Samanta, Port Infrastructure and economic development, Kalpaz publ.

(Delhi)

References:

- 1. Classification society rules-Indian registrar of shipping
- 2. Institute of chartered ship brokers-tutorship London
- 3. Shipping practice-EF stevens and CSI butterfield

Designed by	"Department of Naval Architecture & Offshore Engineering

PROGRAMME	BE- N	aval Architecture	e & Offsho	re Er	gineering						
Course Code	Cours	e Name:				L	Т	Р	С		
UCNA508		SICAL OCEAN DURCES	OGRAPH	IY A	ND OCEAN	3	0	0	3		
Year and	III Ye	ar (V Semester)		Co	ntact hours per week						
Semester			Hrs)								
Prerequisite course	NIL	TIL									
Course categ	orv	Humanities and Social Sciences	Managem course	Professional Core		Profe	ssiona	al Elec	ctive		
	ory.	Basic Science	Engineer Scienc		Open Elective	Mandatory					
					\checkmark						
Course Objectives					es and phenomenon of a construction of the second	-	cean c	and to	o have		
	At the end of the course the students should be able to										

	Course utcome	e	1		rate th ods of				aracter	ristics,	their p	hysical	proper	ties and	1 the
2 Identify the various ocean instruments used to mea changes										easure	the Env	vironme	nt		
			3	Anal	yse th	e influ	ence	of the	ocean	circula	tion in	global	climate	e chang	e
		-	4	Utilis	se the	data c	ollecti	on fro	om oce	an and	exploi	te it			
			5	Perfo	orm the	e stabi	lity ca	lculat	ion fo	r semi-	subme	rsible p	latform	1	
			6	Expl	ore the	e meth	ods to	explo	ore the	ocean	resour	ces			
POs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
CO1	-	-	-	-	2	1	1	1	-	2	-	1	-	1	2
CO2	-	-	1	1	2	2	2	1	1	2	1	1	1	2	2
CO3	-	-	-	-	1	1	1	2	2	2	2	1	-	2	2
CO4	-	-		-	1	1	1	2	1	2	2	1	-	2	2
C05	-	-	-	-	- <u>2</u> <u>1</u> <u>1</u> <u>2</u> <u>2</u> <u>2</u> <u>1</u> - <u>2</u>								2		
C06	-	-	1	1	2	1	1	2	1	2	2	1	-	2	2
Avera g e			1	1	1 1.6 1.1 1.1 1.6 1.4 2 1.8 1 1 1.8									2	
COR	CORRELATION LEVELS 1. SLIGHT (LOW)				2. MODERATE (MEDIUM) 3. SUBSTANTIAL (HIGH)					GH)					

Unit I – Introduction to Physical Oceanography

General introduction – history of oceanography – expeditions - geomorphology and structures of the ocean floor, Continental slope and shelf - Physical properties of sea water- distribution of temperature, salinity, density and oxygen in space and time – PSU and TEOS-10 - acoustical and optical characteristics of seawater – color of the sea.

Unit II – Oceanographic platforms

Oceanographic platforms: Research vessels and their facilities - Ocean Instruments: measurements of depth, light, temperature, salinity, currents, waves and tides.

Unit III – Ocean Circulation

Water masses: formation and classification - T-S diagram – water masses of the world oceans – Indian Ocean water masses - identification of water masses. Circulation: general circulation of

(10 hours)

(12 hours)

(8 hours)

ocean and atmosphere — Ekman spiral and transport – Currents in the oceans - wind-driven circulation, thermohaline circulation - upwelling and sinking - El-Nino and La-Nina and ENSO.

Unit IV – Ocean Resources

Ocean Resources: definition and classification, potential uses of sea. Geophysical and oceanographic operations: direct and indirect methods of data collection on and below sea surface, Involvement of ocean scientists in exploration and exploitation, phases of marine resources.

Unit V – Exploration of Ocean Resources

Mineral and hydrocarbon resources, exploration, development, and production of hydrocarbons, ocean mining, semi-submersible and their functions, stability, motion and weight.

Total : 45 Hours

TEXT BOOKS

- 1. Descriptive Physical Oceanography: An introduction: G.L.Pickard and W. J. Emery, Pergamon, 5th edn., 1992.
- 2. Descriptive Physical Oceanography : M.P.M.Reddy, Balkema, 1st edn., 2001.
- 3. The Oceans: H.U. Sverdrup, Prentice Hall, 1st edn., 1942
- 4. Introduction to Physical Oceanography: Robert H. Stewart, e-book, 2005.
- 5. Principles of Physical Oceanography: G.Neumann & WJ Pierson, Jr., Prentice Hall,1st edn.,1966.

REFERENCES

- Introduction to Energy Resources, Technology and Society : E S Cassdy, Elsevier, 1st edn., 2000.
 - 2. Underwater Minerals : D S Cronon, Academic Press, 1st edn., 1980.
 - 3. Ocean Year Book (Vol 1 4) : Borges & Ginsburg, The University of Chicago Press, 1983.
 - 4. Mineral Wealth of the Ocean : Ghosh & Mukhopadyay, Oxford & IBH Pub. Co., 2nd, 1999

Designed by	"Department of Naval Architecture & Offshore Engineering"

(7 hours)

(8 hours)

PROGRAMME	BE- Ì	Naval Architectu	ure & Offshore	e Engineering	g						
Course Code	Cours	se Name:		L	Т	Р	С				
UCNA509	AND	LITY HEALTH ENVIRONME JAGEMENT		3	0	0	3				
Year and Semester	III Ye	ear (V Semester)		Contact hours per week							
Prerequisite course	NIL	NIL (3Hrs)									
	<u> </u>	Humanities and Social Sciences	Management courses	Professional Core		Professional	Elective				
Course catego	ry	Basic Science	Engineering Science	Open Ele	ory						
				✓	\checkmark						
Course Objectives		understand the t tem in ship build	- •				nanagement				
Course Outcome	At 1	the end of the co			able to:						
	2										

			3	 Infer different Environmental management systems and Occupational Health and Safety Series System Explain the importance of ISM codes 											
			5]	Practice ISO 9000 quality management system, ISO 14000 & OHSAS 8000.										AS
			6	4	Apply q	pply quality measures in ship industry									
POs / COs	PO1	PO2	PO3	PO-	4 PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	-	-	-	-	2	1	1	1	-	2	-	1	-	1	2
CO2	-	-	1	1	2	2	2	1	1	2	1	1	1	2	2
CO3	-	-	-	-	1	1	1	2	2	2	2	1	-	2	2
CO4	-	-		-	1	1	1	2	1	2	2	1	-	2	2
C05	-	-	-	-	2	1	1	2	2	2	2	1	-	2	2
C06	-	-	1	1	2	1	1	2	1	2	2	1	-	2	2
Avera g e			1	1	1.6	1.1	1.1	1.6	1.4	2	1.8	1	1	1.8	2
CORRELATION LEVELS					1. SLIGH	IT (LOW)	2. N	IODERA	ATE (MED	'E (MEDIUM) 3. SUBSTANTIAL (HIGH)				

UNIT I - INTRODUCTION TO QUALITY CONCEPTS

Definitions of Quality, Quality control, Quality Assurance, Quality Management, Quality Management system, Total Quality Management (TQM). Four principles of TQM, Quality costs, Quality statements- Vision, Mission, Quality policy, Quality Objectives and Targets.

UNIT II - APPLICATION OF QA & QC IN SHIP BUILDING INDUSTRY

Identification of customer requirements, QA/QC Documentation requirements, Quality Planning, skilled Labour, Competency/Training and Awareness; Design and Development; control on vendors and purchased products, operational control including control on welding processes; monitoring and measurement of processes, inspection and testing on

- Raw material, in-process and final product;
- Pre-delivery inspection including Dry surveys I & II, Different methods of NDT Testing; Dock trials and sea Trials

UNIT III - ISO 9000 QUALITY MANAGEMENT SYSTEM

Need for ISO 9000 Quality Management system and Description of its elements, Major steps in achieving ISO 9000 certification – Awareness / Training, Documentation, Implementation Internal Audit, Audit methodology and auditor qualities External certification audit, Certification and annual verification audits, Quality awards – international quality awards and National quality awards

UNIT IV - INTRODUCTION TO ISO 14000 & OHSAS 18000

Introduction to the basic concepts of

- a) Environmental management system (ISO 14001:2004 EMS)
- b) Occupational Health and safety series system (OHSAS 18001:2007).

Environmental aspects and impact assessment in and determining controls in EMS, Hazard identification and risk assessment and determining controls in OHSAS, Operational control and Emergency Preparedness and Response (common to both EMS and OHSAS), Performance measurement including audit and management review and external certification. (Common to both EMS and OHSAS)

UNIT V - INTRODUCTION TO ISM CODE

ISM code (international safety management for safe operation of ships and for pollution prevention), Introduction to ISM code -Background and purpose, Documentation, planning for shipboard operations and implementation of operations including emergency preparedness and Response, Audit and certification (Interim and final). Certification of Both DOC (Document of compliance for company) and SMC (Safety Management certificate for ship); Periodical verification of the maintenance of ISM code

Total : 45 Hours

TEXT BOOKS

- 1. Total Quality Management by Dale. H.Besterfield and Others PEARSON Education Inc (Indian Reprint 2010)
- 2. Total Quality Management by Dr. D.D.Sharma. Sultan chand and sons New Delhi (Reprint 2005).
- 3. Implementing ISO 9000 QMS by pradeepkumar. Mathur Vikas publishing House, New Delhi
- 4. A Text Book of Total Quality Management (for B.E,/ B.Tech VIII semester Anna University) By Prof. R.Ramakrishnan by Dhanam publications – Chennai

REFERENCES

- 1. International standard ISO 9001 Quality Management system –Requirements ISO 9001:2008(E) –Bureau of Indian standards Publications-Chennai
- 2. IS/ISO 14001: 2004 Environmental management system Requirements with Guidance for use Bureau of Indian standards Chennai

- 3. Occupational health and safety managements- Requirements (OHSAS 18001:2007) Bureau of Indian standards publications Chennai
- 4. International standard ISO 19011: 2011 Guide lines for Auditing Management systems Bureau of Indian standards Publications, Chennai
- 5. ISM code Amended up to 2010 (IMO Publication, London).
- 6. ISPS code 2003 Edition sterling book house Mumbai

Designed by	" Dep	"Department of Naval Architecture & Offshore Engineering										
PROGRAMME	BE- Na	val Architecture	& Offshore Er	ngineering								
Course Code	Course	Name:			L	Т	Р	С				
UBMEC01	MARI	NE ENGINEE	RING-I		3	0	0	3				
Year and	III Year	(V Semester)		Contact hours per week								
Semester				(3 Hrs)								
Prerequisite course	NIL											
								1				
		Humanities and Social Sciences	Management courses	Professiona	al Core	Profess	sional Elec	tive				
Course catego	ry			~								
		Basic Science	Engineering Science	Open Ele	ective	N						
Course Objectives		rn the various c neries, boilers a	•	l the operation	ı princip	le of differ	ent ship					
	At the	e end of the cou	irse the stude	nt should be	able to:							
Course Outcome	1	Describe the principles	Ship Machine	eries, Engine	selectio	on and the	ir workin	g				
	2	Express good knowledge on the marine boilers and turbines										

			3	E	xplain	marin	e boil	er syst	ems a	nd oper	ration				
			4	D	escribe	e Mari	ine Ste	eam tu	rbines	and op	peration	1			
			5	Es	stimate the heating and ventilation requirements in ships										
			6	Id	entify	the m	achine	eries a	nd aux	kiliary s	systems	s which	are use	ed in sh	ips
POs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	1	-	-	-	-	1	-	-	-	2	-	1	1	1	-
CO2	1	-	1	-	1	1	-	-	-	2	-	1	1	1	-
CO3	1	-	1	-	1	1	-	-	-	2	-	1	1	1	-
CO4	1	-	-	-	-	1	-	-	-	2	-	1	1	1	-
C05	1	2	-	-	-	1	-	1	-	2	-	1	-	1	-
C06	1	-	1	-	1	1	-	-	-	2	-	1	1	1	-
Avera g e	1.0	2.0	1.0	0	1.0	1.0	0	1.0	0	2.0	0	1.0	1.0	1.0	0
CORRELATION LEVELS 1.					1. SLIGH	IT (LOW	DW) 2. MODERATE (MEDIUM) 3. SUBSTANTIAL (HIGH)								

UNIT I – SHIP MACHINERY

Ships and machinery - design and selection considerations; Marine diesel engines general engine principles, Low speed and medium speed diesel engines, Constructional features. Fuels, fuel oil system-Scavenging and turbo charging, Starting and reversing systems, controls and safety devices, governing; Lubrication, Lubricants and lube oil systems, cooling systems-torque and power measurement, fuel consumption's characteristics, engine lead tests and general characteristics-Heat balance, waste heat recovery system.

UNIT II – ENGINE ROOM

Engine dynamics, torsional vibration of engine and shafting, axial shaft vibration, critical speeds engine rating, rating corrections, trial tests etc. Relationship of engine to the propeller classification society rules on engine construction. Engine room arrangement and engine mounting study of different types of marine engines available in the world market.

UNIT III – MARINE BOILERS

Marine boilers types, fire tube and water tube boilers, boiler arrangements-steam to steam boilers, double evaporation boilers, exhaust gas heat exchangers, auxiliary steam plant systems, exhaust gas

boilers, composite boilers. Boiler mounting, combustion, feed system, feed water treatment, Feed pumps, condensers, air rejecters, deaerators, boiler operation, coal fired boilers.

UNIT IV - TURBINES

Marine Steam turbines - Types of turbines, compounding - reheat turbines, turbine construction, rotors, blades, casing, Gland sealing, diaphrams, nozzles, bearings, etc. Lubrication systems, expansion arrangements, control, gearing operating procedure.

UNIT V - REFRIGERATION

Marine gas turbines - fundamentals of G.T., Structure of gas turbines, gearing, operational features, controls, gearing, combined cycles. Nuclear propulsion - physical principles of the operation of nuclear reactors – use of nuclear propulsion on seagoing vessels, Automation of ship propulsion plants, Maintenance requirements and reliability of propulsion plants, Air Conditioning and Refrigeration, Definition and purpose Psychrometry – psychrometric properties of air-Psychrometric chart – Adiabatic saturation. Psychrometric process Sensible heating and cooling, Humidification and dehumidification, cooling and humidification, Cooling and dehumidification-heating and humidification, Heating and dehumidification, adiabatic mixing of air streams-cooling and heating load calculation Summer and winter air conditioning - Estimation of the state of supply air to the air-conditioned space- Quantity of air supply etc. for simple winter air conditioning systems.

Total : 45 Hours

REFERENCE BOOKS

- 1. Harrington; Marine Engineering, SNAME Publications
- 2. Pounder, C.C; Marine Diesel Engines, Newnen-Butterworths, London
- 3. Reed's Marine Engineering for Naval Architect
- 4. Taylor, D.A.; Introduction to Marine Engineering

Designed by '	"Department of Marine Engineering"
---------------	------------------------------------

PROGRAMM E	BE- N	Javal Architectu	ire & Offshor	e Engineering							
Course Code	Cours	e Name:				L	Т	Р	С		
UCNA5PA		DESIGN CAL FTING - III (SI				0	0	4	2		
Year and Semester	III Ye	ar (V Semester)	veek								
Prerequisite course	NIL	NIL									
		Humanities and Social Sciences	Management courses	Professional Core	e Pro	ofessio	onal E	lectiv	e		
Course catego	ory	Basic Science	Engineering Science	✓ Open Elective		Mandatory					
	-										
Course Objectives	 To study the various structural components in the Hull To understand the structural design & calculation of ship hull To study and perform the estimation of weight of the ship At the end of the course the student should be able to: 										

	urse O	ut	1	Devel	lop the	Gener	al Arra	angeme	ent of s	hip					
	come		2	Evalu	ate the	Longi	tudina	l streng	gth for	various	loading	g condit	ions		
			3	B Prepare the Scantlings calculation for various structural components											
			4	Estim	ate the	Sectio	on mod	ulus ba	ased or	n classif	ication	rule			
			5	Evalu	ate the	streng	th of N	Aid-shi	p secti	on					
			6	Estim	ate the	Light	weigh	t and Г	ead w	eight of	the shi	n			
				Louin			weight			eight of	the shi	P			
POs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
CO1	1	2	3	1	1		1	1	1	1			3	1	1
CO2	3	2	3	1		3	1	2		3			3	1	2
CO3		1	3	2	2	1	3	2					3	3	1
CO4	1	2	3	1 1 1 1 1 1 3 1								1			
C05	3	2	3	1	1 3 1 2 3 3 1								2		
C06	1	2	3	1	1		1	1	1	1			3	1	1
Avera g e	1.8	1.8	3	1.2	1.2 1.25 2.3 1.3 1.5 1 1.8 3 1.3							1.3			
COR	CORRELATION LEVELS 1. SLIGHT (LOW)				2. N	IODERA	TE (MED	IUM)	3.	SUBSTAN	NTIAL (HI	GH)			

LIST OF ASSIGNMENTS

- 1. General Arrangement plan
- 2. Calculation of Load Distribution, Shear force and Bending moment
- 3. Scantling Calculation for various structural members
- 4. Section modulus calculation of ship
- 5. Midship section drawing
- 6. Estimation of Light weight and Dead weight of ship

TEXT BOOKS

- 1. Robert Taggard, ship design & construction, The society of naval architecture & marine engineers,1980
- 2. Eric c.tupper, Introduction to naval architecture, reed Elsevier India pvt lmt,2010

Total : 60 Hours

REFERENCE BOOKS:

1. Principle of naval architecture, vol I							
Designed by	"Department of Naval Architecture & Offshore Engineering						

PROGRAMM E	BE- N	Vaval Architectu	ire & Offshoi	e Engineering					
Course Code	Cours	e Name:				L	Т	Р	С
UCNA5PB	SOFT	WARE LABOR	ATORY - II			0	0	2	1
	1								
Year and	III Ye	ear (Vth Semester)	Contact hours per w	veek				
Semester				(2 Hrs)					
Prerequisite course	NIL								
		1							
		Humanities and Social Sciences	Management courses	Professional Core	e Pro	ofessio	onal El	lective	e
Course catego	ory			~					
		Basic Science	Engineering Science	Open Elective		Mar	ndator	у	
Course Objectives	To lea	rn the initial ship	design proced	ure using the given of	design sof	ftware			
Course	At the	e end of the cour	se the studen	t should be able to	:				
Outcome	1	Prepare initial	modeling tecl	hniques available i	n the Sof	tware			

			2	Calcu	ılate h	ydrost	tatic p	articul	ars						
		-	3	Desig	gn hull	l struc	ture (s	cantli	ng)						
			4	Perfo	orm the	e area	calcul	ation							
			5	Gene	rate su	urface	of the	given	mode	l using	approp	priate to	ools ava	ailable i	n
				the S	oftwa	re									
			6	Deve	lop H	ull for	m hyd	rostati	cs cur	ves					
POs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
CO1	2	2	2	2	-	-	-	-	2	2	1	-	1	2	2
CO2	2	2	1	-	-	-	-	-	2	2	1	-	1	2	2
CO3	2	2	1	-	-	-	-	-	3	2	1	-	1	2	2
CO4	2	2	1	-	-	-	-	-	2	2	1	-	1	2	2
C05	2	2	1	-	-	-	-	-	3	2	1	-	1	2	2
C06	2	2	1	-	-	-	-	-	3	2	1	-	1	2	2
Avera g e	2	2	1.1	2					2.5	2	1		1	2	2
COR	RELATI	ON LEV	/ELS		1. SLIGH	IT (LOW)	2. N	IODERA	TE (MED	IUM)	3.	SUBSTAN	NTIAL (HI	GH)

CONTENTS

Introduction-Basics- Creating Design and Defining-Basic Curves-Creating Control Curves-Creating A Surface – Outputting the surface – Curve Fairing

Hydrostatic- Introduction Basics- Performing Fundamental Calculations

Introduction to Hull Structural Design

Total : 30 Hours

REFERENCES

1. Software	Manual
Designed by	"Department of Naval Architecture & Offshore Engineering

PROGRAMM E	BE- N	Vaval Architectu	re & Offshor	e Engineering					
Course Code	Cours	se Name:				L	Т	Р	C
UBNS5PB	SEAN	MANSHIP LABC	RATORY			0	0	2	1
			<u></u>	<u> </u>					
Year and	III Ye	ear (Vth Semester)	Contact hours per we	ek				
Semester				(2Hrs)					
Prerequisite course	NIL								
	1	Humanities and Social Sciences	Management courses	Professional Core	Pro	fessio	nal El	ective	;
Course catego	ory			\checkmark					
		Basic Science	Engineering Science	Open Elective		Man	datory	ý	
Course Objectives		m to give the stud ard or Ship	lents an idea oi	n different ship handlin	ng equip	ments	by vis	siting	
Course Outcome	At the	end of the course	the students sl	hould be able to					
	1	Distinguish the c equipments	lifferent ship h	andling equipments ar	nd the po	osition	of ea	ch	
	2	Identify Location	n of various tar	nks and their usage					

			3	Infer	piping,	, electr	ical an	d HVA	C syst	ems						
			4	To U	ndersta	ind acc	ess arr	angem	ents in	side the	ship					
			5	To un	dersta	nd the	moorir	ig arrai	ngeme	nts on tl	ne ship					
			6	Use tl	he kno	wledge	gaine	d in the	e shipy	ard						
POs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO	
CO1	-	-	2	-	1 1 2 1 1 2 2 2 2 2										2	
CO2	-	-	2	-	1	1	2	1	1	2	2	2	2	2	2	
CO3	-	-	-	-	1	1	2	1	1	2	2	2	2	2	2	
CO4	-	-	2	-	1	1	2	1	1	2	2	2	2	2	2	
C05	-	-	2	-	1	1	2	1	1	2	2	2	2	2	2	
C06	-	-	1	1	1	-	-	1	3	2	2	1	1	2	3	
Avera g e	0	0	1.8	1.0	1.0											
COR	RELATI	ON LE	VELS		1. SLIGH	IT (LOW)	2. N	IODERA	TE (MED	IUM)	3.	SUBSTAN	NTIAL (HIO	GH)	

The student shall be taken to visit a ship and they have to understand the following:

1. Various Decks.

2. All the equipment fitted on the deck (like windlass, capstan, winches, cranes, bitts Bollard etc.

3. Engine room (the main engine and auxiliary engine, compressors, feed pumps, fuel oil pumps, exhaust system, and other accessories)

4. Location of various tanks and their usage.

5. Access arrangements (ladders, gang ways)

6. Accommodation area

7. Equipments used for anchoring and mooring (Ground tackle equipments like anchor, anchor chain, wire rope, shackles, chain shoppers) chain lockers etc.

8. Bulwark and guard rail.

9. Communication equipments

10. Fendering

11. Cargo holds

12. Doors and hatches.

13. Bulk heads.

14. Wheel house.

15. Masts, top light, range light.

16. Steering gear compartment.

17. AC & Refrigeration equipments.

18. Propeller shaft system.

19. Piping and valves.

20. Electrical equipments, like generators, motors, control panel etc. After the visit the students shall submit a report for evaluation.

Total : 30 Hours

REFERENCES

1. Manual

Designed by	"Department of Naval Architecture & Offshore Engineering	"

PROGRAMME	BE-Na	aval Architecture	& Offshore En	gineerin	ıg				
Course Code	Course	e Name :			L	Т	Р	С	
UCNA601	SEAK OF SI	EEPING AND	MANEUVE	RING	4	0	0	4	
					4	0	0	+	
Year and	III Yea	ar (VI Semester)		Contac	t hours per	r week			
Semester				(4Hrs)				
Prerequisite course	NIL								
		Humanities and Social Sciences	Management courses	Profe	essional Co	ore Pr	Professional Elective		
Course catego	ory				\checkmark				
		Basic Science	Engineering Science	^{1g} Open Elective Mandatory					
Course Objectives	То и	nderstand the m	otion charact	teristics	in waves	and to ev	valuate the	steering	
		ures of surface s						~	
Course Outcome	Stud	ents will be able t	0						

SEMESTER – VI

			1	Carry	out ar	alytic	ally th	e Seal	keepin	g analy	sis for	1-DOI	7		
			2	Estim	ate the	ship	respor	ise spe	ectrum	in rand	dom wa	aves			
			3	Estim	ate the	e contr	ol fixe	ed stab	oility o	f surfa	ce ship	s.			
			4	Analy	ze the	behav	viour c	of linea	ar hydi	rodyna	mic de	rivative	es in ma	ineuveri	ng
			5	Practie hydroe					and ex	xperim	ents for	r deterr	nining (he	
			6	Expla: aspect		hydro	dynam	nics as	sociat	ed with	rudde	r select	ion and	its desi	gn
POs /	DOI			-			207			2010	DOLL	2010	2004	2000	D 2000
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	1	2	-	2	2	3	2	1	2	2	2	-	-	2	2
CO1	2	2	2	2	2	1	-	-	2	2	2	-	2	2	2
CO3	2	2	2	2	2	1	-	-	2	2	2	-	2	2	2
CO4	2	2	2	2	2	2	2	2	2	2	2	-	2	2	2
C05	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
C06	2	2	2	2	2	1	2	2	2	2	2	2	2	2	2
Avera g e	1.8	2.0	1.7	2.0	2.0	1.7	1.3	1.2	2.0	2.0	2.0	0.7	1.7	2.0	2.0
COR	RELATI	ON LEV	ELS		1. SLIGH	IT (LOW)	2. N	IODERA	ATE (MED	OIUM)	3.	SUBSTAI	NTIAL (HI	GH)

UNIT I – MARINE ENVIRONMENT

Regular surface waves and their properties, Irregular Waves – statistical representation, Sea State spectrum, Beaufort scale. Introduction to seakeeping, Ship in waves, Frequency of encounter

UNIT II – MOTION CHARACTERISTICS IN REGULAR WAVES

Ship motions in regular waves – Heave, Pitch and Roll - Equations of motion (uncoupled), Dynamic response curve, Determination of hydrodynamic coefficients using Strip theory – added mass and damping coefficients, coupled motions – heave and pitch

UNIT III - MOTION CHARACTERISTICS IN IRREGULAR WAVES AND DYNAMIC EFFECTS

Ship motions in irregular waves, Response spectra, Dynamic effects; deck wetness, slamming, relative motions, sea sickness, Added resistance and loss of ship speed in seaway, Design considerations for seakeeping, Motion stabilizers.

UNIT IV – MANEUVERING CHARACTERISTICS OF SURFACE SHIP

Introduction to maneuverability, Types of directional stability, linear equations of motions in horizontal plane, hydrodynamic and control derivatives, stability index, standard maneuvers; turning circle, zigzag, pull-out and spiral maneuvers, heel during turn

UNIT V – MANEUVERING STANDARDS AND RUDDER CHARACTERISTICS

Experimental determination of hydrodynamic derivatives; straight-line, rotating arm and PMM experiments, IMO maneuvering standards, Maneuvering in shallow water; Squat, Bank Cushion effect, Interaction between ships, Control surface geometry, Rudder types and characteristics, Hydrodynamic constraints in rudder design.

Total : 60 Hours

TEXT BOOKS

- 1. Dynamics of Marine Vehicles, R Bhattacharya, 1978
- 2. Principles of Naval Architecture, Vol III, edited by Edward V Lewis

REFERENCES

1. Introduction in Ship Hydrodynamics, by J M J Journee & Jacob Pinkster, Delft University of Technology

2. Seakeeping : Ship Behaviour in Rough Weather , by A R J M Lloyd

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAMME	BE-N	Vaval Architecture &	& Offshore Eng	gineering	,						
Course Code	Cour	se Name:			L	Т	Р	С			
UCNA602	STR	UCTURAL DESI	GN OF SHIP	S	4	0	0	4			
Year and	III Y	ear (VI Semester)		Contac	t hours per	week					
Semester		(, , , , , , , , , , , , , , , , , , ,		(4Hrs)	I I I I I						
Prerequisite course	NIL			()							
		L						T			
		Humanities and Social Sciences	Management courses	t Professional Core			Professiona	l Elective			
Course Catego	ry				\checkmark						
		Basic Science	Engineering Science	Open Elective			Mandatory				
Course Objectives	To be able to undertake various structural design processes by understanding function and requirements of various structural components and its features										
Course Outcome	Students will be able										
Course Outcome	1 Describe the design process and various steps in designing of hull structure										

			2	Analyz	the section is the section of the se	ship st	ructur	e unde	er vari	ous loa	ding co	onditio	ns		
			3	Design	proce	ess for	decks	, bulk	heads	& othe	r majoi	r struct	ures		
			4	Develo	p plar	of fra	aming	syster	n, con	nectior	detail	s and b	ilge kee	el	
			5	Calcul	ate sca	ntling	of dif	ferent	struct	ural po	rtions				
			6							thods i terials			oning o	of the ma	ain
POs / COs	PO1	PO2	PO:	3 PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	-	-	1	2	1	-	1	1	-	2	-	1	2	2	2
CO2	1	2	2	2	1	-	1	-	-	2	-	1	2	2	2
CO3	2	2	3	2	2	-	1	-	-	2	-	2	2	2	2
CO4	1	1	2	2	1	-	1	-	-	2	-	2	2	2	2
C05	1	1	3	2	2	-	1	-	-	2	-	2	2	2	2
C06	1	1	3	2	2	-	1	-	-	2	-	2	2	2	2
Avera g e	1	1.2	2.3	2	1.5		1	1		2		2	2	2	2
COR	RELATI	ON LEV	ELS		1. SLIGH	IT (LOW)	2. N	IODERA	ATE (MED	IUM)	3.	SUBSTAN	NTIAL (HI	GH)

UNIT I – SHIPS STRUCTURAL SYSTEMS

Ship as stiffened plate structure – framing systems, common stiffener sections, corrugated construction, design of strakes (butts, seams), welding sequences, shell expansion; Structural subsystems – break up into bottom structure, side structure, deck structure, bulkhead structure, end structure, superstructure etc., general structural arrangements of different types of ships (historical review); subassembly, stiffened panels and volume sections.

UNIT II -BOTTOM STRUCTURE AND SIDE STRUCTURE

Bottom structure – framing system, functions, single bottom and double bottom construction, structural components and scantlings, openings, cut outs, connection details, bilge keel; Side structure – framing system, functions, structural components and scantlings.

UNIT III – DECKS AND BULKHEADS

Deck structure – functions, framing system, structural components and scantlings, hatch ways, pillars, bulwarks, guard rails, fenders; Bulkhead structure – type of bulkheads, functions, framing

system, structural components and scantlings. Halo Deck Design- Loading calculation for decks, concentrated load considerations

UNIT IV – END STRUCTURES

Fore end structure – functions, structural arrangements (panting), structural components & scantlings; Aft end structure – functions, structural arrangements, structural components & scantlings; Structural connections – compatibility, bottom & side, side & deck, bulkhead with deck, side & bottom

UNIT-5 SCANTLING CALCULATION

Machinery foundations-Design concept, considerations for vibrations, Effectiveness of Superstructure & Deckhouse, structural arrangement, openings & expansion joints, types of mast and its design concept, criticality of cargo hatch design/considerations.

Total : 60 Hours

TEXT BOOKS

- 1. Ship Design and Construction by Robert Taggart
- 2. Ship Construction by D.J Eyres
- 3. Design of Ship Hull Structures by Yausuhisa Okumoto. Yu Takeda &Masaki Mano . Tetsuo Okada

REFERENCES

1. Marine Structural Design by Young Bai

Designed by "Department of Naval Architecture & Offshore Engineering"

PROGRAMME	BE-Nav	val Architecture &	c Offshore Eng	ineering	5						
Course Code	Course	Name:			L	Т	Р	С			
UCNA603	SHIP I	DESIGN - I			3	1	0	4			
				~				•			
Year and	III Yea	r (VI Semester)		Contac	t hours per	week					
Semester				(4Hrs)							
Prerequisite course	NIL			-	-						
		Humanities									
		and Social Sciences	Management courses	Profe	essional Co	ore P	rofessional E	lective			
Course Catego	ory				\checkmark						
		Basic Science	Engineering Science	Op	en Elective	e	Mandato	ry			
Course Objectives		nderstand and ap form design	pply the variou	us steps	s involved	in the vo	irious proce	ess for shi			
Course Outcome	Stude	nts will be able to									

1	Define the concept of ship design as an overview
2	Explain the criteria for selection of various hull form requirements for different ship types
3	Develop lines plan and general arrangement requirements and solve problems
4	Do calculations for optimization of existing ship with numerical approach
5	Select stem and hull forms
6	Understand the Design procedures and practice for estimating principal dimensions, hull form parameters, lightships and deadweight components

POs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	1	1	2	2	1	-	-	-	-	1	-	-	2	2	2
CO2	2	2	3	3	1	-	-	-	-	1	-	-	2	2	2
CO3	2	2	3	3	2	-	-	-	-	1	-	-	2	2	2
CO4	2	2	3	2	2	-	-	-	-	1	-	-	2	2	2
C05	2	3	2	3	2	-	-	-	-	2	-	-	2	2	2
C06	2	3	2	3	2	-	-		-	2	-	-	2	2	2
Avera g e	1.8	2.1	2.5	2.6	1.6					1.3			2.0	2.0	2.0
COR	RELATI	ON LEV	ELS		1. SLIGH	T (LOW)	2. N	IODERA	TE (MED	IUM)	3. SUBSTANTIAL (H			GH)

UNIT I - ENGINEERING DESIGN PHILOSOPHY

Ship design as a science and as an art, marketing manufacturing and operational considerations in Ship design, Technological, economic and sociological factors and national priorities.

UNIT II - DESIGN CONSIDERATION TO SHIPS

Owner's requirements, shipyard production facilities and operational constraints to be considered in the design process, Introduction to ship design method using basic ship or parent ship types, ship design as an iterative process and stages of ship design, the design spiral.

UNIT III - ESTIMATION OF WEIGHT AND VOLUME COMPONENTS

Preliminary GA drawing and requirements on board, Weight and capacity equations and their use in ship design, use of cubic equation, Calculation of weight and volume components using parent ship

data or other compiled data. Calculation of steel, wood, outfit and machinery weights, using formulas, Estimation of dead weight components, design of hull form from first principles

UNIT IV - DESIGN OF HULL FORM

Selection of main dimensions - Initial Sizing, Selection of Length, Slenderness Coefficient, Selection of Other Main Dimensions, Selection of Beam, Selection of the Side Depth, Selection of the Draft, Selection of Hull Form Coefficients, Midship Section Coefficient, Waterplane Area Coefficient, Determination of the main dimensions – Methods

UNIT V - STEM AND STERN HULL FORMS

Distribution of Displacement; Sectional Area Curve and factors affecting sectional area curve. Form of Section Shape, Form of midship section, Bow section below and above waterline, stern form below and above waterline, Form of bow; type of bow, bulbous bow, parabolic bow, Form of stern; Elliptical, Cruiser Stern, Transom Stern

Total: 60 Hours

TEXT BOOKS

- 1. Ship Design Methodologies of Preliminary Design by Apostolos Papanikolaou
- 2. Practical Ship Design by D.G.M Watson
- 3. Ship Design for Efficiency and Economy by H. Schneekluth and V. Bertram
- 4. Ship Design and Construction by R.Taggart

REFERENCES

- 1. Basic Ship Theory, Vol.1 & 2 by K.J.Rawson and E.C.Tupper
- 2. Principles of Naval Architecture, Vol. 1,2&3 by Ed.V. Lewis

Designed by "Department of Naval Architecture & Offshore Engineering"

PROGRAMME	BE-Na	BE-Naval Architecture & Offshore Engineering										
Course Code	Course	e Name:			L	Т	Р	C				
UCNA604	SHIP	SYSTEMS DES	SIGN		3	0	0	3				
								1				
Year and	III Yea	ar (VI Semester)		Contac	t hours per	week						
Semester				(3Hrs)								
Prerequisite course	NIL			-								
		Humanities and Social Sciences	Management courses	Profe	Professional Core		Professional E	Elective				
Course Catego	ry						\checkmark					
		Basic Science	Engineering Science	Ope	en Elective	2	Mandato	ry				
Course Objectives		nderstand and p ngements	prepare the co	mponer	nts of vari	ious Shij	o Systems ar	ıd their				
Course Outcome	Stud	Students will be able to										

			1	Descri	be the	comp	onent	s invo	lved i	n diffe	rent Sł	nip syst	tems		
			2	Disting	guish t	he hu	ll syst	ems a	nd the	ir arrai	ngeme	nts			
			3	Design	Prop	ulsion	and S	Steerin	ıg syst	ems					
			4	Constr	Construct and evaluate the performance of electrical system Illustrate and explain different engineering systems										
			5	Illustra											
			6	Solve a	a desig	gn tasl	c of va	arious	syster	ms con	tains ii	n the sl	nip		
POs / COs	PO1	PO2	PO	3 PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	1	1	3	3	2	-	1	1	-	2	1	1	2	2	2
CO2	-	-	2	2	2	-	1	1	-	2	-	1	2	2	2
CO3	1	1	3	3	2	-	1	1	-	2	1	1	2	2	2
CO4	1	1	2	2	2	-	1	1	-	2	-	1	2	2	2
C05	1	1	2	2	2	-	1	1	-	2	-	1	2	2	2
C06	2	2	3	3	2	-	1	1	-	2	1	1	2	2	2
Avera g e	1	1	2.5	2.5	2	-	1	1	-	2	0.5	1	2	2	2
CORI	RELATI	ON LEV	/ELS		1. SLIGH	IT (LOW	D	2. M	IODERA	TE (MED	DIUM)	3.	SUBSTAN	NTIAL (HI	GH)

UNIT I - INTRODUCTION TO SHIP SYSTEMS

Ship systems- piping system- HVAC system- pneumatic system- hydraulic system- pumping systemnavigation system- installation details of prime movers and alternators- refrigerators- tackles- rigging system- line and schematic diagram- components of ship systems, pressure ratings

- Piping system- different types of piping system, pipe color coding, valves and functions
- HVAC- Heat ventilation & air conditioning system, types of coolants, insulations, Flow measurements, Heat Load, Air changes
- Pneumatic and hydraulic system- basic function, types of valves, pneumatic/hydraulic system hygiene
- Navigation equipment navigation lights, GPS, gyro compass, navigation working system, wave guides, EMI/EMC, EMI Bonding, EMI Shielding.

UNIT II – HULL SYSTEMS

Fire Fighting Appliance (FFA) – life saving appliances (LSA)- fresh water system, - RO plant, Sanitary system- sewage treatment plant (STP)- - deck drains- ballast system- anchor wash systemdeck equipments- anchor handling system- cargo handling equipments, Boat Davits, Roll stabilizers, Deck cranes/derricks, anchor cables arrangement.

- FFA- CO₂, freshwater system, seawater system, emergency alarm & smoke detector
- LSA types of life boats, buoys, life rafts
- FWS RO plant, hydrophone tank

UNIT III - ENGINEERING SYSTEMS

Fuel oil system- lubrication oil system- starting air system- compressed air system- exhaust systemfire main system- CO₂ system- bilge system- sludge system,- deck sprinkler,- boiler system- jacket cooling system- oil filters/strainers system- oily water separator- scavenging and turbo charger system- Anti-vibration system- Types of machinery Shock mounts, Engine exhaust system. Engine Room Ventilation System, Chilled water System

UNIT IV – ELECTRICAL SYSTEMS

Power generation distributor (PGD)- Main switch board, breakers- communication system- Voice pipe, Engine room Telegraph, MCR/ECR machinery performance/monitoring indicator system, , navigation system- lighting system- AC & DC system- earthed and insulated power system-Emergency supplies- dynamic positioning system, AIO/ IOs

UNIT V - PROPULSION AND STEERING SYSTEM

Conventional propulsion system (Prime mover to Propeller including Thrust Block plumber block Gear Box etc.) Electrical propulsion- diesel propulsion system – CODOG, CODAG- power flow schematic- single line layout- steering gear system- stern tube bearing- oil lubricated stern tubes- controllable pitch propeller- thrusters, Active rudder, Steering gear system

Total : 45 Hours

TEXT BOOKS

- 1. G.O.Watson, Marine Electrical Practice, Butterworth Heineman, 1990
- 2. Harrington L.Roy, Marine Engineering, SNAME Publications, 1992
 - 3. Chirstopher Lavers and Edmund G.R. Kraal, Reed's Vol.7, Advanced Electro technology for marine engineers, 2014

REFERENCES

1. E. A. Fernandez, Marine Electrical Technology, 2014

2. Mukund R. Patel, Electrical Power Systems, , 2012

3. Generation, Transmission and Utilisation of Electrical Power, A.T. Starr, 1957

Designed by	"Department of Naval Architecture & Offshore Engineering"
Designed by	Department of Navai Architecture & Offshore Engineering

PROGRAMME	BE-Na	aval Architecture	& Offshore En	gineering				
Course Code	Course	e Name:			L	Т	Р	С
UCNA605		AMICS OF OFF JCTURES	SHORE		3	0	0	3
Year and Semester	III Yea	ar (VI Semester)		Contact hou (3Hrs)	urs per we	ek		
Prerequisite course	NIL							
		Humanities and Social Sciences	Management courses	nt Professional Core Professional Electiv				
Course Catego	ory						\checkmark	
Basic Science Engineering Science Open Elective Mandatory								
Course Objectives	1	provide fundamen hods needed to a					mathemat	tical

			St	udents v	vill be	able to									
			1		Formulate a structural model and natural forces imposed by the ocean environment.										
			2	Apply	the st	iffnes	s meth	od to	analyz	e bean	ns, trus	ses, and	d frame	S	
Cours	se Out	come	3	3 Calculate wave forces on Offshore Structures											
			4	4 Evaluate structural response of the structure in irregular seas											
			5			-		-	-			•	n by usi tta metl	ng diffe 10d)	erent
			6	Apply	struct	tural d	ynami	ics to 1	narine	struct	ures				
POs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	2	2	2	2	1	-	2	1	-	2	-	1	2	2	2
CO2	2	2	2	2	2	-	2	1	-	2	-	1	2	2	2
CO3	3	3	2	2	2	-	2	1	-	2	-	1	2	2	3
CO4	2	2	2	2	2	-	2	1	-	2	-	1	3	2	3
C05	2	3	2	2	2 2 - 1 1 - 2 - 1 2 2									2	
C06	3	3	2	3	3 2 - 1 1 - 2 - 1 2 2 3								3		
Avg.	2.3	2.5	2	2.1 1.8 - 1.6				1		2		1	2.1	2	2.5
COR	RELATI	ON LEV	ELS		1. SLIGH	IT (LOW)	2. N	IODERA	TE (MED	OIUM)	3.	SUBSTAI	NTIAL (HI	GH)

UNIT I - EFFECT OF ENVIRONMENT ON OCEAN STRUCTURES

Introduction to different types of ocean structures - Development of structural forms for deep and ultra-deep waters - Environmental forces - Structural action of ocean structures

UNIT II – SINGLE DEGREE OF FREEDOM SYSTEMS

Characteristics of single degree-of-freedom model - Methods of writing equation of motion: comparison of methods - Free and forced vibration of single degree-of-freedom systems - Undamped and damped systems - Formulation of equation of motion - Examples - Coulomb damping -Comparison of damped and undamped forced vibration -response build up. Estimate of damping: Classical damping, Rayleigh and Caughey - Damping by mode superposition - Numerical problems in single degree-of-freedom systems - Two degrees-of freedom systems - Formulation of equation of motion

UNIT III - MULTI DEGREE OF FREEDOM SYSTEM

Eigenvalues and eigenvectors - Orthogonality of modes - Study of multi degrees-of-freedom systems - Equations of motion - Natural frequencies and mode shapes - Stodola, Rayleigh-Ritz and influence coefficient methods, Dunkerley - Matrix methods for dynamic analysis – Modal response method -Modal mass contribution - Example problems - Duhamel's integrals

UNIT IV - APPLICATION OF STRUCTURAL DYNAMICS TO MARINE STRUCTURES

Application of structural dynamics to offshore structural problem, Fluid-structure interaction – Dynamic response analysis of offshore jacket platforms, Articulated Tower, response control by Tuned mass damper, or viscous damper, Development of Tension Leg Platforms and geometric optimization - Dynamic analyses of TLPs involving generation of Mass, stiffness and damping matrices of TLP from first principles.

UNIT V - DYNAMIC ANALYSIS METHODOLOGY

Numerical evaluation of response of SDOF a using Newmark-B method, Runge Kutta method

Total : 45 Hours

TEXT BOOKS

1. Anil K. Chopra. 2003. Dynamics of structures: Theory and applications to earthquake Engineering: Pearson Education, Singapore

2. Clough and Penzien, Dynamics of Offshore Structure; Computers and structures, Inc

3. Arvid Naess and Torgeir MOan. 2013. Stochastic dynamics of marine structures, Cambridge University Press, New York, USA

REFERENCES

1. Chakrabarti, S. K. 1987. Hydrodynamics of Offshore Structures: Computational Mechanics.

2. Chakrabarti, S. K. 1990. Non-linear method in offshore engineering, Elsevier Science Publisher, The Netherlands.

3. Chakrabarti, S. K. 1994.Offshore Structure Modelling: World Scientific.

4. Clauss, G. T. et al. 1992. Offshore Structures, Vol 1 - Conceptual Design and Hydromechanics: Springer, London.

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAMME	BE-Na	aval Architecture	& Offshore En	gineering								
Course Code	Cours	e Name:			L	Т	Р	С				
UCNA606		ODUCTION TO LYSIS) FINITE ELI	EMENT	3	0	0	3				
Year and	ek											
Semester				(3Hrs)	-							
Prerequisite course	NIL	VIIL										
	1	Humanities and Social Sciences	Management courses	Professio	onal Core	Professional Elective						
Course Catego	ory					✓						
		Basic Science	Engineering Science	Open E	lective	N	landatory					
			· (* · · 1		1 1.	. 1 .1	1 •	1 1 .				
Course Objectives		uttain a foundation e the fundamento	•		od and to	study the	basic met	nods to				
Course Outcome	Stud	Students will be able to										
	1 (Understand the ba	asics of struct	ure types, l	oads and	analysis						

			2	Solve	the pro	oblem	of Ba	r and	Truss							
			3	Analyz	Analyze the beam and frame problems											
			4	Unders	Understand the various study of plate problems											
			5	Implement and understand the basics of integration												
			6	Inculca genera		usage	e of fi	nite el	ement	tool ir	the ar	ea of s	olid me	chanics	s in	
POs / COs	PO1	PO2	POS	B PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3	
CO1	3	3	-	-	2	-	-	1	-	2	-	1	1	1	3	
CO2	3	3	-	-	2	-	-	1	-	2	-	1	1	1	3	
CO3	3	3	-	-	2	-	-	1	-	2	-	1	1	1	3	
CO4	2	2	-	-	2	-	-	1	-	2	-	1	1	1	2	
C05	3	2	-	-	2	-	-	1	-	2	-	1	1	1	2	
C06	3	3	-	-	2	-	-	1	-	2	-	1	1	1	2	
Avera	2.8	2.6			2			1		2		1	1	1	2.5	
CORI	CORRELATION LEVEL		/ELS		1. SLIGH	IT (LOW)	2. N	2. MODERATE (MEDIUM)				3. SUBSTANTIAL (HIGH)			

UNIT I – BASICS OF STRUCTURE AND LOADS

Introduction to Matrix operations; Introduction to redundant structures; 1D, 2D and 3D structures - Bar, Beam, Shaft, Plate & Shells; Types of loads.

UNIT II – BAR ELEMENT AND NUMERICAL TECHNIQUES

Bar and Truss problems; Numerical technique for structural problem – Finite difference method, Finite element method, Finite strip method

UNIT III - BEAM AND FRAME ELEMENT

Beam & Frame Element; Shape functions

UNIT IV – PLATE ANALYSIS

FEA of plates – Plane stress element (constant strain element), Plate bending (four nodded element) and Iso-parametric element.

UNIT V: NUMERICAL INTEGRATION

Numerical integration-Newton-Cotes rules, Trapezium rule, Simpson's rule, Error term, Gauss-Legendre rules, Changing limits of integration, Gauss-Leguerre rule.

Total : 45 Hours

TEXT BOOKS

- 2. Bhatti, M.A., Fundamental Finite Element Analysis and Applications: with Mathematica and Matlab Computations, Wiley, 2005.
- 3. Reddy, J. N., An Introduction to the Finite Element Method, 3rd Edition, McGraw-Hill Science/Engineering/Math, 2005.
- 4. Logan D. L., A First Course in the Finite Element Method, Thomson- Engineering, 3rd edition, 2001.

REFERENCES

1. Chandrupatla T. R., and Belegundu, A. D., Introduction to Finite Elements in Engineering, Prentice Hall, 2003.

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAMME	BE-Na	BE-Naval Architecture & Offshore Engineering											
Course Code	Course	e Name:			L	Т	Р	С					
UCNA607		INICAL ASPEC DLING IN POR			3	0	0	3					
Year and Semester	III Yea	ar (VI Semester)		Contact hours per week (3Hrs)									
Prerequisite course	NIL												
Course Catego	Dry	Humanities and Social Sciences	Management courses	Profession	nal Core	Profess	sional Elec	tive					
	J	Basic Science	Engineering Science	Unen Elective Mandatory									
				~									

Course Objectives			To study the different methods and factors affecting Ship Handling in Port and												
			Ha	rbour i	region	S									
			Students will be able to												
Course Outcome			1	1 Explain the basic maneuvering principles applicable in restricted waters											
			2	Express the different methods of berthing/unberthing and towing procedures											
			3	Choose mooring and anchoring systems.											
			4	Propose docking plan and stability requirement											
			5	Explain different ship handling procedure											
			6	Solve	the shi	ip han	dling	proble	ems in	ports a	and ha	bors			
POs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
C01	-	-	1	1	2	1	-	-	-	2	-	1	1	2	2
CO2	-	-	2	2	1	1	1	-	-	2	-	1	2	1	2
CO3	-	-	2	2	1	1	1	1	-	2	-	1	2	1	2
CO4	-	-	2	2	1	1	1	1	-	2	-	1	2	1	2
C05	-	-	2	2	2	1	1	1	-	2	1	1	2	1	2
C06	-	-	2	2	2	1	1	1	-	2	1	1	2	1	2
Avg			1.8	1.8	1.5	1	1	1		2	1	1	1.8	1.1	2
COR	RELATI	ON LEV	VELS		I. SLIGH	IT (LOW)	2. N	IODERA	TE (MED	DIUM)	3.	SUBSTAN	NTIAL (HI	GH)

UNIT I - BASIC MANEUVERING PRINCIPLES IN PORTS AND HARBOURS

Harbour and Port Infrastructure, Design aspects of harbours and ports, Basic Ship Manoeuvring principles, Factors affecting the maneuvering characteristics, Stopping ability, Factors affecting the stopping ability, Crash Stop, Ship turning characteristics, Factors affecting the turning

UNIT II - SHIP HANDLING IN RESTRICTED WATERS

Concept of Pivot point in Ship handling, Transvers trust, Vessel movement with alternative propeller systems, Ship turning in restricted waters, Different procedures for berthing the ship, Unberthing of ships, Ship entering the dock.

UNIT III – TOWING OPERATIONS

Shallow water effects, Squat and affecting factors, Interaction effects – Bank Cushion effect, Interaction between vessels, Operations with Tugs, Types of Tugs, Girting the Tug, Bollard Pull, Towing of ships – estimation of required tow force. Towing equipments

UNIT IV – MOORING AND ANCHORING OF VESSELS

Mooring arrangement, Anchoring Principles, Environmental loads on moored or anchored vessels, Mooring of ships to a quay, jetty or dolphin, Mooring to Buoys, Mooring and anchoring equipment in ports

UNIT V – DOCKING OF SHIPS

Floating docks, caisson dock gates and falling leaf type flap gates, Dry docks and docking of a ship – loads on blocks; trim and stability during docking

Total : 45 Hours

TEXT BOOKS

1. Ship Handling: Theory and Practice, David J House, Elsevier, 2007

2. Advanced Ship Handling, Per-Ake Kvick, 2012

3. Anchor Practice – A Guide for Industry, David J House, Witherby, 2001.

REFERENCES

1. The Complete Book if Anchoring and Mooring, Earl R Hinz, Cornell Maritime Press, 1986

2. Dry Docking and Shipboard Maintenance, David J House, Witherby, 2003.

3. Working with Tugs, Alan Palmer, Steamship Mutual, 2008

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAMME	BE-Na	aval Architecture	& Offshore En	gineering				
Course Code	Course	e Name:			L	Т	Р	C
UCNA608		ESTIMATION A BUILDING AND			3	0	0	3
Year and Semester	III Yea	ar (VI Semester)		Contact how (3Hrs)	urs per we	ek		
Prerequisite course	NIL							
Course Catego)[]]/	Humanities and Social Sciences	Management courses	Professio	nal Core	Profes	sional Elec	ctive
course callege	, y	Basic Science	Engineering Science	Open E	lective	N	Iandatory	
				~	1			
Course Objectives		 Awareness of Student shou 				e manage	ments cor	icepts

						bout th g indus		certif	ication	ns and r	nanage	ment p	ractices	in the s	ship
			Stı	idents v	vill be	able to									
			1	Estim	ate the	cost o	of the	ship bi	uilding	5					
Cour	se Out		2	Evalu	ate the	chart	ering 1	nethoo	ds base	ed on d	esign				
Cour	se Ou	come	3	Under	stand	the ma	anager	nent c	oncept	ts.					
			4	Analy	se the	econo	mics 1	require	ements	in ship	buildi	ng			
			5	Illustr	ate the	Port	safety	codes							
			6	Devel	op the	conce	pts of	Mana	gemer	nt based	l skills				
POs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	-	-	1	1	2	1	-	-	-	2	-	1	1	2	2
CO2	-	-	2	2	1	1	1	-	-	2	-	1	2	1	2
CO3	-	-	2	2	1	1	1	1	-	2	-	1	2	1	2
CO4	-	-	2	2	1	1	1	1	-	2	-	1	2	1	2
C05	-	-	2	2	2	1	1	1	-	2	1	1	2	1	2
C06	-	-	2	2	2	1	1	1	-	2	1	1	2	1	2
Avera g e			1.8	1.8	1.5	1	1	1		2	1	1	1.8	1.1	2
COR	RELATI	ON LEV	ELS		1. SLIGH	IT (LOW)	2. N	MODERA	ATE (MED	IUM)	3.	SUBSTAN	NTIAL (HIO	GH)

UNIT I- Cost Estimation

Shipbuilding cost estimation. Tendering and contracts. Freight market and operating economics.

UNIT II- Chartering of Sips

Chartering of ships. Alternative maritime designs. Overall optimization for speed size Combinations of ships

UNIT III- Economics

Relative importance of technical and economic features. Importance and use of ICT in maritime designs.

UNIT IV- Safety Management

Safety management concept in ships and ports and ISO certifications.

UNIT V- Management Practices

Management practices in maritime projects. Commercial, marketing, legal and financial aspects of shipbuilding and shipping

Total : 45 Hours

Text Books:

- 1. NAVSEA 2005 Cost Estimating Handbook
- 2. National construction estimator
- 3. Cost estimating Rodney D Stewart

References:

- 1. NAVSEAINST 7300.14B, Classification of Cost Estimates for Ships and Repair Availabilities
- 2. Joint Fleet Maintenance Manual (JFMM)

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAMME	BE-	- Naval Architecture & Offshore Engineering										
Course Code	Cours	e Name:			L	Т	Р	С				
UCNA609	FUN	DAMENTALS	OF SUBSEA	ENGINEERING	3	3 0 0						
Year and	III Ye	ear (VI Semester)		Contact hours per wee	ek							
Semester				(3Hrs)								
Prerequisite	NIL											
course												
Course estado		Humanities and Social Sciences	Management courses	Professional Core	Profe	ssional E	lective	5				
Course catego	ry											
		Basic Science	Engineering Science	Open Elective	1	Mandato	ry					
				\checkmark								

Course	Objec	tives	expl	oratio	n and	to unc	lerstai	•	proce	dure in	0		v	he hydro Istructio	
				ents wi				ud-set	i syste	ms					
			Diud		in oe a										
			1	Ide	entify t	the ma	in cor	npone	nts of	subsea	field a	rchitec	ture.		
			2	Mo	onitor	he installation, operation and control of subsea equipment									
Course	Outco	me	3	Ad	apt kn	owled	lge on	future	e scop	e and c	halleng	ges in S	ub-Sea	engine	ering
			4	Make layout of Sub-Sea systems and support systems											
			5	Ev	aluate	subse	a insta	allation	n and i	interve	ntion n	nethods	5		
			6	6 Interpret a subsea production system											
			0	Inte	erpret	a subs	sea pro	Jauch	on sys	tem					
POs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	-	-	1	1	2	1	-	-	-	2	-	1	1	2	2
CO2	-	-	2	2	1	1	1	-	-	2	-	1	2	1	2
CO3	-	-	2	2	1	1	1	1	-	2	-	1	2	1	2
CO4	-	-	2	2	1	1	1	1	-	2	-	1	2	1	2
C05	-	-	2	2	2	1	1	1	-	2	1	1	2	1	2
C06	-	-	2	2	2	1	1	1	-	2	1	1	2	1	2
Avera g e			1.8	1.8	1.5	1	1	1		2	1	1	1.8	1.1	2
COR	RELATI	ON LEV	ELS		1. SLIGH	IT (LOW)	2. N	10DERA	TE (MED	IUM)	3.	SUBSTAI	NTIAL (HI	GH)

UNIT I - INTRODUCTION TO SUB SEA ENGINEERING

Introduction to oil and gas industry: general view of oil and gas industry. Sea and subsea environment, Introduction to offshore oil and gas exploration methods, Overview of Deepwater developments: introduction, deep-water areas and potential, challenges. Metocean and environmental conditions, the influence of wave, wind, tide and current on marine operations, Existing Subsea Facilities

UNIT II - SUBSEA PRODUCTION SYSTEM

Major components of the subsea production system- Subsea Production Tree, Plugs, Pipeline and Flow line, Subsea manifold, Umbilical, Host Facility, Termination Unit, Production risers, Template and Jumpers.

UNIT III - SUBSEA STRUCTURES AND ARCHITECTURE

Different lay outs of Sub-Sea systems, Description of each of the pieces of the subsea infrastructure, Deep Offshore Drilling and Cementing: Procedures, equipment, rig hydraulics, casing support systems.

UNIT IV - SUBSEA OPERATION AND CONTROL

Subsea processing, subsea control systems- components required to operate a subsea system- Down Hole Valves, Down Hole Pressure & temperature Transmitters, Subsea Tree Valves, Subsea Tree instrumentation Subsea Manifold/flowline Instrumentation, Power Supplies, Hydraulic Supplies, Programmable Controllers ,Subsea Control Equipment, Direct Hydraulic, Electro Hydraulic Control System ,Multiplexed hydraulic Control System; Well Testing, Flow assurance in subsea design and configuration.

UNIT V - SUBSEA INSTALLATION AND INTERVENTION

Installation Methods- Overview of the installation of subsea plant, risers and Offshore pipelines, tankers, offshore separation facilities and storage and the main intervention methods including AUVs, ROVs and divers; Subsea Monitoring System, Sub-Sea challenges, Field Economics and Future Challenges.

Total: 45 Hours

TEXT BOOKS

1. Bai Young and Qiang Bai, 2010, Subsea Engineering Handbook, Elsevier, 910 pp

2. Bai, Y and Bai, Q. (2005). Subsea Pipelines and Risers. I Edition. Elsevier.

3. Chakraborty S.K.: Handbook of offshore engineering volume I & II 3 IADC deepwater control guidelines.

4. James G. Speight, 2014, Handbook of Offshore Oil and Gas Operations, Gulf

Professional Publishing, 428 pp

REFERENCES

- 1. Construction of Offshore and Marine Structures Ben C. Gerwick, Jr.
- 2. An Introduction to Offshore Engineering Angus Mather
- 3. Rabia H.1995; Well Engineering and Construction. 640 pp.
- 4. Mitchel Robert L (Editor), Drilling Engineering. V 2, 2007, In Lake L W (Editor)

Petroleum Engineering Handbook, SPE International, 770 pp.

Designed by "Department of Naval Architecture & Offshore Engineering "

PROGRAMME	BE-Na	E-Naval Architecture & Offshore Engineering										
Course Code	Course	Name:			L	Т	Р	С				
UBMEC02	MARI	NE ENGINEER	ING - II		3	0	0	3				
Year and	III Yea	r (VI Semester)		Contact hours per week								
Semester				(3Hrs)								
Prerequisite course	NIL											
		Humanities and Social Sciences	Management courses	t Prof	essional Co	ore	Professional E	Elective				
Course Catego	ory				\checkmark							
	Basic ScienceEngineering ScienceOpen ElectiveMandate											

Course															
Course	e Obje	ctives							~					nal and	power
					-			ie prin	ciple	behind	marine	e refrig	eration		
			Stu	idents v	vill be	able to									
			1	Identi	fy the	differ	ent pu	mp sy	stem i	in ships	s and th	eir arra	angeme	nts	
			2	Expla	in the	metho	d of p	ower t	ransm	ission	and ma	rine re	frigerat	ion	
			3	Recon	nmenc	l suita	ble the	ermal s	system	1					
Cours	se Out	come	4	Illustr	Illustrate Power transmission system										
			5						-	refrige	ration s	vstem			
						-									
			6		•	•		-	•				•	system	
						refrige	eration	, and a	air cor	ndition1	ng) in :	suppor	t of the	maritim	ie
				sector	•										
DO- /	1	, , , , , , , , , , , , , , , , , , ,			1	1	1	1	1	1	1	1	1		1
POs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	-	-	1	1	2	-	1	1	-	2	-	1	1	2	2
CO1 CO2	-	-	1	1	2	-	1	1	-	2 2	-	1	1	2 2	2
	-														
CO2	-	-	-	1	2	-	1	1	-	2	-	1	1	2	2
CO2 CO3	-	-	-	1	2	-	1	1	-	2 2	-	1	1	2 2	2
CO2 CO3 CO4	-	-	-	1 1 1 1	2 2 2	-	1 1 1	1 1 2	- - 1	2 2 2	-	1 1 1	1 1 1 1	2 2 2 2	2 2 2 2
CO2 CO3 CO4 C05	- - - 1	- - - 1	-	1 1 1 -	2 2 2 2	-	1 1 1 1	1 1 2 2	- - 1 -	2 2 2 2 2	-	1 1 1 2	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2

UNIT I - MARINE PUMPS, PIPES AND VALVES

Marine and special duty pumps, Details of pumps for marine purpose viz. condenser circulating pumps. Condensate and drain pumps, boiler feed pumps, bilge and ballast pumps rotary pumps-ejectors; purpose of ejectors --details of construction. Marine piping – various types of piping system fitted-in ships, Expansion arrangements for pipes, valves, types used in Marine Practice. Materials and corrosion in pipes- color codes for pipes.

UNIT II - MARINE THERMAL SYSTEM

Aux systems – Air compressors, boilers, heat exchangers, cooling, evaporators, distillers; waste heat recovery systems, hot water, drinking water, cooling water and sea water systems. Fuel systems, lubricating oil system-filters, coolers; centrifuges and clarities: Bilge and Ballast systems - sewage disposal, Oily water separator, incinerator, galley equipments

UNIT III - STRUCTURAL COMPONENTS OF SHIPS

Deck machine and hull equipment - mooring, anchor handling, cargo handling -dry Cargo handling equipment - winches, cranes, Cargo gear, patent hatch covers, bulk heads, liquid cargo, tanker cargo, pipe layout systems - loading – unloading - ventilation and cleaning of tankers, L.S.A.Boats & rafts, emergency equipment, water tight doors, stabilizers and bow thruster.

UNIT IV - POWER TRANSMISSION SYSTEM

Steering gears in marine use - different types ~ description construction, operation and maintenance. Shafting arrangements, stern tubes and, glands, - oil, Lubricated stern tubes, - shaft seals shaft alignment, Thrust block - reduction gearing. Propulsion - types for marine propulsion, constructional details, fixing, maintenance and operation, Ship, stabilizers; Engine room cranes, chain blocks; tackles; Anchors, anchor cables

UNIT V - MARINE REFRIGERATION

Safety systems- firefighting equipment Instrumentation & Control, watch keeping system UMS classes, Air Compressors, heat exchanger, Refrigeration - Definition and purpose - Principle of operation of Simple vapor compression system, Representation on t-s and p-h charts, Estimation of coefficient of performance and refrigerant flow rate, Factors affecting coefficient of performance - Absorption refrigeration system - Comparison with vapor compression system, Principle of operation of vapor absorption system like aqua ammonia system, Electrolux system, Lithium bromide absorption refrigeration system etc. - Steam jet refrigeration system-working - principle – Refrigerants - Classification and designation properties and requirements - Important refrigerants like NH3, CO2, Methyl chloride, Methylene chloride, Freon's etc. Factors influencing selection of refrigerants - Secondary refrigerants

Total : 45 Hours

TEXT BOOKS

- 1. Harrington; Marine Engineering, SNAME Publications,
- 2. Pounder C.C; Marine Diesel Engines, Newten Butterworths, London.Khetagurov, M;
- 3. Marine Auxiliary Machinery and systems, Peace Publishers, Moscow.

- 4. Taylor, D.A.; Introduction to Marine Engineering
- 5. Reed's Marine Engineering for Naval Architect

Designed by	"Department of Marine Engineering"

PROGRAMME	BE-N	laval Architecture	e & Offshore En	gineering							
Course Code	Cours	se Name:			L	Т	Р	C			
UCNA6PA		P DESIGN CAL		-							
	DRA	WING & DRA	FTING - IV (S	DCADD							
	- IV)				0	0	4	2			
	1					1	1	1			
Year and	III Ye	ear (VI Semester)		Contact hou	irs per we	ek					
Semester				(4Hrs)							
Prerequisite	NIL										
course											
Course categor	Management courses	Professiona	Professional Core Professional Elective								
				~							

				Basic	Scienc	e I	Engine Scier	-	Oj	pen Ele	ctive		Mar	ndatory	
Course (biecti	Ves	1	To atud	. 8	form	bridano	lunomi		ulation	in chi				
Course C	Jojeen	1705	2.	To study To study To unde	y the be	ehavio	or of Pr	opelle	r & Ri	ıdder in	variou	is condi		ahin	
				udents w						ouable	lengui	calcula		a snip	
			1	Estimate	e the res	istance	e of a sl	hip for	various	s speeds					
			2	Examin	e the po	wering	g based	on Mo	del test	ing					
Course (Dutcor	ne	3	Develop	the eff	iciency	y of the	propel	ler in v	arious c	onditior	15			
			4	Design	he rudd	ler bas	ed on it	s Mane	uverin	g behavi	ior				
			5	Evaluate	e the nu	mber o	of bulkh	neads re	equired	based o	n flood	able calc	ulation		
			6	Underst	and the	behavi	ior of sl	hip in v	arious	sea conc	litions				
POs / COs	PO1	PO2	PC	03 PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	1.0	1.0	-	-	1.0	-	2.0	3.0	1.0	2.0	1.0	1.0	-	2.0	1.0
CO2	3.0	2.0	1.0) -	2.0	1.0	1.0	1.0	-	-	2.0	-	-	3.0	1.0
CO3	3.0	2.0	2.0) -	2.0	1.0	1.0	1.0	-	-	2.0	-	1.0	3.0	1.0
CO4	2.0	2.0	1.0) -	1.0	1.0	-	2.0	1.0	2.0	2.0	-	2.0	3.0	-
C05	2.0	2.0	1.0	1.0	1.0	2.0	-	-	1.0	2.0	3.0	1.0	-	3.0	2.0
C06	3.0	2.0	1.0	2.0	3.0	2.0	1.0	1.0	1.0	3.0	2.0	2.0	-	3.0	1.0
Avg.	2.3	1.8	1.0	0.5	1.7	1.2	0.8	1.2	0.7	1.5	2.0	0.7	0.5	2.8	1.0

LIST OF ASSIGNMENTS

- 1. Resistance calculation for various speeds using Theoretical method.
- 2. Extrapolation method of Resistance & powering from model to ship.
- 3.Estimation of propeller efficiency for the selection of Engine
- 4. Design of Rudder
- 5. Sea keeping calculations
- 6. Floodable length calculations

TEXT BOOKS

- 1. Eric c.tupper, Introduction to naval architecture, reed Elsevier India pvt lmt,2010
- 2. Principle of naval architecture, vol I II & III.

REFERENCE BOOKS:

1. Robert Taggard, ship design & construction, The society of naval architecture & marine engineers, 1980

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAMME	BE-N	BE-Naval Architecture & Offshore Engineering										
Course Code	Cours	e Name:			L	Т	Р	С				
UBMECPA	MAR	INE ENGINEE	ERING LABOI	RATORY	0	0	2	1				
Year and Semester	III Ye	ar (VI Semester)		Contact hou (2Hrs)	irs per we	ek						
Prerequisite course	NIL			(21113)								
Course catego	ry	Humanities and Social Sciences	Management courses	Profession	al Core	Profess	sional Elec	tive				
				~								

				Basic	c Scien	ce	Engine Scier	-	Oŗ	oen Elec	ctive		Mano	latory	
Course	Objec	tives	To	carry c	out the	labor	ratory i	to und	erstan	d vario	ous Eng	gine pa	rts, inst	allation	and
				nstructi			•					· •			
			Stu	idents w	ill be a	ble to									
			1	Disting	guish tl	ne vai	rious p	arts ar	id con	nponen	ts in a l	Marine	Engine	;	
Cours	e Outc	come	2	Identif compre		gain k	nowle	dge or	o cons	truction	n detail	s of ge	nerators	s and	
			3	Differe ship	entiate	diffeı	ent shi	ip han	dling	machin	eries a	nd equi	pments	on boa	rd the
			4	Unders	standin	g the	key fe	atures	of the	e piping	g syster	ns in sl	nips		
			5	Under	stand t	he m	ooring	arrang	gemen	ts on th	ne ship				
			6	Use the	e know	ledge	e gaine	d obse	erving	the Ma	achiner	y Parts			
POs / COs	PO1	PO2	PO3	B PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	-	-	-	-	1	1	2	1	1	2	2	2	2	2	2
CO2	-	-	-	-	1	1	1	1	-	2	-	1	2	1	2
CO3	-	-	-	-	1	1	2	1	1	2	2	2	2	2	2
CO4	-	-	-	-	1	-	-	-	3	2	1	-	1	2	2
C05	-	-	-	-	1	1	2	1	1	2	2	2	2	2	2
C06	-	-	-	-	1	-	-	1	3	2	2	1	1	2	3
Avg.					1	0.7	1.2	0.8	1.3	2	1.5	1.3	1.7	1.8	2.2

List of Experiments

Main Engine Identification/Construction details of various parts of Main Engine – Cylinders, Cylinder Heads, Pistons, Turbocharger, Governors, Base Plate, Foundation and fitment, Foundation bolts, Chalk fats/steel chalks, Crankshafts, Fly wheels, L O Sump, L O Pump, S W Pump, F W Pump etc.

Starting Air System Identify Various Components, Air bottles, Tracing of air system valves, Valves, Main engine Starting Air valve, Various components of air bottles, Securing arrangements of air bottles.

Identification of construction details ship generator, Installation details of Prime mover, and alternator, MSB parts, Power distribution system, Starting and stopping checks of generator

Identification of construction details of starting air compressor. Tracing the air system line from air compressor to air bottle, Note down the material of system pipes and valve details.

A/C and Refrigeration system

Identify the constructional details of Boilers, FW generators, Heat exchangers, Evaporators, Distillers, Hot water, Cooling water and Sea water systems.

Mooring, Anchor handling, Cargo handling equipment, Liquid cargo handling systems, Engine room cranes, Chain blocks, Anchors, Anchor chain cables, Fire Fighting arrangements, Lifesaving equipments

Total : 30 Hours

- 1. Harrington; Marine Engineering, SNAME Publications
- 2. Pounder C.C; Marine Diesel Engines, Newnen Butterworths, London.
- 3. Khetagurov, M; Marine Auxiliary Machinery and systems, Peace Publishers, Moscow.
- 4. Taylor, D.A.; Introduction to Marine Engineering
- 5. Reed's Marine Engineering for Naval Architect
- 6. Marine Pumps and Piping Systems.

Designed by	"Department of Marine Engineering"

PROGRAMME	BE-N	aval Architecture	& Offshore En	gineering				
Course Code	Cours	se Name:			L	Т	Р	С
UCNA6PB	SOF	TWARE LABO	RATORY - III	[0	0	2	1
	<u>I</u>					1	1	
Year and	III Ye	ear (VI Semester)		Contact hou	ırs per we	ek		
Semester				(2Hrs)				
Prerequisite course	NIL							
Course catego	ry	Humanities and Social Sciences	Management courses	Profession	al Core	Profes	sional Elec	otive
				\checkmark				

				Basic	Scien	ce []]	Engine Sciei	-	Oj	pen Ele	ctive		Man	idatory	
Course C	Dbjecti	ives		earn th gn soft		ign pr	ocedu	re for	the fix	xed offs	shore s	tructur	e using	the giv	en
Course	Outco	ome	1 (2 /	lents wi Create i Analyze	model e the s	of th	are uno	der va	rious o						
POs /	PO1	PO2	3 I PO3	nterpre	et and	valida PO6	ete the	result	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
COs		102	105	104	105	100	107	100	10)	1010	1011	1012	1501	1502	150 5
CO1	1.0	1.0	-	-	1.0	-	2.0	3.0	1.0	2.0	1.0	1.0	-	2.0	1.0
CO2	3.0	2.0	1.0	-	2.0	1.0	1.0	1.0	-	-	2.0	-	-	3.0	1.0
CO3	3.0	2.0	2.0	-	2.0	1.0	1.0	1.0	-	-	2.0	-	1.0	3.0	1.0
CO4	2.0	2.0	1.0	-	1.0	1.0	-	2.0	1.0	2.0	2.0	-	2.0	3.0	-
C05	2.0	2.0	1.0	1.0	1.0	2.0	-	-	1.0	2.0	3.0	1.0	-	3.0	2.0
C06	3.0	2.0	1.0	2.0	3.0	2.0	1.0	1.0	1.0	3.0	2.0	2.0	-	3.0	1.0
Avg.	2.3	1.8	1.0	0.5	1.7	1.2	0.8	1.3	0.7	1.5	2.0	0.7	0.5	2.8	1.0
CORI	RELATI	ON LEV	/ELS	1	I. SLIGH	IT (LOV	V)	2. N	IODERA	TE (MEC	IUM)	3.	SUBSTAN	NTIAL (HI	GH)

Introduction to the Jacket Structure modelling, Creation of sections and materials, Jacket structure generation, Topside structure generation, Modelling and analysis

Total : 30 Hours

REFERENCES

1. Software Manual

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAMME	BE-Naval Architecture & Offshore Er	ngineering				
Course Code	Course Name:		L	Т	Р	С
UBIVCPZ	INDUSTRIAL/SHIPYARD TRAI	NING	0	0	0	2
Year and Semester	III Year (VI Semester)	Contact hou	urs per wee	k		
Prerequisite course	NIL					

G				and	nanitie Social iences		Manage cours		Prot	fessiona	al Core	P	rofessio	nal Elec	tive
Coi	irse ca	ategory								\checkmark					
				Basic	c Scien	ce	Engine Scier	-	Oj	Open Elective			Mandatory		
Course	Objec	tives	To	attain	a good	l knov	wledge	on pr	esent	indust	rial pro	actices	and ap	plying	the
			exp	perienc	e in ex	ecutii	ng pro	ject/d	esign		-				
			Stu	dents w	rill be a	ble to)								
Course	e Outc	ome	1	Unders	stand t	he ind	dustry	functi	oning	and ci	ilture				
													ala		
			2	Relate	elate the class room learning with the industrial approach										
						elatio	on betw	veen v	vhat is	taugh	t durin	g the c	lasses a	nd the	industr
				practic											
			4	Interpr	et the	proce	edural	aspect	s of th	ne proje	ect bei	ng und	ertaken	in the i	industr
									he cla	ssroon	n-based	l learni	ng to fu	ulfil the	tasks
				given o	during	the in	nternsł	nip							
			6	Knowl	edge o	obtain	ed thro	ough t	he shi	pyard					
POs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	1	1	2	-	1	1	2	1	1	2	2	2	2	2	2
CO2	2	2	1	1	1	1	1	2	3	2	1	-	-	2	2
CO3	2	2	1	1	1	1	1	2	3	2	1	-	-	2	2
CO4	-	1	1	1	1	-	-	2	3	2	1	-	-	2	2
C05	2	2	1	1	1	-	-	1	3	2	2	1	1	2	3
	2	2	1	1	1	-	-	1	3	2	2	1	1	2	3
C06	1	+							2.6	2	1.5	0.7	0.7	2	2.3
C06 Avg.	1.8	1.6	1.1	0.8 1 0.5 07 1.5 2.6 2 1.5 0.7 0.7 2 2.3 1. SLIGHT (LOW) 2. MODERATE (MEDIUM) 3. SUBSTANTIAL (HIGH) 3. SUBSTANT											

GUIDELINES	
	hall undertake minimum of 3 weeks of internship in any organization related to the aval architecture and offshore engineering.
	hall be evaluated based on the viva voice conducted at the department after n of the same.
Designed by	"Department of Naval Architecture & Offshore Engineering"

SEMESTER : VII

PROGRAM	BE-Naval Architecture & Offshore	Enginee	ering		
Course Code	SHIP CONSTRUCTION	L	Т	Р	С
UCNA701		3	1	0	4
Year and Semester	IV Year (semester VII)		Со	ontact hours pe	er week
Prerequisite course	NIL			(4Hrs)	

6			Human and Sc Scien	ocial		nagem			essiona Core	al		Profess	sional I	Elective	2		
Course ca	Course category								✓								
		В	asic Sc	cience		gineeri Science	-	Open Elective		ve	Mandatory						
Course O	bjectiv	e 3. 4. 5.	Knov	wing th	ne vari e diffe ing the	rent an	alysis p	erform	ned for	the pip	eline d	esign.		constr	uction		
Course O	utcome	1.	Expl Expl Prop Iden Plan	lain the lain va oose su tify St asserr	on of the e various s itable ructura ibly, en in ship	ous ste stages storag al com rectior	eps inv and co ge prep ponen 1, outfi	olved a mpone paration ts tting, l	in the ents in n and j launch	fabrica volvec pre fat	ation p l durin pricatio	g ship on proc	constr cedure	ruction			
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	1	1	1	1	1	-	3	1	1	2	1	2	2	2	2		
CO2	1	1	1	1	3	3	2	1	1	1	2	1	2	2	1		
CO3	2	2	1	1	2	1	1	1	-	-	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
CO4	2	2	1	1	1	-	1	<u>- 1 2 2 1 2 3 1</u>									
CO5	2	2	2	2	1	-	-	1	1 2 2 - 3 3 2								
CO6	3 2 3 3 2 - 1 - 1 3 3 - 1 3 1																
AVERAGE	1.8	1.7	1.5	1.5	1.7	2.0	1.6	1.0	1.0	2.0	2.0	1.3	2.2	2.7	1.5		
CORRI LE	ELATIO VELS	DN	1.	SLIGH	IT(LOV	V)	2.1	MODEI	RATE(I	MEDIU	M)	3. SU	BSTAN	TIAL(H	HIGH)		

UNIT I - SHIP BUILDING AND MATERIALS

A typical ship construction program, Building berth, Building Dock, Multi-stage construction methods Equipment used in building berths. Use of Goliath cranes, Floating Docks, Ship types, Shipyard layout, Classification societies, development and application of classification rules, role of statutory bodies, Materials for ship construction, Structural steels, special steels, non- ferrous steels, non-metallic materials, material properties and testing of materials, Joining methods of materials

UNIT II – STORAGE, PREPARATION AND PRE-FABRICATION

Material handling, levelling, preservation and storage, transport system in steel stockyard, material preparation devices- cleaning, marking processes, Process of prefabrication, welding in prefabrication

and erection stages, The cutting process, Mechanical cutting, thermal cutting, optically and numerically controlled cutting, bending of rolled and built-up sections, plate bending. Nesting of plates

UNIT III - FABRICATION OF SUB-ASSEMBLIES, UNITS AND HULL ERECTION

Fabrication of sub-assemblies, flat sections, panels- flat and curved, double bottom sections, side tank units, fore-end and aft end structures, deck and bulkhead structures, Assembly of hull-units, Erection of hull-units on building berth/dock

UNIT IV - SHIP STRUCTURAL COMPONENTS

Functions and details of ship structural components, framing systems, single and double bottom construction, shell and deck plating, bulkheads, pillars, girders and hatch-coaming, machinery casings, super structures and deck- houses. Bow and stern structures, Bossing and struts, bilge keels and fenders

UNIT V – ASSEMBLY, ERECTION, OUTFITTING, LAUNCHING, TESTING AND TRIALS

Various components of outfitting, consisting of systems, equipment and fittings of hull, machinery and electrical groups. Hull Preservation methods, Various outfitting methods, Advanced outfitting, Methods of welding, metallurgy of welding weld defects, distortion and stresses in welds, testing of welds, Inspection and testing during various stages of ship construction, Testing of structures and tanks, Bollard tests and sea trials, Details of launching arrangements.

Practical: Shell Expansion and Nesting of a plate/ Docking Plan and Dry Docking of Ships

Total : 60 Hours

TEXTBOOKS:

- 1. EYRES, D.J, Ship construction, 1994
- 2. TAYLOR, D.A, Merchant ship construction ,2002
- 3. KEMP, Ship construction, 2002
- 4. PURSEY, H.J, Merchant ship construction ,2002

- 1. The Maritime Engineering Reference Book, A Guide to Ship Design, Construction and Operation Editors: Anthony Molland
- 2. Ship design and construction, Robert Taggart

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAM	BE-Naval Architecture & Offsl	hore Eng	gineering					
Course Code	Ship Design - II	L	Т	Р	C			
UCNA702	1 0	3	1	0	4			
Year and Semester	IV Year (semester VII)		Contact	t hours per w	veek			
Prerequisite course	NIL	(4Hrs)						

					and	anities Social ences		nageme	ent	Profes Co		P	rofessio	onal Ele	ective
C	ourse	catego	ry	-						\checkmark					
				-		asic ence		gineeri Science	-	Open E	lective	;	Ma	ndatory	7
					1. To learn about detailed ship design process and understand the										
Со	ourse	Objecti	ve							ip desi ship dı	0 1			Idersta	nd the
										e stude					
						1. Develop Capacity plan, Accommodation and other plans with respect to the Statutory Requirements									
C	ourse	Outcon	ne		 See state Categoria 	 Select electrical, navigation and communication equipment as per standards Calculate structural strength as per rules 									
					de 6. De	nalyze sign p evelop ompone	rocess ship	C			-				g ship system
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	2	2	1	2	2	2	3	2	2	2	2	3
CO2	2	1	2	2	2	1	1	2	1	2	2	2	2	2	2
CO3	2	1	2	1	2	1	1	2	3	1	2	1	2	2	2
CO4	3	3	3	3	3	2	2	2	1	3	3	3	3	3	3
CO5	2	2	1	1	2	1	1	2	1	1	2	1	2	2	2
CO6	2	2	2	2	2 1 2 2 3 3						2	3	2	2	2
AVERAGE	2.2	1.8	2.2	1.8	2.2	1.2	1.5	2.0	1.8	2.2	2.2	2.0	2.2	2.2	2.3
	CORRELATION LEVELS 1. SLIC					IT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANT						BSTAN	TIAL(H	HIGH)	

UNIT I - SHIP DRAWINGS AND PLANS

GA Plan, Capacity Plan, Accommodation and other plans, Introduction to rules based design and considerations in ship design, Statutory Requirements, Shipping route, escape plan

UNIT II - MACHINERY SELECTION, INSTALLATION AND PROPULSION SYSTEM

Selection of Main Machinery, Selection of propeller, Selection of Rudder and Steering Gear, Selection of Auxiliary Machinery, Introduction to Ship Systems

UNIT III –BASICS OF ELECTRICAL, NAVIGATION AND COMMUNICATION EQUIPMENT SELECTION

Electrical powering calculations, Sea load, Harbour load, Selection of Generators, Emergency generators, Switch boards, Power distributions, Cabling and other equipments, navigation and communication equipments, lighting requirements in accommodation and other important compartments

UNIT IV - SCANTLING CALCULATION AS PER CLASSIFICATION SOCIETY RULES

Introduction to Class Society rules, Scantling calculation for the given vessel as per particular classification society rule.

UNIT V - COST ESTIMATION

Ship design and Ship building cost - cost of material, machinery and propulsive installation, accommodation/equipment/outfitting, labour and overheads, Tender Document Preparation, TNC, PNC, contract documentation clauses, stage payment, Force Majure, liquidity damage- mandatory document with contract-milestones, stage payment etc.

Total : 60 Hours

TEXTBOOKS:

- 1. Ship Design Methodologies of Preliminary Design by ApostolosPapanikolaou
- 2. Practical Ship Design by D.G.M Watson
- 3. Ship Design for Efficiency and Economy byH. Schneekluth and V. Bertram
- 4. Ship Design and Construction by R.Taggart
- 5. Basic Ship Theory, Vol.1 & 2 by K.J.Rawson and E.C.Tupper
- 6. Principles of Naval Architecture, Vol. 1,2&3 by Ed.V. Lewis

- 1. Design of Ship Hull Structures by YausuhisaOkumoto. Yu Takeda & Masaki Mano . Tetsuo Okada
- 2. Marine Stuctural Design by Young BaiShip
- 3. The Maritime Engineering Reference Book, A Guide to Ship Design, Construction and Operation Editors: Anthony Molland
- 4. Ship design and construction, Robert Taggart

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAM	BE-Naval Architecture & Offs	BE-Naval Architecture & Offshore Engineering							
Course Code	Corrosion and Protection	L	Т	Р	С				
UCNA703	Engineering	3	0	0	3				
Year and Semester	IV Year (semester VII)		Contact	hours per w	veek				

Pre]	NIL					(3H	rs)								
					Humanities and Social Sciences Management courses Pro						Professional Core Professional E				ective	
C	ourse	catego	ry	-						~	/					
				-		asic ence		gineeri Science	-	Open E	lective	;	Ma	ndatory	1	
		01.1			1								11			
Co	ourse (Objecti	ve			o study otectic			protec	ctive coatings, standards and corrosi						
С	ourse (Outcon	ne		 Select the materials used in marine application Distinguish the various corrosion protection systems Practice the various standards and coating surveys Identify composite materials and its application in m environment Explain procedures in Non-destructive testing Assess corrosion and choose suitable corrosion prote method in marine industry 											
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	1	1	1	1	1	-	3	1	1	2	1	2	2	2	2	
CO2	2	2	1	1	2	1	1	1	-	- 1	2	-	3	3	2	
CO3	-	-		-	-	-		5	-	-	-		-	_	_	
CO4	2	2	1	1												
CO5	2	2	2	2										2		
CO6	3	2	3	3	2 - 1 - 1 3 3 - 1 3 1 12 10 14 15 10 20 20 15 22 27 17											
AVERAGE CORRE LE			1.3 1.0 1.4 1.5 1.0 2.0 2.0 1.5 2.2 2.7 IT(LOW) 2. MODERATE(MEDIUM) SUBSTANTIAL(I						3.	1.7 IGH)						

UNIT I - MARINE MATERIALS AND CORROSION BASICS

Different types of materials and their applications in marine environment. Properties and selection of materials for marine environment, Corrosion and corrosion protection methods, Codes of practice for materials in marine environment

UNIT II - PROTECTIVE COATINGS

Protective Coatings – Introduction: Health & Safety, Access Systems, Surface Preparation: Abrasive Blast Cleaning, Health and Safety, Blast Media, Abrasive Blast Cleaning Standards and Quality

Control, Abrasive Blast Cleaner Operational Procedures, Process Control, Paint Types, Paint Application Introduction Health and Safety, Paint Materials, Airless Spray Equipment, Conventional Air Spray Equipment, Plural Component Spray Equipment, Inspection Advancements in Corrosion protection

UNIT III - CORROSION PROTECTION & SURVEY

Cathodic Protection, Design & Construction, Marine PSPC Coating Failure, Metallic Coatings, Concrete, Coating Surveys Paint manufacture: Specialist Coatings ISO and Other International Standards, Quality Management, Paint Testing, Soluble Salts, Fire Protection

UNIT IV - COMPOSITE MATERIALS

Introduction to composites for marine environment

UNIT V - NON-DESTRUCTIVE TESTING

Introduction to Non-destructive testing, Repair and rehabilitation of marine structures, planning guidelines for maintenance of ocean structures, Structural health monitoring of ocean structures

Total : 45 Hours

TEXTBOOKS:

- 1. Handbook of Corrosion Engineering, Pierre R. Roberge
- 2. Principles of Corrosion Engineering and Corrosion Control, Zaki Ahmad

- 1. Corrosion and Protection (Engineering Materials and Processes), Einar Bardal
- 2. NPTEL lectures

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAM	BE-Naval Architecture & Offs	shore En	gineering		
Course Code	Experimental and Ocean	L	Т	Р	С
UCNA704	Instrumentation	3	1	0	4
		1	1		
Year and Semester	IV Year (semester VII)		Contact	hours per w	veek
Prerequisite course	NIL			(4Hrs)	

					and S	anities Social ences		nageme		Profes Co		Pr	ofessio	onal El	ective
C	ourse	catego	ry	-										\checkmark	
				-		usic ence		gineeri science	- (Open E	lective	;	Mai	ndatory	4
Co	ourse (Objecti	ve		1. To learn the experimental techniques, different instrument in ocean engineering and the calibration of various instruments										
					After of	comple	tion of	the co	urse, tl	ne stud	ents wi	ill be al	ble to:		
С	ourse (Dutcon	ne		 Apply the calibration procedure for the instrument marine field Define the principles of different acoustic and instruments Use various Measurement techniques in marine field Use testing facilities, data acquisition systems and a output Identify the different communication systems principles Design and Calibrate Instruments used in marine field 									nd po eld l analy s and	ortable ze the
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	3	2	2	2	2	2	1	1	2	2	2	2
CO2	1	1		1	2				1	1	1	-	1	1	1
CO3	2	2	-	3	2	-	1	1	2	3	2	2	2	2	2
CO4	2	2	-	3	2	-	1	1	2	3	2	2	2	2	2
CO5	-	-	2	1		-	2	1	1	1	1	-	2	1	2
CO6	2	2	1	3	3 2 1 2 1 2 3 2 2 2 2 2										2
AVERAGE	2.0	1.8	1.3	2.3	2.0	1.5	1.6	1.2	1.7	2.0	1.5	2.0	1.8	1.7	1.8
CORRI LE	ELATIO VELS	DN	1.	SLIGH	T(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(H							IGH)			

UNIT I - CALIBRATION OF INSTRUMENTS AND ERRORS IN MEASUREMENTS

Measurements and errors, Force transducer Calibration, Pressure transducer calibration, Calibration of Strain gauge, Calibration of accelerometers, calibration of inclinometer, LVDT -Displacement, Calibration of wave probe, Vibration and Flow Calibration.

UNIT II – PORTABLE AND ACOUSTIC INSTRUMENTS

ST meter, STD meter, CTD systems Ocean current meter, Silt meter, In-situ Turbidity meter, Underwater LUX meter, DO & pH meters, and composite types, bottom detection instruments, fish finding, resource estimations, aimed trawling, sub bottom profiling, bottom scanning (side scan sonar), sonar with PPI display, hydrographic echo sounders, and under water position fixing systems

UNIT III - MEASUREMENT TECHNIQUES

Measurement of regular and random waves, measurement of reflectivity and transmissivity, Wave force measurements on cylinders, measurement techniques for Drag and Inertia Forces,

UNIT IV - TESTING FACILITIES AND DATA ACQUISITION SYSTEMS

Hydrodynamic test facilities, Wave makers, Wave absorbers 2-D and 3-D Wave generation, Cavitations tunnel, Tide and Wave telemetering systems, Shipborne Data Acquisition Systems, Marine Meteorological Data Acquisition Systems, ocean data buoys, wave rider buoys

UNIT V - OCEAN COMMUNICATION SYSTEMS

Marine radios and regulations, radar, direction finders, Decca/ Loran systems, satellite position fixing systems, GPS and DGPS, Electronic marine safety instruments: Direction finding floating beacons, EPIRB, equipment for marine surveillance

Total : 60 Hours

TEXTBOOKS:

- 1. Instrumentation Measurement and Analysis -B.C Nakra and Choudhry
- 2. Measurement Systems and Applications, Earnest O. Deobelin, McGraw Hill, 1st edn. 1997
- 3. Instrumentation Systems and Devices, Rangan & Sharma, Tata McGraw Hill, 1st Edn., 1997

- 1. Instruction Manual for Oceanic Observations, U.S. Naval Oceanographic Office, N.Y., 2001
- 2. Instrument Methods of Analysis, Willard, Merrit & Dean, C B S Pub., 1st edn., 1992
- 3. NPTEL Lecture notes

Designed by	"Department of Naval Architecture & Offshore
	Engineering"

PROGRAM	BE-Naval Architecture & Offs	BE-Naval Architecture & Offshore Engineering							
Course Code	Small and High Speed	L	Т	Р	С				
UCNA705	Craft Design	3	1	0	4				
Year and Semester	IV Year (semester VII)	Contact hours per week							

Pre	erequis	ite cou	rse]	NIL					(4H	rs)			
					Humanities and Social Sciences Management courses					Professional Core			Professional Elective			
С	Course	catego	ry	-										\checkmark		
						asic ence		gineeri Science	-	Open E	lective		Ma	ndatory	7	
Co	ourse	Objecti	ve		1. To gain knowledge on various small crafts and high speed ves their hull forms and the effect of speed and resistance									essels,		
С	Course (Outcon	ne		 After completion of the course, the students will be able to: Describe the hull form of high speed crafts Identify the materials used for the hull form of high performance vehicles Design of High speed displacement crafts Design of Hydrofoil crafts Evaluate the performance of high speed crafts Interpret the performance of high speed crafts 								perfor	mance		
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	1	-	1	1	1	-	2	-	-	2	2	1	2	2	2	
CO2	2	2	2	1	2	- 2	1	2	1	2 2	2	2 2	2	2	$\frac{2}{2}$	
CO3	3	3	3	3	_		-	_	-	_	-			-	_	
CO4	5	5	3	5	1 2 1 2 2 3 2 2 3 2									2		
CO5	1	1	2	2										2		
CO6	1	2	2	2	2 1 2 1 2 1 2 2 2 2 2									2		
										2.3 TIAL(H	2.0 HIGH)					

UNIT I – INTRODUCTION TO HIGH SPEED AND SMALL CRAFTS

Introduction to small crafts, Classification of high performance vehicles, Comparison of vehicles on the basis of power, special design features of high performance vehicles

UNIT II – MATERIALS AND STRUCTURAL COMPONENTS

Materials for high performance marine vehicles, Structural design considerations, Propulsion machinery and propulsion devices

UNIT III – PLANING CRAFTS

High speed displacement craft: design procedures, estimation of power, systems design considerations; Planing craft: planing phenomena, estimation of power, hull form design.

UNIT IV – HYDROFOIL CRAFTS

Hydrofoil craft: foil types and configurations, design of foils, stability when foil borne, propulsion considerations.

UNIT V – OTHER HIGH PERFORMANCE VEHICLES

Air cushion vehicles types of air cushion and their effectiveness, cushion sealing arrangements, resistance in calm water and in waves, propulsion

Surface effect ships: High speed catamarans; Wing - in ground effect craft, Hybrid craft

Total : 60 Hours

TEXTBOOKS:

- 1. Principle of Naval Architecture by Edward V.Lewis, Volume- II
- 2. Performance by Design: Hydrodynamics for High-Speed Vessels
- 3. IMO high speed crafts codes

REFERENCES:

1. Principle of Naval Architecture by Edward V.Lewis, Volume- II

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAM	BE-Naval Architecture & O	BE-Naval Architecture & Offshore Engineering							
Course Code	Introduction to	L	Т	Р	С				
UCNA706	Computational Fluid Dynamics	3	1	0	4				
	· · · · · · · · · · · · · · · · · · ·								

Year and Semester					IV Year (semester VII) Cont						act hours per week				
Pro		NIL					(4Hrs)								
					and S	anities Social ences		nagem		Professional Core		Professional Elective			
С	ourse	catego	ry	-										✓	
				-		asic ence		gineeri Science	-	Open E	lective	2	Mai	ndatory	7
Course Objective					 To gain knowledge on governing equations, discretization, formulation and solution techniques involved in CFD and further learn the applications of CFD in marine industry After completion of the course, the students will be able to: 										
Course Outcome					 Explain the working principle of CFD – Pre-Processor, S and Post-Processor Define the governing equations used in CFD Define partial differential equations (PDE) Develop surface models Apply CFD in Marine Industry Explain finite difference and finite volume method discretization 										
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	3	3	2	2	2	1	2	2	3	2	2	2
CO2	2	2	2	2	3	-	1	2	-	1	2	2	2	2	2
CO3	2 2	2 2	2 3	2 2	3 3	-	1	2 2	-	1 2	23	2 2	2 2	2 3	2 2
CO4 CO5	3	3	2	3	3	2	2	2	- 1	2	2	3	2	2	2
CO5	3	3	2	3	3	2	2	2	1	2	2	3	2	2	2
AVERAGE	2.5	2.5	2.2	2.5	3.0	2.0	1.5	2.0	1.0	1.7	2.2	2.5	2.0	2.2	2.0
CORRELATION				HT(LOW) 2. MODERATE(E(MEDIUM) 3. UBSTANTIAL(HIGH)						

UNIT I - INTRODUCTION TO CFD CONCEPTS

Introduction to CFD, Working principle of CFD – Pre-Processor, Solver, Post-Processor – problem solving with CFD - models of flow – finite control volume, infinitesimal fluid element – substantial derivative - Reynold's transport theorem

UNIT II - GOVERNING EQUATIONS

Governing equations: conservation principle, mass conservation in three dimension, momentum equation in three dimensions, Navier Stokes equation for a Newtonian fluid – conservative form of the governing equations – integral and differential forms of governing equations - general form of conservation equations

UNIT III - PARTIAL DIFFERENTIAL EQUATIONS (PDE)

Introduction, Classification of partial differential equations, The Eigen value method – Behaviour of PDE's; impact on CFD – hyperbolic, parabolic and elliptic equations – Initial and boundary conditions – Dirichlet and Neumann

UNIT IV - FUNDAMENTALS OF DISCRETIZATION

Discretization concept, discretization techniques – Finite Difference Method, Explicit and implicit approach - Finite Volume Method – Some conceptual basics and illustrations of 1-D steady problem – Basics on solution Algorithms – The SIMPLE algorithm - General errors and uncertainties in CFD simulations – Basics on turbulence modelling

UNIT V - CFD IN MARINE APPLICATIONS

Free surface modelling – interface tracking and interface capturing techniques – Grid independence analysis – CFD in marine applications – Examples; wave pattern calculations for steady ship flow, viscous stern flow calculations, and ship resistance estimation – Recent developments of CFD applications in marine industry, Practical session.

Total : 60 Hours

TEXTBOOKS:

- 1. Computational Fluid Dynamics: The Basics with Applications, Jr., John D. Anderson 1995.
- An Introduction to Computational Fluid Dynamics: The Finite Volume Method, H. Versteeg and W. Malalasekera, Printice Hall, Second Edition, 2007

- 1. Best Practice Guidelines for Marine Applications of Computational Fluid Dynamics, WS Atkins Consultants and Members of the NSC, 2003
- 2. CFD Software manuals for marine applications
- 3. NPTEL Lectures

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAM	BE-Naval Architecture & Offshore Engineering							
Course Code		L	Т	Р	С			

UCNA707				Submarine Pipeline and Risers					3	1		0		4	
Ye	IV Year (semester VII) Contact hours per we						veek								
Pre	NIL					(4Hrs)									
	Humanities and Social Sciences Management courses				Professional Core			Professional Elective							
Course category					Basic Science			gineeri Science	-	Open Elective		;	√ Mandatory		
Course Objective					 To gain knowledge on risers, offshore pipeline design, piping components, piping material take off preparation and installation methods 										
Course Outcome					 Ex Pr an Id M An 	xplain oduce d riser entify onitor nalyze	offsh desig syste the ins pipeli offsh	ore pip n crite ms stallatione cor ore pip	oeline ria an on me nmiss oeline	ne stude and ris d cons thods c ioning and ris pipelir	er con iderati of pipe and op ers un	figura ons fo line an peratio	tions or offsl od riser ons.	comp	onents
POS/COS	PO1	PO2	PO3	PO4	PO5								PSO2	PSO3	
CO1	1	1	2	-	2	-	2	1	1	1	1	1	2	1	2
CO2	2	2	2	2	1	-	2	2	-		2	2	2	2	2
CO3	2	2	2	2	1	-	2	2	-		2	2	2	2	2
CO4	1	1	2	-	2	-	2	1	1	1	1	1	2	1	2
CO5	3	3	2	3	3	1	2	1	2	2	2	3	2	2	2
CO6	3	3	2	3	3	2	2	2	2	2	2	3	2	2	2
AVERAGE 2.0 2.0 2.5 CORRELATION LEVELS 1. SLIG					2.0 1.5 2.0 1.5 1.5 1.7 2.0 2.0 1.7 HT(LOW) 2. MODERATE(MEDIUM) SUBSTANTIAL(HI 3. 3						2.0 IGH)				

UNIT I - INTRODUCTION TO SUBMARINE PIPELINES

Introduction Pipeline, offshore pipe line- - Responsibilities of Pipeline Engineer and Designer, Scope of Pipeline -Input and Outputs; Process Diagrams (PFD, P&ID); Codes and Standards for offshore pipeline; Pipeline Elements (Fittings, valves and instruments), Piping material selection. Material Take off for offshore pipelines. Pipeline Drawings (Field layouts, Alignment sheet, Crossing details and Trench details), Plans to be submitted for piping arrangements for classification society approval

UNIT II - PIPELINE DESIGN

General Design Information - Pipeline design procedure- Design Cycle ; Route Selection and Diameter ,Wall Thickness calculation - Internal Pressure, External Pressure, Temperature ;. Hydrodynamic Stability of Pipelines- Horizontal Stability – Weight coating; Vertical Stability – Weight Coating; Pipeline Span - Dynamic Span – Vortex Induced Vibrations and Fatigue; Operating Stresses; Pipeline External Corrosion Protection ; Pipeline Insulation ;. Introduction to Flexible Pipelines; Pipeline Supports and Clamps

UNIT III - SUBMARINE PIPELINE INSTALLATION

Pipeline survey and mapping, Pipeline route engineering; Pipeline Installation Methods.- Lay Barge Methods, S Lay – Shallow Water, J Lay – Deep Water, Reel Barge Method, Float and Sink Method, Bottom Pull Methods. Pipe line towing methods - Below Surface tow, Surface tow (float and Sink), Bottom tow (bottom pull), Off-bottom tow; Installation Bending Stress Control; Pipeline On-Bottom Stability Control

UNIT IV - PIPELINE COMMISSIONING AND OPERATIONS

Pipeline construction for cross country and offshore systems focusing on welding, Pressure testing, precommissioning, and commissioning, Pipeline integrity aspects including in-line inspection, Leak detection and emergency planning considerations. Flow assurance; Pigging Operations.

UNIT V - RISER AND DESIGN

Riser – different types of risers ; Riser components, Riser Bends, Riser Clamps; Different riser configurations; riser failure modes; structural riser analysis; static and dynamic riser analyses; riser design criteria and considerations.

Total : 60 Hours

TEXTBOOKS:

- 1. Offshore Pipelines By Dr. Boyun Guo -University of Louisiana at Lafayette, Shanhong Song ChevronTexaco Overseas Petroleum Company ,Jacob Chacko, INTEC Engineering, Inc. ,Dr. Ali Ghalambor University of Louisiana at Lafayette.
- 2. George A. Antaki Piping and Pipeline Engineering: Design, Construction, Maintenance, Integrity, and Repair
- 3. M L Nayyar, Piping handbook

- 4. Boyun Guo, Shanhong Song, Jacob Chacko, Ali Ghalambor, Offshore Pipelines
- 5. Shashi Menon, Piping Calculations Manual (McGraw-Hill Calculations)- December 10, 2004
- 6. Hydrodynamics of Offshore Structures by S.K. Chakrabarti, Springer-Verlag

- 1. Peter Smith ,The Fundamentals of Piping Design (Process Piping Design) (v.1) Hardcover April 15, 2007
- 2. M. W. Kellogg, "Design of Piping Systems Paperback July 6, 2011
- 3. Subrata K. Chakrabarti "Hand book of Offshore engineering ". Offhore structural analysis, Inc. volume II ELSEVIER (2005)

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAM	BE-Naval Architecture & Offshore Engineering

	Course	e Code			-	Design				L	Т		Р		С		
	UCN	A7PA				ing & AD - V		ng - v		0	0		4		2		
Ye	ear and	Semes	ter		IV	Year (semest	er VII)			Conta	act hou	rs per v	veek			
Pre	erequis	ite cou	rse		NIL					(4Hrs)							
C	ourse	catego	rv		and	anities Social ences	Management courses			Professional Core			Professional Elective				
	00100	•	-)		B	Basic Engineering					✓						
						ence		Science	-	Open H	Elective	•	Mandatory				
Co	ourse	Objecti	ve		2. To		stand			the doo ns, Arr			ocking	and lau	inchin		
С	ourse	Outcon	ne		 Do Co Co Do D	esign th onstruc evelop erform	ne Bilg t the va the van the lau	e and E arious f rious fin nching	Ballast Tuel oil re and plan a	ous tank system , Lub o safety j nd its c plans u	il and v plans alculat	water s	ystems		n ship		
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	-	2	2	3	3	2	-	-	-	-	-	3	2	-		
CO2	3	1	-	2	3	3	2	-	-	-	-	-	3	2	1		
CO3	3	-	2	2	3	3	3	-	-	-	-	-	3	-	1		
CO4	3	2	3	-	3	-	3	-	-	-	-	-	3	3	3		
CO5	1	2	3	3	2	3	2	-	-	-	-	-	3	-	3		
CO6	1	2	3	3	2	2	3	-	-	-	-	-	3	1	2		
AVERAGE CORRI	2.3 ELATIO	0.8 DN	2.2	2	2 2.7 2.3 2.5 3 1.3								1.7				
	VELS			SLIGI	HT(LOV	V)	2.	. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH)									
			Гank С														

- 2. Bilge and Ballast water system
- 3. Fuel Oil, Lub oil and Domestic water system
- 4. Fire Protection & Control plan.
- 5. Life Saving Appliance and Arrangements.
- 6. Dry docking and Launching Calculation.

Total : 60 Hours

TEXTBOOKS:

- 1. EYRES, D.J , Ship construction, 1994
- 2. TAYLOR, D.A, Merchant ship construction ,2002
- 3. KEMP, Ship construction, 2002
- 4. PURSEY, H.J, Merchant ship construction ,2002

REFERENCES:

- 1. Robert Taggard, Ship Design & Construction
- 2. Eric c. Tupper, Introduction to Naval Architecture
- 3. Principle of Naval Architecture by Edward V.Lewis, Volume- III

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAM	BE-Naval Architecture & Offshore Engineering

Course C	ode		P	rojec	t Desi	ign &	its		L	Т		Р		С			
UCNA7	PB		N	/letho	dolog	у У			0	0		2		2			
									1	·			·				
Year and Se	mester	•		IV	Year	(seme	ester V	II)		Contact hours per week							
Prerequisite	course	•	NIL							(2Hrs)							
0				Huma and S Scie		N	Aanag cour	ement ses	Pro	Professional Core			Professional Elective				
Course cat	egory									\checkmark							
			E	Basic S	Scienc	e I	Engine Scie	-	Ope	en Electi	ve	Mandatory					
Course Obj	ective									ents' kn g an ind	-		-		es ar		
Course Out	come		1 2 3 4 5 6	. Ide . De . Ex . Ex . Ev	entify fine t plain plain aluate	the in he pro differ the m e the o	mport oject a rent co nethoc data c	ance of and co oncept ls of to ollecto	of literation ome up ts invol echnica ed in fro	lents wil ture rev with a p ved dur l report om the l ng out v	iew in d project p ing desi writing iteratur	lesignii lan gning a	a proje	•			
POS/COS POI	PO2	P	- 1					PO8	PO9	PO10	PO11	PO12		PSO2	PSO		
2 CO1	2		2	2	2	2	1	-	-	-	-	1	2	2	2		
2 CO2	2		2	2	2	2	1	-	-	-	-	1	2	2	2		
CO2 2	2	1	2	2	2	2	1	-	-	-	-	1	2	2	2		
CO4 3	3	:	3	1	1	2	1	-	-	-	-	1	2	3	3		
2	2	:	2	1	1	2	1	-	-	-	-	1	2	2	2		
CO5 2	2	-	2	1	1	2	1	-	-	-	-	1	2	3	3		
CO6 2.2	2.2	2	.2	1.5	1.5	-	1.0	-				1.0	2.0	2.3	2.3		
AVERAGE CORRELAT LEVELS		ENT		SLIGH	T(LO)	W)		2. MOI	DERATE	E(MEDIU	IM)	3. SU	BSTAN	TIAL(H	HIGH		

- 1. Literature review and extracting information from the literature. Carryout minimum ten literature
- 2. Obtain the list of available resources and make a good project plan
- 3. Writing the summary of literature
- 4. With the obtained data through Literature, develop a research question (objective)
- 5. Learn the methods for data analysis and produce a proper project plan
- 6. Technical report writing and way of writing references and citation

Total : 45 Hours

REFERENCES:

- 1. Journal Publications (Scopus Indexed)
- 2. Conference Proceedings
- 3. Thesis/Project reports

Designed by	"Department of Naval Architecture & Offshore Engineering"

PRO	GRAM	В	E-Nava	-Naval Architecture & Offshore Engineering																
Cours	e Code							L		Т		Р		С						
UCN	A7PC	E	xperim	ental S	hip Hy	ydrody	namics	0		0		2		1						
	r and lester		IV	Year (semeste	er VII)		Contact hours per week												
	quisite urse]	NIL			(2Hrs)												
			Iumaniti ocial Sc		M	anagen course		Professional Core				Profess	sional E	Elective						
	urse gory								~											
Basic Science				cience	Eı	ngineer Scienc	-	Op	en Eleo	ctive		М	landato	ry						
Obje Co Oute	urse ective urse come	1 2 3	testir fter con Dem pract Perfo Com Calcu propo	ng meth npletior onstrat ical ex orm bas pute th ulate R eller de gn the	nods n of the posure sic exp e data Resistan esign model	course model to mo erimer from v nce w of pro	al and t , the stu makin odel ma ots relat various vith the peller a seakee	dents v g tech king ted to mode avail	will be niques ship h l able d nerate	able to s availa ydrody ata and the dat	able for mamic d the p ta for	r float s procedu variou:	ing boo	dies – volved	with					
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3					
CO1	3	3	3	3	2	-	1	1	2	2	2	1	2	2	2					
CO2	3	3	2	2	2	-	1	-	1	2	2	2	2	2	2					
CO3	3	3	3	2	2	-	1	-	-	2	2	1	2	2	2					
CO4 CO5	3	3	3	3	2	-	1	-	2	2	2	1	2	2	2					
CO5	3	3	3	2	2	-	1	-	-	2	2	1	2	2	2					
AVG	3.0	3.0	2.7	2.3	2.0	_	1.0	1.0	1.5	2.0	2.0	1.3	2.0	2.0	2.0					
	RELAT EVELS		1	. SLIGH	IT(LOW	V)	2. N	MODE	RATE(1	MEDIU	M)	3. SU	BSTAN	2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH						

Model Making Techniques, Calibration of instruments, analysing the geometrically similar ship model, determination of CG of the Ship model, Inclining Experiment, estimating the Radius of Gyration of a Ship Model, Model preparation for resistance and seakeeping tests, IITC standards of model tests, Method of IITC 1978 resistance prediction method, Propeller design

Total : 30 Hours

REFERENCES:

- 1. Practical Ship Hydrodynamics. Volker Bertram, Butterworth-Heinemann, 2000
- 2. Dynamics of Marine Vehicles, R Bhattacharya, 1978

Designed by "Department of Naval Architecture & Offshore Engineering"

PROC	GRAM	[BE	E-Naval	Archi	tecture	& Offs	shore E	Engineering									
Cours	e Code	e							L		Т		Р		С			
UCN	A7PD)	So	ftware	Labor	ratory	- IV		0		0		2		1			
	r and lester			IV	Year (s	semeste	er VII)		Contact hours per week									
	quisite urse	;			I	NIL			(2Hrs)									
Humanities a Social Science Course							anagerr course		Profe	Professional Core				Professional Elective				
	category Basic Science					ngineer Scienc	-	Op	✓ Open Elective			Mandatory						
	urse ective								•		-		oftwar	e				
	urse come		AI 1. 2. 3. 4. 5. 6.	Under Deve Class Gene Prepa	rstand lop the sify dif erate 2 are pip	the usa e mode ferent D plar e routi	ge of d el of pi materi n ing anc of pip	ifferent ping s al sele	tools	o creat for var plan	e mode ious de uireme	el esign ent						
POS/ COS	PO1	Р	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3		
CO1	2		2	1	-	-	-	-	-	3	2	1	-	1	2	2		
CO2	2		2	1	-	-	-	-	-	3	2	1	-	1	2	2		
CO3	2		2	1	-	-	-	-	-	2	2	1	-	1	2	2		
CO4	2	<u> </u>	2	1	-	-	-	-	-	3	2	1	-	1	2	2		
CO5	2						-	-	3	2	1	-	1	2	2			
CO6 AVE RAG E	2		2	1	-	-	-	-	-	2	2	1	-	1	2	2		
COR	Z.0 RELAT LEVEL	ГЮ			SLIGH	IT(LOV	V)	2.1	MODE		MEDIU		3. SU	BSTAN				

General utilities, Pipe work modelling, material selection, Pipe routing and pipe orientation

Total : 30 Hours

REFERENCES:

1. Software Manual

Designed by	"Department of Naval Architecture & Offshore Engineering"

PRO	GRAM]	BE-Nava	l Archi	tecture	& Offs	shore E	ngineeı	ring				Engineering										
Cours	e Code	;						L		Т		Р		С									
UCM	PCPY	.]	Minor P	roject				0		0		2		1									
	r and nester		IV	Year (semeste	er VII)		Contact hours per week															
	quisite urse]	NIL			(2Hrs)															
Social Sciences					M	anagen course		Profe	essiona	l Core		Profess	sional E	lective									
	urse egory																						
			Basic Science Engineering Science						en Elec	ctive		Μ	andato	ry									
					_										_								
	urse ective	4	2. Pract	ementin ising th ning ho	e skills	s of mai	naging	the tim	e-boun	ded att					ds.								
Out	urse come		 Show Deve Appl Summer offect 	npletion ain the p the sk lop a re y the id marize tively. e the pr	pre-req ill of pr port by eas per the ou	uisites resentat y him/h nned do utcome	for exe tion er own du s in th	cuting a ring the he syst	any bas initial cematic	sic proj phase o ally la	ect. of the p id out			compre	hend								
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO								
CO1	3	3	1	1	2	1	1	1	2	2	2	1	2	2	2								
CO2 CO3	3	3	1	1 2	2	2	2	-	1	2	1	2	2	2	2								
CO4	3	3	1	2	3	2	2	2	1	3	2	1	2	2	2								
AVE RAG E	3.0	3.0	1.0	1.5	2.0	1.8	1.5	1.5	1.3	2.3	1.5	1.3	2.0	2.0	2.0								
	RELAT LEVELS		1	. SLIGH	IT(LOV	V)	2.	MODE	RATE(1	MEDIU	M)	3. SU	BSTAN	TIAL(H	HIGH								
GUID	ELIN	ES																					

restri	inor project of student, he/she shall select one topic based on self-interest. There is no ction on the field in which student is doing his/her minor project. Student is free to choos pertaining to field other than naval architecture/offshore engineering.
Comp sements	plete project shall be completed under the guidance of faculty over the period of one ster.
■ Stude	ent shall be evaluated based on the internal reviews conducted by the department.
	Total : 30 Hours
	Total : 30 Hours

SEMESTER : VIII

	PROC	GRAM			BE-Na	aval Ar	chitect	ure & (Offsho	re Engi	neering	5					
	Cours	e Code			Shipy	ard Pra	actice	and		L	Т		Р		С		
	UCN	A801			Projec	ct Man	ageme	ent		4	0		0		4		
	Year and Semester									I I	~						
Ye	ear and	Semes	ster		IV	Year (s	semeste	er VIII)		Contact hours per week							
Pr	erequis	site cou	rse]	NIL			(4Hrs)							
(Course category						Humanities and Social Sciences Management courses					P	Professional Elective				
							BasicEngineeringScienceScience				✓ Open Elective			Mandatory			
	ourse (To understand the various Shipyard Practices related to quality and production and to attain a good knowledge on project management and planning After completion of the course, the students will be able to: Explain various aspects related to the Shipyard practices Identify the principle involved in the production, management and planning Illustrate and explain shipyard layout and productivity 												
					5. Ro	ole-pla	y in Ir	ndustri	al Rela	onstruc ations a ct Plan	and Pe	ersonne	el Man	0	nt		
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	1	1	-	-	1	2	2	2	-	1	2	2	3	2	1		
CO2	1	1	1	1	1	1	-	-	-	2	1	1	2	2	-		
CO3	1	1	1	2	2	1	-	-	-	1	1	1	3	3	2		
CO4	1	1	1	1	1	-	1	-	1	2	2	-	2	3	1		
	1 1	1	1	2			-	1	1	2	2	2					
CO5 CO6	1	1	1	2	2	1	2	2			2	1	2	2	2		

CORRELATION			
LEVELS	1. SLIGHT(LOW)	2. MODERATE(MEDIUM)	3. SUBSTANTIAL(HIGH)

UNIT I - INTRODUCTION TO SHIP YARD ACTIVITIES

Organizational Structure of Shipyards, Functional Departments of Shipyard- Production, Planning, Material, Financial, HR and Administration, Yard Utility, Various activities in Shipyard- Shipbuilding and Ship Repair

UNIT II - SHIP BUILDING PROCESS

General Process Planning, Principles of Design for Production, Production based structural assembly plan, Process Planning-Scheduling, Monitoring and Controlling, Material Planning and Contol, Quality Assurance Process in Shipyard- (Reciept Inspection, Test Certificates, Online quality Checks, QA format/check list preparation, Class Survey), Basin /Sea Trials and Delivery formalities

UNIT III – SHIPYARD LAYOUT AND PRODUCTIVITY

Shipyard Capacity Planning- Productivity in Shipyard- Measurement and Monitoring, Shipyard Capacity estimation, Role of process and procedure in Shipyard Capacity

evaluation, Shipyard Layout- Factors affecting, design of shipyard layout, Production facility layout, Some aspects of Shipyard Capacity augmentation, Developing Shipbuilding Strategy.

UNIT IV - PROJECT MANAGEMENT

General Project Planning, Project Scheduling, Application of models for process planning, scheduling and control - Gantt charts, CPM & PERT, Scheduling and Resource planning, Ship Repair Project Planning- Work Package (Direct and ancillary work), Work Scheduling, Monitoring. Planning tools- MS Project, Primavera

UNIT V – INDUSTRIAL AND HUMAN RELATIONS

Shipyard Management- Industrial Relation, Personnel Management, Human Relations and its importance, Contract Management, Managing Owners and Classification Society, Managing Vendors and subcontractors, CSR activities, EHS management, Labour laws and regulatory bodies

Total : 60 Hours

TEXTBOOKS:

- 1. Storch R. Lee, Hammon C.P. & Bunch H.M.; Ship Production, Cornell Maritime Press, Maryland, USA, 1988
- 2. Taggart; ship design and construction, SNAME chapter 15, 1980
- 3. Buffa, Modern production operations management, 6th edition, Wiley 1980

REFERENCES:

- 1. Eyres D.J.; Ship Construction William Heinemann Ltd, London, 1982
- 2. Dormidontov V. K. & et.al; Shipbuilding Technology, Mir publishers, Moscow

Designed by	"Department of Naval Architecture & Offshore Engineering"

PRO	GRAM	[BE-N	Naval	l Archit	ecture	& Offs	hore Er	ngineer	ing							
Cours	se Code	e								L	Т		Р		(C	
UBNA8PC			Maj	Major project						0	0		22		1	1	
	ar and nester			IV	Year (semest	er VIII)		Contact hours per week							
	Prerequisite course			NIL						22 Hrs							
Course category					ies and ciences	N	Management courses			Professional Core			Professional Elective				
		ory	Basic Science			I	Engineering Science			Open Elective			Mandatory				
	ourse ective		2. Pr	actisi	ing the	skills o	of mana	rstandin ging the	e time-	bounde	d attrib			-	ounds.		
Course	Outcor	me	1. H 2. S 3. H 4. A 5. S	Expla Show Devel Apply Sumn	in the p the ski lop a re y the id narize t	ore-requ ll of pr port by eas pen he outc	uisites f resentat him/ho ned do comes i		cuting a ing the vstemat	iny basi initial _I ically la	c proje phase o aid out	f the pr pattern		prehen	d effect	ively.	
POS/ COS	PO1	PC	D2 I	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	3	3	1	1	2	1	1	1	2	2	2	1	2	2	2	
CO2	3	3	3	1	1	2	2	2	-	1	2	1	2	2	2	2	
CO3	3	3		1	2	1	2	1	-	1	2	1	-	2	2	2	
CO4 AVE RAG E	3	3.		1	2	3	2	2	2	1	3	2	1	2	2	2	
E 3.0 3. CORRELATION LEVELS									1.5 1.5 2.5 1.5				3. SUBSTANTIAL(HIGH)				

GUIDELINES

- The student is recommended to continue the work being initiated in the course namely, "Project design and its Methodology"
- Student shall be evaluated based on the internal reviews conducted by the department.
- Remaining work on the selected project shall be completed and achieving any innovative results is appreciated

Designed by	"Department of Naval Architecture & Offshore Engineering"