SEMESTER I

Course	AM		-			IITECT	URE &	OFFSH	IORE E	ENGINE		· · ·			
Course	Code			se Nan						L		Γ	Р		С
UALE1	2		Tec	hnical	Englis	sh - I				2	()	0		2
Year and	d Seme	ester	I Yea	ar & I	Semes	ter			C	Contact	Hours	Per W	/eek		
Prerequi	isite co	ourse	Nil						2	2 Hrs					
Course	catego	ory		nities a		Ma	nageme	nt cour	ses P	rofessio	nal Co	re	Profes	sional E	Elective
			Social	Scienc	es										
				\mathbf{N}											
			Ba	asic Sci	ence	Eng	gineerin	ng Scien	ice	Open	Electiv	ve	N	landato	ory
Course	Outco	omes	ar W 2. M in After 1. (nd supp riting Aaking portan succes Dutline	porting in Eng them nce in t	their tish. realiz today' omplet porta	• skill e the i s scena tion of nce of	devel import ario. Cours technie	opmer ance c e, the cal En	0	stening lish as	, spea Globa	ıking, al lang	readin	ig and
				-			i unse	s and i	ucitur	ication	01 001	muon	CITOIS		
			5. I	Develo	p good	l listen	riting f ing an	ormal d spea	and in king sl	formal kills glish g	letters			1	1
PPOs / COs	PO1	PO2	5. I	Develo	p good	l listen	riting f ing an	ormal d spea	and in king sl	kills	letters			PSO2	PSO3
COs CO1	PO1 -	PO2 -	5. I 6. A	Develo Apply (p good the ski	l listen ills to s PO6 3	riting f ing an speak a P07 2	ormal d spea and wr	and in king sl ite Eng PO9 3	kills glish g PO10 3	letters	tically PO12	,	PSO2	PSO3
COs CO1 CO2			5. I 6. A PO3	Develo Apply 1 PO4 - -	p good the ski PO5 2 -	l listen ills to s PO6 3 3	riting for ing an speak a PO7 2 2	ormal d spea and wr P08 -	and in king sl ite Eng PO9 3 2	kills glish g PO10 3 2	letters ramma PO11 - -	PO12 3 3	PSO1 - -	-	PSO3
COs CO1 CO2 CO3			5. I 6. A PO3	Develo Apply 1 PO4 - - -	p good the ski PO5 2 - 2	Isten Ills to s PO6 3 2	riting friing an speak a PO7	ormal d spea and wr PO8	and in king sl ite Eng PO9 3 2 2 2	kills glish g PO10 3 2 2	letters ramma PO11	PO12 3 3 2	PSO1	-	PSO3 - - -
COs CO1 CO2 CO3 CO4			5. I 6. A PO3	Develo Apply 1 PO4 - - - -	p good the ski PO5 2 - 2 2	l listen ills to s PO6 3 3 2 2	riting friing an speak a PO7 2 2 2 2 2 2	ormal d spea and wr P08 -	and in king sl ite Eng PO9 3 2 2 3	kills glish g PO10 3 2 2 3	letters ramma PO11 - -	PO12 3 3 2 3	PSO1 - -	- - -	PSO3
COs CO1 CO2 CO3 CO4 CO5			5. I 6. A PO3	Develo Apply 1 - - - - -	p good the ski 2 - 2 2 2 2	l listen ills to s PO6 3 2 2 2	riting friing an speak a PO7 2 2 2 2 2 2 2 2 2 2 2	ormal d spea and wr P08 -	and in king sl ite En PO9 3 2 2 3 3 3	kills glish g PO10 3 2 2 3 3 3	letters ramma PO11 - -	PO12 3 3 2 3 3 3	PSO1 - -	- - - -	PSO3
COs CO1 CO2 CO3 CO4			5. I 6. A PO3	Develo Apply 1 PO4 - - - -	p good the ski PO5 2 - 2 2	l listen ills to s PO6 3 3 2 2	riting friing an speak a PO7 2 2 2 2 2 2	ormal d spea and wr P08 -	and in king sl ite Eng PO9 3 2 2 3	kills glish g PO10 3 2 2 3	letters ramma PO11 - -	PO12 3 3 2 3	PSO1 - -	- - -	PSO3
COs CO1 CO2 CO3 CO4 CO5 CO6 AVERAGE COR	- - - - - - RELATIO	- - - - - - - - - DN LEV	5. I 6. A PO3 - - - - - - - - - - - - - - - -	Develo Apply 1 - - - - - - - - 1.	p good the ski PO5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	l listen lls to s PO6 3 3 2 2 2 2 3 2.5 HT (LO	riting fring an speak a por 2 2 2 2 2 2 2 2 2 2 3 2.2 W)	ormal d spea and wr PO8 - - - - - - - - - - - - - - - - - - -	and in king sl ite En 2 3 2 2 3 3 3 2.7 MODER	kills glish g 7010 3 2 2 2 3 3 3 3	PO11	tically P012 3 3 2 3 3 3 3 3 3	PSO1	- - - -	- - - - - -
COs CO1 CO2 CO3 CO4 CO5 CO6 AVERAGE	- - - - RELATIO : COM nce of Readin s-Lab. I: FOO	- - - - - - - - - - - - - - - - - - -	5. I 6. A PO3 - - - - - - - - - - - - - - - - - - -	Develo Apply (PO4 - - - - - 1. Comm and C NGUA	p good the ski PO5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	l listen lls to s PO6 3 2 2 2 2 3 2.5 HT (LO Think VOC	riting friing an speak a PO7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ormal d spea and wr PO8 - - - - - - - - - - - - - - - - - - -	and in king sl ite En PO9 3 2 2 3 3 2.7 MODERA KILL e and aking	kills glish g PO10 3 2 2 3 3 3 2.7 ATE (ME its Ro -Trans	letters ramma P011 - - - - DIUM) le-Rea fer of	ttically PO12 3 3 2 3 3 3 3 3 3 3 4 ding a Inform	PSO1 SUBSTA und Intration-	- - - - NTIAL () terpreta	- - - - - - - HIGH) 6 Hr ations Aids 6 Hr

UNIT III: ENGLISH GRAMMAR

Parts of Speech-Subject Verb Agreement-Tenses, Articles, Prepositions-Common errors in English-Lab-Test.

6 Hrs

6 Hrs

UNIT IV: WRITING SKILL

Descriptive Writing –Paragraph-Technical descriptions-Essays-Letter Writing – Formal and Informal-Business Letters-Job Application Letter-Types of reports-Instructions and Checklists- Lab-Test.

UNIT V: LISTENING AND SPEAKING

Use of technology to improve listening and speaking skills, Kinds of Listening –Techniques and Tips for Listening and Note taking - Articulation - Stress and Intonation-Conversation dialogue Writing -Professional Communication – Job Interview - Group Discussion.

TEXT BOOKS:

- 1. Department of English, Anna University. Mindscapes: English for Technologists and Engineers. Orient Blackswan, Chennai. 2012
- 2. Dhanavel, S.P. English and Communication Skills for Students of Science and Engineering. Orient Blackswan, Chennai. 2011

REFERENCES:

- 1. Essential Grammar in use- Raymond Murphy, Cambridge, 2007.
- 2. Raman, Meenakshi & Sangeetha Sharma. Technical Communication: Principles and Practice. Oxford University Press, New Delhi. 2011.
- 3. Regional Institute of English. English for Engineers. Cambridge University Press, New Delhi. 2006.
- 4. Rizvi, Ashraf. M. Effective Technical Communication. Tata McGraw-Hill, New Delhi. 2005
- 5. Rutherford, Andrea. J Basic Communication Skills for Technology. Pearson, New Delhi. 2001.
- 6. Viswamohan, Aysha. English for Technical Communication. Tata McGraw-Hill, New Delhi. 2008.

6 Hrs

TOTAL: 30 Hours

PROGRA						IITECT	URE &	OFFSI	HORE	ENGINE				r	
Course (Code		Cours	se Nan	ne					L		Γ	Р		С
UAMT1	13		Engi	neerin	g Math	nemati	cs-I			3	(0	0		3
Year and	d Sem	ester	I Yea	ar & I	Semes	ter			(Contact	Hours	Per W	Veek		
Prerequi	isite co	ourse	Nil							3 Hrs					
Course	catego	ory		nities a Scienc		Ma	nageme	ent cour	ses I	Professio	onal Co	re	Profess	sional F	Clectivo
			Ba	asic Sci	ence	Enş	gineerir	ng Scier	nce	Open	Electiv	7 e	Μ	[andato	ry
Course			tt 2. 7 3. 7 4. 7 5. 7 After 1. 5 2. 4 3. 6 4. 4 5. 1 6. 4	hree di Fo und Fo acqu Fo intro Solve t Solve t Apply calculu Classif Apply i Jse mu	imension erstance uaint the oduce the erstance ssful co he prole the prole the the s. y the ful integra iltiple in the co	ons. I the tene studi the con- l the a- complete olems neorem unction l calcu integra	echnique lent wincepts pplication of using to us and us of se ilus on uls to s	ues of th fun- and m ion of Cours three-c form everal engin olve p	differ ction of ethod integrise, the limens ulae variat eering robler	studen sional a for sol bles g proble	g a function of the second sec	tiables. integration be ablical geo proble	als. e to ometry. ms in	differ	rential
PPOs /	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
COs CO1	3	3	3	2	-	-	-	-	-		-	-	2	2	2
CO2	3	3	3	2	2	-	-	-	-	-	-	2	2	2	2
CO3	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-
CO4	3	3	3	2	2	-	-	-	-	-	-	2	2	2	2
CO5	2	2	2	2	2	-	-	-	-	-	-	1	-	3	3
CO6	3	3	3	2	2	-	-	-	-		-	2	3	3	3
AVERAGE	2.7	2.7	2.7	2	2	-	-	-	-	-	-	1.8	2.3	2.4	2.4
CORI	RELATI	ON LEV	ELS	1	. SLIG	HT (LO	W)	2. 1	MODER	RATE (ME	DIUM)	3.	SUBSTA	NTIAL (HIGH)
AVERAGE CORI UNIT I	2.7 RELATION THR n of a	2.7 ON LEV SEE D sphere	2.7 ELS IMEN - Plar	2 ISION ne secti	2 SLIG AL AN	NALY a spher	TICA	L GE	OME	TRY		1.8 3.		2.3 UBSTA	

cone – Equation of a cylinder – Right circular cylinder.

UNIT- II:- DIFFERENTIAL CALCULUS

Differentiation of algebraic – circular - exponential and logarithmic functions of products and quotient – Functions of a function and simple implicit functions – Successive differentiation- introduction and notation – nth order derivatives of standard functions – nth order derivatives using trigonometric identities and standard functions and partial fractions – Leibnitz theorem – Maclaurin's Theorem and standard expansions – Taylor's theorem – Indeterminate forms and L'Hospital's rule.

UNIT- III:- FUNCTIONS OF SEVERALVARIABLES

Limits and continuity-Partial derivatives – definition-geometrical interpretation and rules of partial differentiation – Higher order partial derivatives – Homogeneous functions – Euler's theorem for homogenous functions – Total derivatives and chain rules – Differentiation of implicit functions and composite functions – Maxima and Minima– Method of Lagrangian multipliers.

9 hrs

9 hrs

UNIT- IV:- INTEGRAL CALCULUS

Integration by trigonometric substitution – The definite integral as the limit of a sum- Bernoulli's rule – Reduction formulae – Properties of definite integrals – beta and gamma Functions and problems – Work done by variable forces – mean values – Root mean square values of in sin x and Cosnx.

UNIT -V:- MULTIPLE INTEGRALS

Double and triple integrals – Examples of double integration – exchanging the order of integration – Cartesian coordinates – Region of integration and change of order of integration – Spherical polar and cylindrical coordinates - Theorems of parallel and perpendicular axes. Applications – Area – Volume - Mass of wire - lamina and solid - Centre of Gravity of wire – lamina and solid – Moment of Inertia using multiple integrals.

TEXT BOOKS:

1. Bali N. P and Manish Goyal, —Text book of Engineering Mathematics, Third edition, Laxmi Publications (p) Ltd., 2008.

2. Grewal. B.S., —Higher Engineering Mathematics, 40th Edition, Khanna Publications, Delhi, 2007. **REFERENCES:**

1. Dass, H.K., and Er. Rajnish Verma," Higher Engineering Mathematics", S. Chand Private Ltd., 2011.

2. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2012.

3. Peter V. O'Neil," Advanced Engineering Mathematics", 7th Edition, Cengage learning, 2012.

4. Ramana B.V, "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, NewDelhi, 2008.

5.Sivarama Krishna Das P. and Rukmangadachari E., "Engineering Mathematics", Volume I, Second Edition, PEARSON Publishing, 2011.

9 hrs

9 hrs

TOTAL : 45 Hours

PROGRA	M		B.E ()	NAVAI	ARCH	IITECT	URE &	OFFSH	IORE	ENGINI	EERING	i)			
Course (Code		Cours	se Nan	ne					L		Г	Р		С
UAPH1	2		Engir	neering	g Physi	cs				3	(0	0		3
Year and	d Sem	ester	I Yea	ar & I	Semes	ter				Contact	Hours	Per W	/eek	•	
Prerequi	site co	ourse	Nil							3 Hrs					
Course	catego	ory		nities a Science		Ma	nageme	nt cour	ses	Professio	onal Co	re	Profes	sional H	Elective
			Ba	asic Sci	ence	Enş	gineerir	ng Scier	nce	Oper	n Electiv	ve	Μ	landato	ory
Course Course	Outco	omes	a 2. T e After 1. S 2. E 3. I 4. I 5. C 6. A a	pplica Fo lear Succes Summa Explair Illustra Demon Dutline Apply pplica	tions. In the b al mac ssful co rize the te the p strate to the ba the fitions	asic pr hines. omplet e laws oncept oroper the bas asic pri-	tion of and p s of hy ties of sic prin inciple ientals	es of E Cours rincipl drosta matter nciples s of ele of e	Electrice, the solution of hectrice	f solids a comagne e studen f basic n and hydr eat and city and omagne	etic ind its will nechan rodyna light electri tic ind	uction be abl ics mics cal ma luctior	, Electre e to chines	engin	eering
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	-	1	2	-	-	-	-	-	-	2	2	2	3
CO2	2	-	2	2	2	-	-	-	-	-	-	2	2	3	3
CO3	$\frac{2}{2}$	2	-	1	2	-	-	-	-	-	-	-	2	-	-
CO4 CO5	2	2	22	- 2	3	-	-	-	-	-	-	22	22	23	2
C05 C06	3	3	3	3	3	-	-	-	-		-	3	2	3	2
AVERAGE	2.3	2.4	2.3	1.8	2.3	-	-	-	-	-	-	2.2	2	2.6	2.4
CORF	RELATIO	ON LEV	ELS			GHT (L	OW)	2. I	MODE	RATE (MI	EDIUM)	3.	SUBSTA	NTIAL (HIGH)

UNIT I: MECHANICS

Force-inertia – Newton's laws of motion- impulse and impact – Friction – cause of friction – types of friction – laws of friction – coefficient of friction – angle of friction. Motion-types of motion – simple harmonic motion – simple pendulum – circular motion –centripetal and centrifugal force – conical pendulum-working of a steam engine governor based on the principle of conical pendulum. Newton's law of universal gravitation – Satellite-principle of launching of satellite – orbital velocity – time period – escape velocity. Planetary motion and Kepler's Laws – Deduction of Kepler's third law – Law of gravitation from Kepler's third law.

9 hrs

9 hrs

UNIT II: HYDROSTATICS AND HYDRODYNAMICS

Fluid-Pascal's law – Archimedes principle – Laws of floatation – centre of buoyancy – stability of equilibrium of a floating body – metacentre – metacentric height of a ship – experiment. Hydrostatic pressure, differential manometer – Centre of pressure – Centre of pressure of a rectangular lamina immersed in a homogenous liquid at rest – Centre of pressure of a triangular lamina with one side parallel to the surface-Surface tension – angle of contact – capillarity – derivation of surface tension. Viscosity – Viscous Force-Stokes Law – coefficient of viscosity – experiment to find coefficient of viscosity. Bernoulli's Theorem – Venturimeter – Plimsol lines.

UNIT III: PROPERTIES OF MATTER

Elasticity-stress and strain-Hooke's law-modulus of elasticity-different types-Poisson ratio Torsion - torque per unit twist - work done in twisting - Torsion pendulum - theory and experiment - bending of beams - bending moment - Cantilevers - depression of a cantilever - non uniform bending and uniform bending – theory and experiment.

UNIT IV: HEAT AND LIGHT

Laws of thermodynamics - Specific heat capacity - Specific heat capacity of gases - CP and CV -Relation between them – Transmission of heat – conduction – coefficient of thermal conductivity – Lee,s disc experiment – cylindrical flow of heat – convection – radiation – Black body radiation – distribution of energy - Wien's displacement law- Rayleigh Jeans law. Interference - Double slit experiment-Diffraction due to single slit and circular aperture. Limit of resolution, Resolving power of optical instruments.

UNIT V: ELECTRICITY

Flow of current – Statement and explanation of Ohm's Law – Definition and explanation of Resistance and Specific Resistance – Effective resistance when resistors connected in series and parallel – Variation of resistance of a conductor with temperature - Thermistors - Kirchoff's current and voltage laws -Application of current and voltage laws on Wheatstone's bridge - Electromagnetics induction -Statement and explanation of Faraday's laws of Electromagnetic induction – Induced emf and current direction - Self and Mutual inductance - Principle, construction and working of AC & DC generators -Principle, construction and working of Transformer – Transformer losses and ways to reduce losses

TOTAL: 45 Hours

- **TEXT BOOKS:**
 - 1. A Nelson, "Engineering Mechanics" Tata McGRaw Hill, 2009
 - 2. M. Narayanamurthi, M. Nagarathnam, "Statics, Hydrostatics and Hydrodynamics", The National Publishing Company, 8th Edition, 2008.
 - 3. R. Murugeshan, Properties of matter and acoustics, S. Chand & Co, New Delhi 2012.
 - 4. D.S. Mathur, Elements of properties of matter, S.Chand & Company Ltd., New Delhi 2010.
 - 5. Brijlal, N. Subramanyam and P.S. Hemne "Heat and thermodynamics", S.Chand & Co, New Delhi 2008.
 - 6. Subramanian, Brijlal and M.N. Avadhanulu, A text book of Optics, S. Chand & Co, New Delhi, 2012.

REFERENCES:

- 1. R Feynmann, R Leighton, M Sands, "The Feynmann Lectures on Physics", Volume 1, Pearson Education; 1st edition 2012.
- 2. D Halliday, R Resenic and J Walker "Fundamentals of Physics", Wiley India, 6th edition, 2006.
- 3. Brijlal and Subramaniyam, "Properties of matter", S. Chand & Co, New Delhi, Revised edition.2008.
- 4. R W. Fox, A T. McDonald, P J. Pritchard John, "Introduction to Fluid Mechanics", Wiley & Sons, 6th edition, 2008.
- 5. E M. Purcell and Morin, "Electricity and Magnetism", 3rd Edition, Cambridge University Pre

9 hrs

9 hrs

9 hrs

Course			nities a			gement		Profe	ssional	Core		Pro	fessiona	al Elect	ive
category			Science		course	-				0010					
		Basic S	Science		Engin Scienc	eering ce		Open	Electiv	'e		Ma	ndatory	7	
Course Obje	ctive	1. To	o provi	de the	basic o	concept	s of A	C and	DC ci	rcuits.					
		2. To	o learn	the pe	rceptic	on of ma	agnetio	e circu	iits.						
		3. To	o unde	rstand	the f	undame	ental p	orincip	oles, c	onstru	ction,	applica	ations	of DO	C & A
		m	achine	s and r	neasur	ing inst	rumen	nts.							
Course Outc	ome					pletion			e, the	student	ts will	be able	e to:		
		1 0						hada			.:				
						nd relate					circuits	5.			
		/ mi	er the	laws a	-	-	0								
	2. Infer the laws and princip							fthma	a mhaa	~ ^ (` (7: month	~			
		3. Ex	plain t	-	 Explain the principle of ope Demonstrate the working principle 								aurina	instru	monto
		 Ex De 	plain t monst	rate th	e work	ting prin	nciple	of ele	ctrical	machi			suring	instru	ments.
		 3. Ex 4. De 5. Illu 	plain t monst ustrate	rate the the	e work fety m	ting prineasures	nciple and ty	of ele pes o	ctrical f wirir	machi 1g.	nes an	d meas	-	instru	ments.
PPOs /	POI	 3. Ex 4. De 5. Illu 6. Ap 	plain t monst ustrate ply the	rate the the same the	e work fety m /ledge	ting prine asures of elect	nciple and ty tric cir	of ele pes o cuits f	ctrical f wirir for eng	machi ig. gineerii	nes an ng app	d meas	n.	1	1
COs	PO1	 3. Ex 4. De 5. Illu 6. Ap PO2 	plain t monst ustrate ply the PO3	rate the same the sam	e work fety m /ledge PO5	ting prineasures	nciple and ty	of ele pes o	ctrical f wirir	machi 1g.	nes an	d meas lication PO12	n. PSO1	PSO2	PSO3
COs CO1	3	 3. Ex 4. De 5. Illu 6. Ap PO2 2 	plain t emonst ustrate pply the PO3 3	rate the same the same know PO4	e work fety me /ledge PO5 3	ting prine asures of elect	nciple and ty tric cir	of ele pes o cuits f	ctrical f wirir for eng PO9 -	machi ig. gineerin PO10	nes an ng app P011 -	d measure lication PO12 3	n. PSO1 3	PSO2 3	PSO3 3
COs CO1 CO2	3	 3. Ex 4. De 5. Illu 6. Ap PO2 2 3 	plain t emonst ustrate ply the PO3 3 2	rate the same the same know PO4	e work fety my yledge PO5 3 2	ting prine asures of elect	nciple and ty tric cir	of ele pes o cuits f	ctrical f wirir for eng	machi ig. gineerii	nes an ng app	d measure lication PO12 3 3	n. PSO1 3 3	PSO2 3 3	PSO3 3 2
COs CO1 CO2 CO3	3 3 2	 3. Ex 4. De 5. Illi 6. Ap PO2 2 3 3 	plain t emonst ustrate ply the PO3 3 2 3	rate the same the same the same the same the same the same term of t	e work fety me vledge PO5 3 2 3	ting prine asures of elect	nciple and ty tric cir	of ele /pes o cuits f PO8 - - -	ctrical f wirin for eng PO9 - - -	machi ag. gineerin PO10 - - -	nes an ng app P011 -	d measure lication PO12 3 3 2	n. PSO1 3 3 2	PSO2 3 3 3	PSO3 3 2 3
COs CO1 CO2 CO3 CO4	3 3 2 3	3. Ex 4. De 5. Illu 6. Ap PO2 2 3 3 3 3	plain t emonst ustrate pply the PO3 3 2 3 2 2	rate the same the same know PO4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	e work fety my yledge PO5 3 2 3 3	ing prin easures of elect PO6 - - - -	nciple and ty tric cir	of ele pes o cuits t PO8 - - - - -	ctrical f wirir for eng P09 - - - -	machi Ig. gineerin PO10 - - - -	nes an ng app P011 - - - -	d measure lication PO12 3 3 2 3	n. PSO1 3 3 2 3	PSO2 3 3 3 2	PSO3 3 2 3 2 2
COs CO1 CO2 CO3 CO4 CO5	3 3 2 3 3	3. Ex 4. De 5. Illu 6. Ap PO2 2 3 3 3 3 3 3	plain t emonst ustrate pply the PO3 3 2 3 2 2 2 2	rate the sate know PO4 3 3 3 2 3 3 3	e work fety m /ledge PO5 3 2 3 3 2 2	ting prine asures of elect	nciple and ty tric cir P07 - - - - - - - -	of ele /pes o cuits f PO8 - - - - - - - -	ctrical f wirin for eng PO9 - - -	machi Ig. 9010 - - - - -	nes an ng app P011 - - - - -	d measure lication P012 3 3 2 3 2	n. PSO1 3 2 3 2 2	PSO2 3 3 3 2 3 3	PSO3 3 2 3 2 3 3 3
COs CO1 CO2 CO3 CO4	3 3 2 3	3. Ex 4. De 5. Illu 6. Ap PO2 2 3 3 3 3	plain t emonst ustrate pply the PO3 3 2 3 2 2	rate the same the same know PO4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	e work fety my yledge PO5 3 2 3 3	ing prin easures of elect PO6 - - - - - -	nciple and ty tric cir	of ele pes o cuits t PO8 - - - - -	ctrical f wirir for eng P09 - - - - - - - -	machi Ig. gineerin PO10 - - - -	nes an ng app P011 - - - -	d measure lication PO12 3 3 2 3	n. PSO1 3 3 2 3	PSO2 3 3 3 2	PSO3 3 2 3 2 2

UNIT I: FUNDAMENTALS OF DC CIRCUITS

Introduction to DC circuits, network elements, Ohm's Law and Kirchhoff"s Laws - analysis of series and parallel circuits - Power and energy, Voltage - Current relations for resistor, inductor, capacitor, Mesh and Nodal analysis for simple circuits.

UNIT II: MAGNETIC CIRCUITS

Introduction to magnetic circuits- Faradays Laws, Statically and dynamically induced EMF; Concepts of self inductance, mutual inductance and coefficient of coupling; Energy stored in magnetic fields.

UNIT III: AC CIRCUITS

Single Phase A.C. Circuits, Generation of sinusoidal voltage- definition of average value, root mean square value, form factor and peak factor, concept of phasor representation, Analysis of simple R,L and C circuits-Introduction to three phase systems - types of connections, relationship between line and phase values. 9 hrs **UNIT IV: ELECTRICAL MACHINES & MEASURING INSTRUMENTS**

9 hrs

9 hrs

Working principle, construction and applications of DC machines and AC machines (single phase transformers, single phase induction motors: split phase, capacitor start and capacitor start & run motors). Basic principles and classification of instruments - Moving coil and moving iron instruments.

UNIT V: ELECTRICAL SAFETY, WIRING & INTRODUCTION TO POWER SYSTEM 9 hrs Safety measures in electrical system - types of wiring - wiring accessories, staircase, fluorescent lamps & corridor wiring - Basic principles of earthing - IS standards for Earthing- Types of earthing - Simple layout of generation, transmission and distribution of power.

Total: 45 Hours

Safety aspects with respect to marine systems, additional safety measures followed in ships

TEXT BOOKS:

1. William H. Hayt Jr, Jack E. Kemmerly and Steven M. Durbin, "Engineering Circuits Analysis", Tata McGraw Hill publishers, 8th edition, New Delhi, 2013.

2. Nagrath I.J. and D. P. Kothari, Basic Electrical Engineering, Tata McGraw Hill publishers, New Delhi, 2007.

3. Bhattacharya.S.K, "Basic Electrical and Electronics Engineering", First edition, Pearson Education, 2011

REFERENCES:

1.A.E. Fitzgerald, David.E.Higginbotham and Arvin Grabel,"Basic Electrcal Engineering", Tata Mc Graw Hill Education (India) Private Ltd.2009.

2. Metha.V.K, Rohit Metha, "Basic Electrical Engineering", Fifth edition, Chand. S & Co, 2012.

3. Mahmood Nahvi and Joseph A.Edminister,":Electric Circuits", Schaum Outline Series, Tata McGraw Hill,

 5^{th} edition, 2011.

4. Parker Smith, Problems in Electrical Engineering, CBS Publishers, 2003

5. Indian Standards "Code of Practice for Earthing", BIS, New delhi.2001Edition.

PROGRA	M		B.F	E (NA &	c OE)										
Course Coo	le		Co	urse Na	me:						L	Т	Р		С
UAEVCI	l		En	vironn	nental	Scienc	e								
											2	0	0		2
Year and S	Semeste	er	1 1	Year &	ISem	nester				1	Contac	t hours	s per v	veek	
Prerequisi	te Cour	se	Ni	1							2 hrs				
Course ca	ategory	7		manitie ences	es and S	Social	Mana	agemen	t course	es :	Professi	ional Co		Professi Elective	
			Ba	sic Sc	ience		Engi	neering	Science		Open E	lective		Mandat	tory
Course Ob	ojective			The purpose of this course is to provide Knowledge about biodiversity, pollution prevention of pollution and save natural res											osystem
Course ou	tcome				<u> </u>		-							able to:	
				 an 2. Ic 3. II h 4. D 5. E R 6. C 	nd Nat lentify lustrat uman emons xplain ole of lassify	ural. the int e the i world. strate d the ir Inform the i	terrelation importation lifferer npact nation ' ntegra	tionshi ance o at type of poll Techno ted tho	p betw f envir of poll lution ology i	veen liv ronme lution explos n Envi such a	ving or nt by a and its sion, fa ironme as bioo	ganism assessi hazarc amily v nt and	n and e ng its ls. welfare huma	environ impac e prog n healt	t on the ram and
POs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	3	3	2	2	-	-	2	-	-	-
CO2	-	-	-	-	-	2	3	3	1	-	-	2	-	-	
CO3	-	-	-	-	-	2	3	3	1	-	-	2	-	-	-
CO4	-	-	-	-	-	3	3	2	2	-	-	3	-	-	-
CO5	-	-	-	-	-	3	3	3	2	-	-	3	-	-	-
CO6	-	-	-	-	-	2	3	2	2	-	-	3	-	-	-
AVERAGE		-	-	-	-	2.50	3.00	2.50	1.67	-		2.50	-	-	-
COR	RELATI	ON LEVI	ELS		1. SL	IGHT (L	OW)	2. N	MODERA	ATE (ME	DIUM)	3. 8	SUBSTA	NTIAL (1	HIGH)

Unit 1: Natural Resources

Environmental studies-terminologies, need for public awareness. Natural resources-Renewable and non-renewable resources; Characteristics, uses and conservation of natural resources-Forest resources, Water resources, Mineral resources, Food resources, Energy resources and Land resources. Role of an individual in conservation of natural resources; equitable use of resources for sustainable lifestyles.

Unit 2: Ecosystems

Concept of an ecosystem, Structure and function of an ecosystem, Producers, consumers and decomposers; Energy flow in the ecosystem; Ecological succession; Food chains, food webs and ecological pyramids; Introduction, types, characteristic features, structure and function of the different ecosystems- Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Unit 3 : Biodiversity and its conservation

Introduction – Definition : genetic, species and ecosystem diversity; Bio-geographical classification of India; Value of biodiversity : consumptive use, productive use, social, ethical, aesthetic and option values; Biodiversity at global, National and local levels; Inida as a mega-diversity nation; Hot-sports of biodiversity; Threats to biodiversity;

6 Hrs

6 Hrs

Endangered and endemic species of India; Conservation of biodiversity : In-situ and Ex-situ conservation of biodiversity.

Unit 4: Environment and Social Issues

Environmental Pollution; Cause, effects and control measures of different types of pollution; Solid waste Management; Role of an individual in prevention of pollution; Disaster management. Social Issues and the Environment, From Unsustainable to Sustainable development, Urban problems related to energy, Water conservation, Resettlement and rehabilitation of people; its problems and concerns. Environmental ethics. Climate change, global warming, nuclear hazards, ill-effects of fireworks. Wasteland reclamation. Laws and acts in India for environment protection, Public awareness.

Unit 5: Human Population and the Environment

Population growth, variation among nations. Population explosion – Family Welfare Programme. Environment and human health- Human Rights, Value Education, HIV/AIDS, Women and Child Welfare, Role of Information Technology in Environment and human health. Field work and Field Visit.

TOTAL: 30 Hours

References

1. Agarwal, K.C. 2001 Environmental Biology, Nidi Publications Limited, Bikaner, India

2. Erach Bharucha. 2013. Textbook of Environmental Studies for Undergraduate Courses. University Grants Commission, New Delhi

3. N. Arumugam and V Kumaresan. 2014. Environmental Studies (UGC Syllabus), Saras Publications, Nagarkoil, India

4. D.K. Asthana and Meera Asthana. 2010. A Textbook of Environmental Studies. S. Chand Publishingm, New Delhi

5. B.S. Chauhan. 2015. Environmental Studies. Laxmi Publications, New Delhi.

6 Hrs

PROGRAM	ME			BE- Na	val arc	hitectu	re & Of	fshore	Engine	ering					
Course Code				Course		-					Т]	P	(2
UAMC11				ENGIN	IEERIN	IG ME	CHAN	ICS		3	0	(C	3	3
Year and Sem				I Year ((I Sem	ester)			Cont	act hour	s per we	eek			
Prerequisite c	ourse			NIL					(3H	rs)					
Course	e Objec	tive			em in	a si	mple	logica		•			•	y engir probli	
				Student	ts will t	be able	to								
				1		rmine t nanics.	he resu	ltant fo	rce and	l momer	nt for a g	given fo	rce syste	em using	laws c
Course	Course Outcome					y the consions.		ons of e	equilibr	ium on	the rigi	d bodies	s with th	ne force	s in tw
			F	3				n laws a	nd solv	e variou	s proble	ms of sta	atic and	dynamic	friction
			_	4	Dete	rmine t	he Cen	troid, n	oment	of inerti	a of var	ious sect	tions.		
				5	Appl	y the la	aws of 1	notion	to solve	e the rea	l life dy	namic pi	roblems.		
				6	Solv	e the su	ipport r	eaction	s of the	various	beam w	ith diffe	erent loa	ding con	ditions
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	1	-	-	-	-	-	-	2	-	2	3
CO2	3	3	3	3	-	-	-	-	-	-	-	2	3	-	2
CO3	3	2	2	3	-	-	-	-	-	-	-	3	2	3	-
CO4	3	2	2	3	1	-	-	-	-	-	-	2	3	2	2
CO5	3	3	2	2	-	-	-	-	-	-	-	3	-	3	2
CO6	3	2	3	2	1	-	-	-	-	-	-	3	-	2	3
AVERAGE	3	2.5	2.3	2.5	1	-	-	-	-	-	-	2.5	2.7	2.4	2.4
CORREL	ATION	LEVE	LS	1	. SLI	GHT (I	LOW)			IODERA MEDIU			3. SU	BSTANT (HIGH)	

UNIT I - BASICS & STATICS OF PARTICLES

Introduction - Units and Dimensions - Forces - System of forces - Resultant forces - Parallelogram law of forces -Triangular law of forces - Polygon law of forces - Resolution and composition of forces - Principles of transmissibility. Single equivalent force Equilibrium of particles - Moment and couple - Scalar components of moment - Varigon's Theorem

UNIT II - EQUILIBRIUM OF RIGID BODIES

Equilibrium of forces - Law of mechanics - Lami's theorem - Free body diagram - Requirement of Stable Equilibrium – Equilibrium of rigid bodies in 2D – Examples, Type of supports and their support reactions

UNIT III - FRICTION

Static and Dynamic Friction - Laws of friction - Equilibrium of a body on a rough Horizontal plane, inclined Plane and inclined plane subjected to a force acting along the inclined plane. Applications of friction - Simple contact friction (Ladder friction) – Screw friction – weight lifted by screw jack - Belt friction – Rolling Resistance.

UNIT IV - PROPERTIES OF SURFACES AND SOLIDS

Determination of Areas and Volumes-First moments of area and the Centroid of sections- Rectangle, circle, triangle from integration-T section, I section, Angle section, Hollow section y using standard formula- Second and product moments of plane area- Rectangle, triangle, circle from integration-T section. I section, Angle section, Hollow section by using standard formula parallel axis theorem and perpendicular axis theorem- Mass moment of Inertia.

9 Hrs

9 Hrs

9 Hrs

UNIT V – KINEMATICS OF RIGID BODIES

Kinematics of particles. Rectilinear motion. Curvilinear motion. Kinematics of particles: Newton's second law of motion. Motion of particles under central force. Kinetics of particles: energy and momentum methods. Work and energy. Impulse momentum. Central impact. Oblique impact. Conservation of momentum. Systems of particles. Impulse-momentum. Kinematics of rigid bodies. Plane motion of rigid bodies: forces and accelerations. Plane motion of rigid bodies: Energy and momentum methods. Angular momentum of rigid bodies in 3-D motion. Introduction to mechanical vibrations. Free vibrations. Forced vibrations

Total: 45 Hours

TEXT BOOKS

- 1. K.V. Natarajan, "Engineering Mechanics".
- 2. R.S Khurmi, "A Textbook of Engineering Mechanics".

REFERENCES

- 1 S.S. Bhavikatti, "Engineering Mechanics"
- 2 Palanichamy & Nagan, "Engineering Mechanics Statics & Dynamics"
- 3 S. Rajasekaran, G. SankaraSubramania, "Fundamentals of Engineering Mechanics"

4 Beer, F.P and Johnson Jr. E.R, "Vector Mechanics for Engineers", Vol. (1) Statics and Vol. (2) Dynamics, McGraw-Hill International Edition

PROGRAM	N		B.E	(NAV	AL ARC	CHITE	CTURE	& OFF	SHORI	E ENGIN	VEERIN	IG)			
Course Co	ode		Cou	irse Na	ime					L		Т	Р		С
UAIT12			C	OMPU	JTER	BASI	CS AN	D	Ē						
				ILITIE						3		0	0		3
Year and	Semes	ter	ΙY	ear &	I Seme	ester				Conta	ct Hou	rs Per	Week		
Prerequisi	ite cou	rse	Nil							3 Hrs					
Course ca				nanities al Scier		N	Ianagen	nent co	urses	Profess	sional C	ore	Profe	essional	Elective
				Basic S	cience	F	Ingineer	ring Sci	ence	Ор	en Elec	tive		Manda	tory
Course Ol	bjectiv	res	-	1 To	o provi	ide the	e basic	knowl	edge o	of com	outer, i	nput a	nd out	put de	vices.
	5														atabase
					oncepts			2	× 1	C					
					-		etwork	strates	gies ai	nd netw	ork to	pologi	es		
									-	d work					
									0.0						
Course (Jutcon	000	Λft	ar succ	accful	comn	lation	of Cou	rea th	e stude	nte wi	ll ha al	hla to		
Course C	Juicon	lies	Alt			-									
				1.			-		-	outer ty					
				2.						& netv		-			
				3.		0			nses a	nd iden	tificati	on of	comme	on erro	ors
						•	pes of								
				5.						tools t				ologie	es
	r	T		6.	App	ly the	E learr	ning sti	rategie	es to de	-			r	
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	2	2	2	2	2	-	-	-	-	2	-	1	2	1	1
CO2	3	3	2	2	3	-	-	-	-	2	-	1	2	1	1
CO3	3	3	3	2	2	-	-	-	-	2	-	1	2	1	1
CO4	2	2	2	2	3	-	-	-	-	2	-	1	2	1	1
CO5	2	2	2	2	3	-	-	-	-	2	-	1	2	1	1
CO6	3	3	3	2	3	-	-	-	-	2	-	1	2	1	1
AVER	2.5	25	1 22	2	2.67					2		1	2	1	
AGE		2.5 ON LEVI	2.33	2		- IGHT (I		- 2. N	- MODED	2 ATE (ME		1 3.	2 SUBSTA		
CORE	ALLA I I	ON LEVI	213		1. SL	юп1 (I	.Uw)	4. I	NODER	AIL (ME	DIUM)	э.	SUDSIA	INTIAL (ngn)

UNIT I: Digital Computer

Block Diagram of Digital Computer and its functions-Classifications of Computer (Micro, Mini, Mainframes and Super computers)-Input and Output devices, Memory Devices.

UNIT II: Decimal Number System

Bit-Byte-Decimal Number System-Octal Number System-Hexadecimal Number System Conversions of binary and decimal -Package-Program Language Generations-Data-Record- File-Database-Master file-Transaction file-Work file-Backup file.

UNIT III: Characteristics of a LAN

LAN- -Network strategies-Point-to-point strategy-Multi-point strategy. Network Topologies: Mesh topology-Star topology-Ring topology-Bus topology- Cellular topology-Tree topology- Network Devices.

UNIT IV: Types of OS

Introduction – Types of OS-Functions of OS-Processor Management-Memory Management

9 Hrs

9 Hrs

9 Hrs

-Device Management-Information Management-Compiler-Assembler-Interpreter-Loader and Linker.

UNIT V: Internet

Working of Internet(DNS,IP Address, Word Address, Dial Up connection, Dedicated Line Connection, ISDN, Email and Browsers)-Application of Computers – PMS- planning-Scheduling-documentation-The Psychology of Learning- E-learning- Benefits of E- learning.

Operating the computer using GUI based Operating System, Important features of web and web browsers, Use search engines and directories effectively, Use of FTTP and other services

Total: 45 Hours

9 Hrs

TEXT BOOKS:

1. Foundations of Information Technology- Chanchal Mittal &PragatiPrakashan **REFERENCES:**

- 1. Essential Grammar in use- Raymond Murphy, Cambridge, 2007.
- 2. Raman, Meenakshi & Sangeetha Sharma. Technical Communication: Principles and Practice. Oxford University Press, New Delhi. 2011.
- 3. Regional Institute of English. English for Engineers. Cambridge University Press, New Delhi. 2006.
- 4. Rizvi, Ashraf. M. Effective Technical Communication. Tata McGraw-Hill, New Delhi. 2005
- 5. Rutherford, Andrea. J Basic Communication Skills for Technology. Pearson, New Delhi. 2001.
- 6. Viswamohan, Aysha. English for Technical Communication. Tata McGraw-Hill, New Delhi. 2008.

PROGRA	Μ		B. E (NAVA	L ARC	HITEC	FURE 8	& OFFS	HORE	ENGIN	EERING	3)			
Course C	Code		Cou	rse Na	me					L		Т	Р		С
UAMC1	В		Engi	neerin	g Grap	ohics				0		0	2		1
Year and	Seme	ster		ear & I						Contac	t Hour	s Per V	Neek		
Prerequis	site co	ırse	Nil							2 Hrs					
Course c				anities Il Scienc		Ma	nagem	ent cou	rses	Professi	onal Co	ore	Profe	ssional	Electiv
			B	asic Sc	ience	En	igineeri	ing Scie	nce	Ope	n Electi	ve	1	Mandat	ory
							-	\checkmark							
Course C	0		2. Afte 1. 2. 3. 4. 5.	comm To ana r succe Identif Constr length Illustra Demon Constr	unicati dyze a essful c by the t ruct the and tru- ate the nstrate ruct the	on of on nd des comple hree D e proje ue incl simple the pr e isom	Conception of the solution of	pts. eas of e f Cour ional c of poi n on pla on of se rojectio	engine se, the objects nts, s in sur olids a on of s	erstand eering p e studen s in two traight face and dev simple s and pi	product nts will p-dime lines a elopm solids	ts. I be ab nsiona and de ent of	le to l medi termin	ation	of tru
PPOs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
COs CO1	2	2	2	2	2	-	-	-	-	1	-	-	-	-	-
CO2	3	3	2	3	1	-	-	-	-	2	-	-	-	2	-
CO3	2	2	3	2	2	-	-	-	-	3	-	-	-	2	-
CO4	3	3	2	2	1	-	-	-	-	1	-	-	3	-	-
CO5	3	2	2	3	3	-	-	-	-	2	-	-	2	-	2
CO6	3	3	2	2	3	-	-	-	-	3	-	2	-	-	2
AVERAGE	2.7	2.5	2.2	2.3	2	-	-	-	-	2	-	2	2.5	2	2
		ON LEVE				GHT (L	,			ATE (ME	DIUM)	3.	SUBSTA	NTIAL (
		E CUI													6 Hrs

UNIT-I PLANE CURVES AND ORTHOGRAPHIC VIEWS

Introduction-Use of drafting instruments-Drawing conventions-size-Line types-Lettering and dimensioning Curves used in engineering practices: Conics - Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle - Drawing of tangents and normal to the above curves Visualization concepts: Representation of Three Dimensional objects in two dimensional media-Visualization of objects from pictorial views to orthographic views

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACES

Orthographic projection: Principal views and principal planes of projection-First angle projection- Third angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes -Determination of true lengths and true inclinations by rotating line method-Projection of plane surfaces

UNIT III PROJECTION OF SOLIDS

Projection of simple solids placed in Different positions-perpendicular to HP or VP-parallel to either HP or VP and inclined to the other-Inclined to both VP and HP

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 6 Hrs

6 Hrs

Sectioning of simple solids in simple vertical position when the cutting plane is inclined to the one of the principal planes-Development of lateral surfaces of simple solids by Parallel line method and radial line method

UNIT V ISOMETRIC PROJECTION AND ISOMETRIC VIEWS

6 Hrs

Isometric view - isometric projection – difference between isometric view and isometric projection - isometric scale - methods of drawing an isometric view- box method. Angles in Isometric view irregular curves in isometric drawing - circles in isometric method – four centre method for drawing an ellipse - arcs of circles in isometric – Draw the isometric view of the object from the given orthographic view - exercises

TOTAL: 30 Hours

TEXT BOOKS:

- 1. Bhatt N.D. and Panchal V.M., Engineering Drawing. Charotar Publishing House, 50th Edition, 2010.
- 2. Gopalakrishna K.R., Engineering Drawing. (Vol. I & II combined), Subhas Stores, Bangalore, 2007.
- 3. Luzzader, Warren.J. and Duff, John M., Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005

REFERENCES:

- 1. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson, 2nd Edition, 2009.
- 2. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.
- 3. Natrajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2009.
- 4. Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw Hill Publishing Company Limited, New Delhi, 2008.

_	AM					ITECT	URE &	OFFSH	ORE E	NGINE	ERING)			
Course (Code		Cours	se Nan	ne					L]	Γ	Р		С
UAIT1A	A		Com	outer P	ractica	l Labo	oratory	,		0	()	2		1
Year and	d Sem	ester	I Yea	ar & I	Semes	ter			C	ontact	Hours	Per W	/eek		
Prerequi			Nil						2	2 Hrs					
Course				nities a Science		Mai	nageme	nt cours	ses P	rofessio	nal Coi	·e	Profess	sional H	Elective
			Ba	asic Scie	ence	Eng	gineerir	ng Sciend	ce	Open	Electiv	'e	Μ	l <mark>andat</mark> o	ory
							1								
Course (Course	Ũ		1. After 1 2	succes Sur Exp	ssful co	omplet e basio	tion of cs of c	Course Ompute of for	e, the er , nu	student mber s	ts will ystem	be ableand co	e to	er lang	uages
			3 4 5 6	Illu Der Out	nonstration the second se	ate the e basic	of con basic cs of fi	nputer princip Il functio	on sh oles of on for c	ips. Tearn a lates and	avoidii I formul	ng redu as.	-		(1015-
	POI	BOG	4 5 6	Illu Der Out Apj	strate t nonstra line th ply the	ate the e basic funda	e of con basic cs of fi mental	nputer princip Il functic Is prese	on sh bles of on for c entatic	ips. Tearn a lates and on for a	avoidin I formul applic	ng redu as. cation	ındant	data.	
COs	PO1	PO2	4 5 6 PO3	Illu Der Out App P04	strate t nonstra line th ply the PO5	ate the e basic funda P06	of con basic cs of fi	nputer princip Il functio	on sh oles of on for c	ips. Tearn a lates and on for a PO10	avoidin I formul applic P011	ng redu as. cation PO12	ındant PSO1	data. PSO2	PSO3
C01	2	2	4 5 6 PO3 2	Illu Der Out App P04 2	strate t nonstra cline th ply the PO5 2	ate the e basic funda PO6 -	e of con basic cs of fi mental P07	nputer princip Il functio Is prese PO8 -	on sh bles of on for c entatic PO9 -	ips. Flearn a lates and on for a PO10 2	avoidin l formul applic PO11 -	ng redu as. eation PO12	Indant PSO1	data. PSO2 1	PSO3
CO1 CO2	2 3	2 3	4 5 6 PO3 2 2	Illu Der Out App P04 2 2	strate t nonstra- line th ply the PO5 2 3	ate the e basic funda P06	e of con basic cs of fi mental	nputer princip Il functic Is prese	on sh bles of on for c entatic	ips. Flearn a lates and on for a PO10 2 2	avoidin I formul applic P011	ng redu as. cation PO12 1	Indant PSO1 2 2	data. PSO2 1 1	PSO3 1 1
CO1 CO2 CO3	2 3 3	2 3 3	4 5 6 PO3 2 2 3	Illu Der Out App PO4 2 2 2 2	strate t nonstra- line th oly the PO5 2 3 2	ate the e basic funda PO6 -	e of con basic cs of fi mental P07	nputer princip Il functio Is prese PO8 -	on sh bles of on for c entatic PO9 -	ips. Flearn a lates and on for a PO10 2 2 2 2	avoidin l formul applic PO11 -	ng redu as. cation PO12 1 1 1	PSO1 2 2 2	data. PSO2 1 1 1	PSO3 1 1
CO1 CO2 CO3 CO4	2 3 3 2	2 3 3 2	4 5 6 PO3 2 2 2 3 2	Illu Der Out App PO4 2 2 2 2 2 2 2	strate t nonstra- cline th ply the PO5 2 3 2 3	ate the e basic funda PO6 -	e of con basic cs of fi mental P07	nputer princip Il functio Is prese PO8 -	on sh bles of on for c entatic PO9 -	ips. Flearn a lates and on for a PO10 2 2 2 2 2 2	avoidin l formul applic PO11 -	ng redu as. cation PO12 1 1 1 1	PSO1 2 2 2 2	data. PSO2 1 1 1 1 1 1 1 1 1 1 1 1 1	PSO3 1 1 1 1 1
CO1 CO2 CO3 CO4 CO5	2 3 3 2 2	2 3 3 2 2	4 5 6 <u>PO3</u> 2 2 3 2 2 2	Illu Der Out App 2 2 2 2 2 2 2 2 2	strate t nonstra- line th oly the PO5 2 3 2 3 3 3	ate the e basic funda PO6 - - - - - - -	PO7 - - - - - - -	mputer princip Il functio Is prese PO8 - - - - - - -	on sh on for c entatic PO9 - - - - - -	ips. Flearn a lates and on for a PO10 2 2 2 2 2 2 2 2 2	avoidin I formul applic PO11 - - - - -	ng redu as. eation PO12 1 1 1 1 1	PSO1 2 2 2 2 2 2	data. PSO2 1 1 1 1 1 1 1 1 1	PSO3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CO1 CO2 CO3 CO4	2 3 3 2	2 3 3 2	4 5 6 PO3 2 2 2 3 2	Illu Der Out App PO4 2 2 2 2 2 2 2	strate t nonstra- cline th ply the PO5 2 3 2 3	ate the e basic funda PO6 -	e of con basic cs of fi mental P07	nputer princip Il functio Is prese PO8 -	on sh bles of on for c entatic PO9 -	ips. Flearn a lates and on for a PO10 2 2 2 2 2 2	avoidin l formul applic PO11 -	ng redu as. cation PO12 1 1 1 1	PSO1 2 2 2 2	data. PSO2 1 1 1 1 1 1 1 1 1 1 1 1 1	PSO3 1 1 1 1 1

UNIT I:

WORD PROCESSING

Introduction – Shortcut keys - Identify the components of the word interface-Enter text in a document – Save a document – select text – Modify text – Find and Replace text - Character formatting - Align text using tabs – Apply styles – Apply Boarders and Shading – Bullets and Numbering – Tables- Insert a table – format a table – Convert text to table – Page Border and color- Watermark – Headers and footers – Creating Hyperlinks – Resize picture – Adjust the picture appearance – Wrap text around a picture – Pasting screen shots

- Create Text Boxes – Add word art and other special effects – Using Mail Merge creating envelopes and labels.

UNIT II:

SPREADSHEET

6 Hrs

Introduction – Shortcut keys – Work with cells – Enter data in an workbook – Modifying an Excel worksheet – Searching data's in worksheet – Modify rows and columns – Modify fonts

-Insert and modify pictures and clip art - Apply borders and colors to cells – Align the content in a cell – Apply cell styles – Create and Modify tables – Format tables – Sort or Filter data – Using functions to

calculate data - Create a chart - Modify chart - Format charts - Freezing the row or column - Apply conditional formatting – Add data validation.

DATABASE APPLICATION UNIT III: 6 Hrs Introduction - Identify the components of a Database - Constrain data entry using field properties -Create a database - Create a table using the design view - Modify table data, sort and filter records -Establish table relationships – Create query joins – Create a query – Add criteria to a query – Create a form – Modify the design of a form – view and edit data using an access form – Create a Report – Add a control to a report- Format the controls in a report.

UNIT IV:

PRESENTATIONS

Introduction - Create a Presentation - View a presentation - Save a presentation - Enter text- Edit text -Format text – Add slides to a presentation – Arrange slides – work with themes – working with slides – copying text and objects - Collapsing and expending slides

Applying Artistic effects – Using slide animation – Adding animation - Setting animations – Adding sound effect to an animation – Inserting Tables – Entering data in tables – Inserting Charts – Modifying charts - Customizing document themes

UNIT V:

MS PROJECT

Introduction to MS Project 2015- Defining and creating projects - Entering and scheduling tasks -Organizing Tasks – Working with Task Duration, Constraints and Deadlines – Introducing dependencies - Working with resources Project Management- Developing Project-Assigning resource to task-Tracking Progress – Managing Budget- Analysis workload.

TEXTBOOKS:

TOTAL : 30 Hours

- 1. Chatfield (Author), Johnson (Author), Microsoft Project 2013 Step by Stepl, 2013, Prentice Hall India Learning. 2013.
- 2. Gary B. Shelly (Author), Misty E. Vermaat (Author), -Microsoft Office 2010: Advanced, Course Technology; First Edition, December 6, 2010.

6 Hrs

PROGR	AM		B.E (1	NAVAL	ARCH	ITECT	URE &	OFFSH	IORE	ENGINE	ERING)			
Course (Code		Cours	se Nan	ne					\mathbf{L}		Γ	Р		C
UALE1.	A		Soft s	skills -	Ι					0	(0	4		2
Year and	d Sem	ester	I Yea	ar & I	Semes	ter				Contact	Hours	Per W	/eek		
Prerequi	isite co	ourse	Nil							4 Hrs					
Course	catego	ory		nities a Science		Mai	nageme	nt cour	rses	Professio	nal Co	re	Profes	sional F	lective
				\mathbf{N}											
			Ba	asic Sci	ence	Eng	gineerir	ng Scier	nce	Open	Electiv	ve	N	landato	ry
Course Course			2. T c 3. 1 in After 1. 1 2. 1 3. 1 4. M 5. 1	o lectu To help ontext Makin mporta succes Develo naking Define nfer th Make u Develo	res and p learn s. g them <u>unce in</u> ssful co p skill gramm their p e delic se of 1 p good	l comp ners de realis today omplet s in in natica erspec acy of istenin attitue	brehen evelop se the <u>'s scen</u> ion of forma l errors tive m 'using g and de and	d them their impor- nario. Cours al con- sore op the lin speaki behav	tance we, the versation ng sk vior	ng skills sking qu king sk of Eng studen ion; co onally ics skill ills for develop	uestior ills ar lish as ts will mpreh s effecti	ns, seel nd spe s Glob be abl end th	k clarif ak flu al lang e to neir vio	fication ently i guage a ews w	ns. in real
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	1	2	1	2	2	-	2	-	-	-
CO2	-	-	-	-	-	2	1	2	2	3	-	2	-	-	-
CO3	-	-	-	-	-	2	1	2	2	2	-	3	-	-	-
CO4	-	-	-	-	-	2	2	1	2	1	-	3	-	-	-
CO5	-	-	-	-	-	3	2	1	3	2	-	1	-	-	-
CO6 AVERAGE	-	-	-	-	-	$\frac{2}{2.3}$	1	2 1.5	1 2	2	-	2 2.2	-	-	-
AVERAGE	-	-	- ELS	-	-	2.5 GHT (L	110			Z RATE (ME	-		- SUBSTA	-	-

UNIT 1: GRAMMAR AND FOUNDATON

Training the students on basic grammar and foundation and laying the standard platform-A complete standard syllabus of Cambridge is used-The main part of the 1st semester is to cover the major tenses (Present tense, Present Continuous, Past Tense, Past Continuous, Present Perfect, and Present Perfect continuous).

UNIT II: FOCUS ON LANGUAGE – VOCABULARY

General Vocabulary-Dictionary-Word Formation: Prefix and Suffix-Synonyms and antonyms- Idioms and Phrases- Diplomatic Phrases - Food Phrases- Vocabulary-Words commonly misspelt - Lab-Test. 12 Hrs

UNIT III: INTERACTIVE ENGLISH

The main objective is English for International communication-It course contains conversations, snapshots, readings, activities, a greater variety and amount of listening materials and more visuals to introduce vocabulary, more opportunities to build fluency, and up-to-date art and design- The course covers the fours skills of listening, speaking, reading and writing, as well as improving pronunciation and building vocabulary.

UNIT IV: LISTENING AND SPEAKING

12 Hrs

12 Hrs

Types of Listening -Listening and note taking-Pronunciations-Stress and Intonation- Conversation technique-Dialogue Writing -Professional Communication-Interview-Group Discussion –Power point Presentation-Debate , Oratorical Lab

UNIT V: INTERVIEW SKILLS AND PERSONALITY DEVELOPMENT 12 Hrs Out of box thinking - Lateral Thinking- Intrinsic and Extrinsic Motivators- Factors influencing Attitude-Challenges and lessons from Attitude

Body language - Problem-solving - Conflict and Stress Management - Decision-making skills - Leadership and qualities of a successful leader - Character-building -Team-work - Time management - Work ethics – Good manners and etiquette

TEXT BOOKS:

TOTAL: 60 Hours

 Essential Grammar in use- Raymond Murphy ,Cambridge , New Third Edition REFERENCE BOOKS:
 New Interchange (English for International Communication) Jack C. Richards

PROGR A	AM		B.E (1	NAVAI	ARCH	ITECT	URE &	OFFSH	IORE	ENGINE	ERING)			
Course (Code		Cours	se Nan	ne					L		Г	Р		C
UAWS1	B		Work	shop I	Practic	es-1				0	(0	3		1
Year and	d Sem	ester	I Yea	ar & I	Semes	ter				Contact	Hours	Per W	/eek		
Prerequi	isite co	ourse	Nil							3 Hrs					
Course	catego	ory		nities a Scienc		Mai	nageme	nt cour	ses	Professio	onal Co	re	Profes	sional F	Clective
			Ba	asic Sci	ence	Eng	gineerin	ig Scier	nce	Open	Electiv	7 e	N	Iandato	ry
							٦								
Course Course	Ŭ		weldi After 1. O 2. M	ng oxy succes utline lake us	y - ace ssful co the ope se of w	tylene omplet eration elding	weldin tion of of lath equip	ng and Cours hes and ments	fittin e, the d dril to joi	th hands ng e studen ling ma in the st and dril	ts will chines ructure	be abl	e to		e arc
PPOs /	P01	PO2	5. Pl	an ass	emblin	ig and	disma	ntling	of co	g, hack mponen s using P010	ts		-		ng PSO3
COs	-	102		104		100	10/	100			1011	1012	1501	1502	1505
CO1 CO2	2	-	2	-	2 2	-	-	-	1	2	-	-	-	-	-
C02 C03	2	-	2	-	1	-	-	-	2	2	-	-	-	-	-
CO4	2	-	1	-	2	-	-	-	2	2	_	_	_	-	_
CO5	2	-	2	-	1	-	-	-	2	2	-	2	-	-	-
CO6	2	-	3	-	2	-	-	-	1	2	-	2	-	-	-
AVERAGE	2	-	1.8	-	1.7	-	-	-	1.5	2	-	2	-	-	-
CORI	RELATI	ON LEV	ELS		1. SL	IGHT (L	OW)	2. I	MODE	RATE (ME	DIUM)	3.	SUBSTA	NTIAL (HIGH)

MACHINING:

20 Hrs

Introduction and familiarization of operation of laths, drilling machines, shaping, milling and grinding machines - Safety- personal, tools, machines and environmental - Measuring tools and methods of measurement, reading of sketches and drawing, cutting tools, tool geometry - setting of tools methods of fixing of jobs on chucks, vices, jigs and fixtures - Speeds and feeds of machines - Operations of machines - Practical exercises on machines to develop and improve hands on skills.

FITTING:

25 Hrs

Introduction and familiarization of various hand tools- Measuring, marking, cutting, holding and assembly tools, materials, parts, uses and safety of tools and personal safety - Process and procedures for measuring, Understanding of sketches and drawing - Marking and job holding methods - Process of chipping, filling, hack sawing, drilling, tapping, dyeing, assembling and dismantling of components - Practical exercises to develop and improve hands on skills.

TOTAL : 45 Hours

SEMESTER II

PROGRA	AM		B.E (1	NAVAI	ARCH	ITECT	URE &	OFFSH	IORE]	ENGINE	EERING	i)			
Course	Code		Cours	se Nan	ne					L	,	Γ	Р		С
UALE2	02		Tech	nical E	nglish	- II				2		0	0		2
Year and	d Sem	ester			Seme				(Contact	Hours	s Per V	Veek		
Prerequi			Nil							2 Hrs					
Course				nities a	nd	Ma	nageme	nt cour		Professio	onal Co	re	Profes	sional F	Elective
Course	catege	, r y		Science											
				~											
				N											
			Ba	asic Sci	ence	Enş	gineerir	ng Scien	ce	Oper	n Electiv	ve	Μ	landato	ory
Course	Object	ives			the steel				speak	0	mmatio	•	corre		nglish.
										devel	lopmer	nt –L	istening	g, spe	eaking,
								nglish.							
			2. N	Aaking	g them	realiz	the the	import	ance	of Eng	lish as	Glob	al lang	guage a	and its
			i	mporta	ance in	today	's scer	nario.							
Course	Outco	omes	After	succes	ssful c	omplet	tion of	Cours	e, the	studen	ts will	be ab	le to		
			1. Id	entify	the im	portan	ce of t	echnic	al En	glish					
				-		-				ancing	vocabu	ılarv			
					skills	-	-			υ		5			
				-			-	o letter	s and	descrip	ntive w	riting	2		
						-	-	ning sk		deserr		ming	5		
				-	-	-		d pronu		tion					
PPOs /						-	Ι			DO1	PO1	PO1	PSO	PSO	PSO
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	0	1	2	1	2	3
CO1	-	-	-	-	-	2	2	-	2	2	-	2	-	-	-
CO2	-	-	-	-	-	3	2	-	1	2	-	1	-	-	-
CO3	-	-	-	-	-	2	1	-	2	1	-	2	-	-	-
CO4	-	-	-	-	-	2	2	-	2	2	-	2	-	-	-
CO5	-	-	-	-	-	2	2	-	2	1	-	2	-	-	-
CO6 AVER	-	-	-	-	-	1	3	-	1	2	-	2	-	-	-
AVER	-	-	-	-	-	2	2	-	1.7	1.7	-	1.8	-	-	-
	ELATIO		TELC	1	SUICI	HT (LO		2.	. M(DDERAT		3.	SUBS	TANTL	AL
				1.					(N	IEDIUM)		(I	HIGH)	
UNIT I:															4 Hrs
Process of									on-Im	portanc	e of Te	chnical	l Comm	unicati	
UNIT II									a					.	8 Hrs
General		-		-						-	-		-		
Phrases-															
English															
Compour Homoph												ense -	- verbs	- חטוח	ograph,
UNIT II			•		worus	- COII	Jeanon	- 1 unc	luatio	ni illal K					6 Hrs
Intensive					nino -	Extens	ive Re	adino _	Meta	cooniti	ve read	ino _ 7	onic se	ntence	
Role-Rea		0	U		0			0		U			spie se		and 10
UNIT I	-		-			Louding	5 100	ang u	Juli		-0				6 Hrs
Descripti					chnical	descri	ptions-	Essavs-	Lette	r Writin	g – Fo	rmal a	nd Info	rmal-B	
Letters-J															
Writing -															
. 0	0	•	-		<u> </u>					•		1			

writing – Flow chart – pie chart – note taking – Dialogue writing – Circular writing- Latter to the editor – personal letter writing – circular writing

UNIT V: LISTENING AND SPEAKING

Power point Presentation – Role playing – better public speaking skills, Online and Offline Interview Skills, and Peer assisted learning.

TOTAL: 30 Hours

6 Hrs

TEXT BOOK:

- 1. Department of English, Anna University. Mindscapes: English for Technologists and Engineers. Orient Blackswan, Chennai. 2012.
- 2. English and communication skills—S.P.Dhanavel.Orient Blackswan (2010).

REFERENCE BOOKS:

- 1. Essential Grammar use Raymond Murphy, Cambridge (2007).
- 2. Anderson, Paul V. Technical Communication: A Reader-Centered Approach. Cengage. New Delhi. 2008.
- 3. Muralikrishna & Sunita Mishra. Communication Skills for Engineers. Pearson, New Delhi. 2011.
- 4. Smith-Worthington, Darlene & Sue Jefferson. Technical Writing for Success. Cengage, Mason USA. 2007.

	AM			NAVAI		TIECI	URE &	OFFSE	IORE I							
Course (se Nan						L		Г	Р		С	
UAMT2	203		Engir	neering	g Mathe	ematic	s-II			3	-	1	0		4	
Year and	d Sem	ester	I Yea	ar & II	Semes	ster			(Contact	Hours	Per W	Veek			
Prerequi	isite co	ourse	Nil				4Hrs									
Course	catego	ory	Humanities and Management courses Professional Core Profess									sional E	Elective			
	Ū	•	Social	Scienc	es											
			Re	asic Sci	ence	Enc	vineerir	ng Scien	ICe I	Oper	Electiv	70	M	[andato	rv	
			Di		circe	Ling	sincern			Oper	Liccu		141	anuaro	l y	
				N												
Course (Object	ives	1. Т	To pro	vide th	e requ	uired s	skill to	appl	y the c	oncept	ts of o	rdinar	y diffe	rentia	
			e	quatio	ns.											
			2. T	To prov	vide th	e requ	ired id	leas to	solve	the pro	oblems	s on hi	gher of	der or	dinar	
			d	lifferer	ntial eq	uation	IS.									
			3. Т	To acq	uaint 1	the stu	udent	with t	he co	ncepts	of ve	ctor c	alculus	need	ed fo	
					ns in e											
			4. T	To und	erstand	the st	andaro	d techn	iques	of con	plex v	ariable	e probl	ems.		
			5. To create a new domain to handle the problem in easier by using transforms.													
Course	Outco	omes	After successful completion of Course, the students will be able to													
			1. Infer knowledge on ordinary differential first order equations													
						0		•		al high		-				
					roblen			-		U		1				
				-			-			functio	ons					
						-	-		-	ng app		ns				
										calcul			ace tr	ansfor	ms in	
					ering a		-	,				r-				
PPOs /	201							200	200	PO1	PO1	PO1	PSO	PSO	PSO	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	0	1	2	1	2	3	
CO1	3	2	3	2		-	-	-	-	-	-	-	2	2	2	
CO2	3	2	3	2		-	-	-	-	-	-	3	2	2	2	
CO3	2	3	2	2	1	-	-	-	-	-	-	-	2	-	2	
CO4 CO5	3	2	3	23		-	-	-	-	-	-	22	2 3	$\frac{2}{2}$	23	
CO5 CO6	3	2	3	2	1		-	-	-	-	-	2	3	2	2	
AVER	5	-	5		1		-	-	-	-	-		2.3	2	2.2	
AGE	2.7	2.3	2.7	2.2	1	-						2.3				
		ON LEVI	ET C	1	SLIG	HT (LO	W)	2. I	MODER	ATE (ME	DIUM)	3.	SUBSTA	NTIAL (HIGH)	
CORF																
CORF UNIT I (ORDI	NARY	DIFFF	ERENT	TIAL E	-		-FIRS	TOR	DER A		PLICA	ATION	1	2 Hrs	
CORF	ORDI on - ord	NARY er and	DIFFF degree	ERENT - form	TIAL E ation of	f differ	ential e	-FIRS	T OR n - Sol	DER A lution o	f first o	PLICA	ATION first deg	gree eq	2 Hrs uation	

first order first degree, reducible to linear - Applications to electrical circuits and orthogonal trajectories. UNIT II ORDINARY DIFFERENTIAL EQUATIONS–HIGHER ORDER AND APPLICATIONS 12 Hrs

Higher (nth) order linear differential equations - definition and complementary solution- Methods of obtaining PI, Method of variation of parameters - Method of undetermined coefficients - Cauchy's Homogeneous LDE and Legendre's equations - System of Ordinary Differential Equations Simultaneous equations in symmetrical form. UNIT III VECTOR CALCULUS 12 Hrs

Gradient Divergence and Curl – Directional derivative – irrotational and solenoidal vector fields –Vector integration – Green's theorem in a plane, Gauss divergence theorem and stokes' theorem (excluding proofs) – Simple applications involving cubes and rectangular parallelepipeds.

UNIT IV ANALYTIC FUNCTIONS

12 Hrs

12 Hrs

Functions of a complex variable – Analytic functions – Necessary conditions, Cauchy – Riemann equation and Sufficient conditions (excluding proofs) – Harmonic and orthogonal properties of analytic function – Harmonic conjugate – Construction of analytic functions – Conformal mapping - bilinear transformation.

UNIT V LAPLACE TRANSFORM

Laplace transform – Laplace transforms of some common functions. First shifting theorem, Change of scale property. Laplace transforms of periodic functions, Laplace transforms of derivatives of derivatives and integrals, inverse Laplace transforms. Heaviside function, Dirac-delta function, Unit Step function, Convolution theorem and Laplace transforms method of solving differential equation of first and second order with constant coefficients. **TOTAL: 60 Hours**

TEXT BOOK:

- 1. Bali N. P and Manish Goyal, —Text book of Engineering Mathematics, 3rd Edition, Laxmi Publications (p) Ltd., 2008.
- 2. Grewal. B.S, —Higher Engineering Mathematics, 40thEdition, Khanna Publications, Delhi, 2007.

REFERENCE BOOKS:

- 1. Ramana B.V, —Higher Engineering Mathematics, Tata McGraw Hill Publishing Company, New Delhi, 2007.
- 2. Glyn James, —Advanced Engineering Mathematics, 3rdEdition, Pearson Education, 2007.
- 3. Erwin Kreyszig, —Advanced Engineering Mathematics, 7thEdition, Wiley India, 2007.
- 4. Jain R.K and Iyengar S.R.K, —Advanced Engineering Mathematics, 3rdEdition, Narosa Publishing House Pvt., 2007.

PROGR A	AM		B.E (1	NAVAL	ARCH	ITECT	URE &	OFFSH	IORE E	INGINE	ERING)			
Course (Code		Cours	se Nan	ne					L		Г	Р		С
UAMC2	204		Mate	rial Sc	ience					3)	0		3	
Year and	d Sem	ester	I Yea	ar & II	Seme	ster			C	Contact	Hours	Per W	/eek		
Prerequi	isite co	ourse	Nil							3Hrs					
Course			Huma Social	Mai	nageme	nt cour	ses P	rofessio	nal Co	re	Professional Elective				
			Ba	asic Scie	ence	Eng	gineerir	ig Scien	ice	Open	Electiv	ve 🛛	Μ	landato	ory
							1	/							
Course Course	5		mater	ials use	ed in pro	oductio	on of Ei	ngineer	ing ap	npreher plication	ns		-	ut var	ous
				2. (3. 4. 1 5. 4	diagrar Classif Apply Use no Apply	n y vari variou n meta the coi	ous fer s heat allic m ncepts	rrous a treatm aterials behavi	nd not ent me s for a or of m	s and the n ferrore ethods pplicate aterials	us mat applied ion under fo used i	erials d on m orce and n ship	aterial their te buildin	s. sting mangindu	ethods 1stry
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	3	3	3	-	-	-	-	-	-	-	-	3	3	-	-
CO2	3	2	2	-	-	-	-	-	-	-	-	3	2	-	-
CO3	3	2	2	-	-	-	-	-	-	-	-	3	3	-	-
CO4	3	3	3	-	-	-	-	-	-	-	-	3	2	-	-
CO5	3	2	2	-	-	-	-	-	-	-	-	3	2	-	-
CO6	3	3	3						-	-	-	3	3	-	-
AVER	3.00	2.50	2.50	-	-	-	-	_	_	_	_	3.00	2.50	_	
AGE	5.00	2.00	2.50						_		_	5.00	2.50		-

UNIT 1:Materials Science and Engineering

Introduction, Developments in materials, engineering profession and materials, Classification of materials, criteria for selection of materials for the required application Ferrous materials: Cast iron, Steel, Stainless Steel, Prominent alloy steel. Non-Ferrous materials: Copper, Brass, Bronze, Aluminum, Lead, Tin, Titanium. Materials for High and Low temperature service, classification of heat resistant materials

UNIT 2: Properties of materials

Mechanical Properties: Hardness, Strength, Toughness, Stiffness, Ductility, Malleability, Harden ability, creep and fatigue Electrical properties: Conduction, Semiconductors and insulators Optical properties: Absorption, Reflection, Transmission and Refraction optical fibers and lasers. Magnetic properties: Various types of magnetic materials, Diamagnetic, Paramagnetic, Ferromagnetic, Ferrites, hard and soft magnetic materials Thermal properties: Thermal expansion, Heat capacity, Thermal conduction, Thermal Stresses.

UNIT 3: Heat treatment

Heat treatment - Annealing, Normalizing, Hardening, Tempering Case Hardening - Carburizing, Nitriding, Cyaniding and carbon nitriding, Flame hardening, Induction Hardening

UNIT 4: Material Testing

Study of fractures of engineering materials - Elastic deformation, Plastic deformation. Stress-Strain diagrams; Properties obtained from the tensile test Destructive testing - Tensile testing, compression testing, Impact Testing,

9 Hrs

9 Hrs

9 Hrs

Hardness test, Jominy end quench test for harden ability of steel. Non destructive testing – Visual Inspection, Hammer test, Radio- graphy, Magnetic particle inspection, Liquid Dye penetration test, Ultrasonic inspection test

UNIT 5:Environmental degradation of Materials

Corrosion rate, Current density, Exchange current density, Mixed potential theory, Polarization and Passivation. Characteristic features, causes and remedial measures of Uniform Corrosion, Pitting Corrosion, Crevice Corrosion, Galvanic Corrosion, Intergranular Corrosion, Erosion, Selective leaching, Stress corrosion cracking, Hydrogen Damage etc. TOTAL: 45 Hours

TEXT BOOK:

- 3. Callister william D.Jr, —Material Science and Engineering an Introduction^{II}, John Wiley & sonsinc.
- 4. O.P.Khanna, -Material Science and Metallurgy, Dhanpat Rai PUAlications, 2014 edition.

REFERENCE BOOKS:

- 1 Schaeffer J.P: Saxena A, Antolovich S.D, Sanders T.H. Jr., Warner S.B., -The Science & Design of Engineering Materials^{II}, McGraw-Hill International
- 2 Askeland Donald R. and Phule P.P., -The science and engineering materials^{II}, Thomson learning.

	M				ITECTI	URE &	OFFSH	ORE EI	NGINEI	ERING)							
Course Cod			e Name:						L		Т		Р		С		
JDCHC0		-	ering C		У				3		0		0		3		
Year / Seme			& II Se	mester						rs per we	eek						
Prerequisite course	e	Nil						3 Hrs									
Course			nities a		Mana	igemen	t	Profe	essional	l Core	e Professional Elective						
category		Social	Science	es	cours	es											
		Basic	Science		Engir Scien	neering		Oper	ı Electi	ve		Ma	ndator	y			
Course Obj		2. To the 3. To an 4. To 5. To tro	opertie sumn eir wor discu d contro expla differ oubles. the su	s and a narize king p ss the col met in the ccessfu	applica the va rincipl variou thods. variou e vario ul com	ations. rious t les. is elec s nano bus typ	types c trocher materi	of rene mical als and water	wable cells a l liquid hardne se, the	and no nd exp d crysta ess, wa studen	on-rendolain the als and ter treats ts will	ewable ne mec discu atmen be ab	e energ chanisr ss thein t metho le to:	gy sour n of c r appli ods an	vnthesis rces an orrosio cations id boile		
			3. I 4. I	Explaiı Ilustra	n elect te the	rochen types o	les of r nical co of nanc nent m	ells, co mater	orrosio rials ar	n and i	renewa ts con	ible er	ergy rethods.		es.		
			3. I 4. I 5. I	Explaiı Ilustra Explaiı	n elect te the n wate	rochen types o r treatr	nical co	ells, co mater nethods	orrosio rials ar s	n and ind ind ind liqu	renewa ts con id crys	ible en trol me tals w	ergy re ethods. ith the l ships	ir appl	ications		
PPOs /	PO1	PO2	3. I 4. I 5. I	Explaiı Ilustra Explaiı	n elect te the n wate	rochen types o r treatr	nical co of nanc ment m	ells, co mater nethods	orrosio rials ar s	n and ind ind liqu	renewa ts con id crys ry in o PO1	ible en trol me tals w nboarc PO1	ergy reethods. ith their d ships	ir appli	ications		
COs			3. H 4. I 5. H 6. A	Explaiı Ilustra Explaiı Apply	n elect te the n wate the kn	rochen types o r treatr owledg	nical co of nanc ment m ge of en PO7	ells, co mater nethods nginee	orrosio rials ar s ering cl	n and ind ind ind liqu	renewa ts con id crys	ible en trol me tals w nboard PO1 2	ergy reethods. ith their ships PSO 1	ir appl	ications		
COs CO1	2	2	3. H 4. H 5. H 6. A PO3	Explaiı Ilustra Explaiı Apply	n elect te the n wate the know PO5	rochen types o r treatr owledg	nical contract of nancement manager of end provide the second sec	ells, co mater nethods nginee	orrosio rials ar s ring cl PO9	n and in and in and liquit	renewa ts con id crys ry in o PO1	ible en trol me tals w nboarc PO1	ergy reethods. ith their ships PSO 1 2	ir appli	ications		
COs CO1 CO2			3. H 4. I 5. H 6. A PO3	Explain Ilustra Explain Apply 1 PO4	n elect te the n wate the know PO5	rochen types o r treatr owledg PO6	nical contract of nancement mage of end of e	ells, co mater nethods nginee PO8	orrosio rials ar s ering cl PO9 -	n and i nd liqu hemistr PO1 0 -	renewa ts con id crys ry in o PO1 1	trol motor tals w nboard PO1 2 1	ergy reethods ith their ships PSO 1 2 2	PSO 2 -	PSO 3 -		
COs CO1 CO2 CO3	2 2	2 2	3. H 4. I 5. H 6. A PO3	Explain Ilustra Explain Apply PO4 - -	n elect te the n wate the know PO5	rochen types o r treatr owledg PO6	nical contract of nancement manager of end provide the second sec	ells, co o mater nethods nginee PO8 -	orrosio rials ar s ring cl PO9 -	n and in and in and in and liquit	renewa ts con id crys ry in o PO1 1 -	ble er trol mo tals w nboarc PO1 2 1 1	ergy reethods. ith their ships PSO 1 2	PSO 2 -	PSO 3 -		
COs CO1 CO2	2 2 2	2 2 2	3. H 4. I 5. H 6. A PO3	Explain Ilustra Explain Apply PO4 - -	n elect te the n wate the know PO5	rochen types o r treatr owledg PO6	nical contract of nancement mage of each of the second sec	ells, co o mater nethods nginee PO8 -	prrosio rials ar s ring cl PO9 - -	n and i nd liqui hemistr PO1 0 - -	renewa ts con id crys ry in o PO1 1 -	ble en trol me tals w nboard PO1 2 1 1 1	ergy reethods. ith their ships PSO 1 2 2 2 2	PSO 2 -	PSO 3 - -		
COs CO1 CO2 CO3 CO4	2 2 2 2	2 2 2 2 2	3. H 4. I 5. H 6. <i>A</i> PO3 - - -	Explain Ilustra Explain Apply : PO4 - - - -	n elect te the n wate the know PO5	rochen types o r treatr owledg PO6	nical contract of nance of nance of each of ea	ells, co o materi nginee PO8 - - - -	orrosio rials ar s ring cl PO9 - - - -	n and i nd liqui hemistr PO1 0 - - - -	renewa ts con id crys ry in o PO1 1 - - -	ble en trol me tals w nboard PO1 2 1 1 1 1 1	ergy reethods. ith the ships PSO 1 2 2 2 2 2 2	PSO 2 - - -	PSO 3 - -		
COs CO1 CO2 CO3 CO4 CO5	2 2 2 2 3	2 2 2 2 2 2	3. H 4. I 5. H 6. <i>A</i> PO3 - - - -	Explain Ilustra Explain Apply 1 PO4 - - - - - -	n elect te the n wate the known PO5 - - - - - -	rochen types (r treatr owledg PO6 - - - - -	nical contract of nancement mage of end of e	ells, co o maten nginee PO8 - - - - - - -	prrosio rials ar s ring cl PO9 - - - - - -	n and i nd liqui hemistr PO1 0 - - - - - - -	renewa ts con id crys ry in o PO1 1 - - - - -	ble en trol mottals weight $\frac{1}{2}$	ergy reethods. ith their ships PSO 1 2 2 2 2 2 2 2 2	PSO 2 - - - - -	PSO 3 - -		
COs CO1 CO2 CO3 CO4 CO5 CO6 AVER AGE	2 2 2 3 3 2.33 RELATI	2 2 2 2 2 2 2 2 2.00 ON LEVI	3. H 4. H 5. H 6. Z PO3 - - - - 3 3.00 ELS	Explain Ilustra Explain Apply 1 PO4 - - - - - - - - - - - - - -	n elect te the n wate the know PO5 - - - - - - 2 2.00	rochen types (r treatr owledg PO6 - - - - -	nical co of nanc ment m ge of et 2 3 3 3 3 3 2.83	ells, co o mater nethods nginee PO8 - - - - - - - - - - - -	prrosio rials ar s ring cl PO9 - - - - - - - - - - - - - - - - - - -	n and i nd liqui hemistr PO1 0 - - - - - - -	renewa ts con id crys ry in or PO1 1 - - - - - - - - - - - - -	ble en trol ma tals w nboarce PO1 2 1 1 1 1 1 1 1 1 1 1 1 00	ergy reethods. ith their ships PSO 1 2 2 2 2 2 2 2 2 2 2 2 2 2	PSO 2 - - - - - - - -	PSO 3 - - - - - - - -		

of air for the combustion of a fuel – Flue gas analysis – Orsat apparatus. Non Conventional Energy Sources –Wind, Solar, Geothermal, Hydro and nuclear energy

UNIT-III: ELECTROCHEMICAL CELLS AND CORROSION

Electro chemical cell and series - uses of this series- Concentration Cells - Batteries: Dry Cell - Ni-Cd Li cells -Fuel cells- Corrosion- Theories of Corrosion (chemical & electrochemical) cells -Formation of galvanic cells by different metals, by concentration cells, by differential aeration and waterline corrosion Passivity of metals Pitting corrosion -Galvanic series Factors which influence the rate of corrosion - Protection from corrosion - Design and material selection - Cathodic protection - Protective coatings: - Surface preparation - Metallic (cathodic and anodic) coatings - Methods of application on metals (Galvanizing, Tinning, Electroplating, Electroless plating). 9 Hrs

UNIT-IV: CHEMISTRY OF ADVANCED MATERIALS

Nano materials: - Introduction - Sol-gel method & chemical reduction method of preparation - Carbon fullerenes: Types, preparation, properties and applications- Liquid crystals:nano tubes and Introduction – Types – Applications.

UNIT-V: ORGANIC COMPOUNDS

Hydrocarbon- Petroleum & its products, extraction of aromatic compounds from petroleum. Aromatic compounds -Benzene; polycyclic hydrocarbons- Naphthalene, anthracene, naphthacene. Polymeric products from hydrocarbon: Fibre and Reinforced plastics. Steel Production - Open hearth process, Bessemer converter process., Chemical addition to steels production of non-ferrous alloys, brass, bronze, aluminum alloys. Special reference to ship building (ship propellers etc). Heat Treatment of Carbon Steel. Material Science & Technology - Metallurgy of Steel and Cast Iron, Properties and application of material used in machinery on board ship Basic Metallurgy, Metals and Processes, Properties and Uses, Non-Metallic Materials. Characteristics and limitations of process used for fabrication and repair.

Total: 45 Hours

TEXT BOOKS :

- 1. S. S. Dara and S. S. Umare, "A Textbook of Engg Chem", S. Chand & Company LTD, New Delhi, 2015
- 2. P. C. Jain and Monika Jain, "Engg Chem" Dhanpat Rai Publishing Company (P) LTD, New Delhi, 2015
- 3. S. Vairam, P. Kalyani and Suba Ramesh, "Engg Chem", Wiley India PVT, LTD, New Delhi, 2013.

REFERENCES BOOKS:

1. Friedrich Emich, "Engineering Chemistry", Scientific International PVT, LTD, New Delhi, 2014.

- 2. Prasanta Rath, "Engineering Chemistry", Cengage Learning India PVT, LTD, Delhi, 2015.
- 3. Shikha Agarwal, "Engineering Chemistry-Fundamentals and Applications", Cambridge University Press, Delhi, 2015.

9 Hrs

PROGRAM	ME			BE- N	Javal arch	nitectur	e & Of	fshore	Engine	ering							
Course Code				Cours	e Name :				L		Т	Р		С			
UAMC205				APPL	JED THE	ERMO	DYNA	MICS	3		0	0		3			
Year and Sem	nastar			I Voor	r (II Sem	actor)			Contact	thours r	or wool						
						ester)			Contact hours per week								
Prerequisite c		NIL (3Hrs) This course provides basic knowledge about thermodynamics and relation															
Course				-				•	out the	ermody	namics	s and r	elatio				
		and their application to various processes															
		Students will be able to															
		1 Understand thermodynamics laws and their application															
		2 Attain knowledge on concept of entropy and availability															
Course	Outco	me		3			<u> </u>	erties of steam and their uses of steam table and mouier char									
				4													
				5 Utilize psychometric chart													
				6 Understand the application of thermodynamics in industry.													
PPOs /	PO1	PO2	PO	3 PO	4 PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
COs																	
CO1	3	3	2	2	1	-	-	-	-	-	-	2	-	2	3		
CO2	3	3	3	3	-	-	-	-	-	-	-	2	3	-	2		
CO3	3	2	2	3	-	-	-	-	-	-	-	3	2	3	-		
CO4	3	2	2	3	1	-	-	-	-	-	-	2	3	2	2		
CO5	3	3	2	2	-	-	-	-	-	-	-	3	-	3	2		
CO6	3	2	3	2	1	-	-	-	-	-	-	3	-	2	3		
AVERAGE	3	2.5	2.3	2.5	1	-	-	-	-	-	-	2.5	2.7	2.4	2.4		
CORREL	ATION	LEVE	ELS		4. SLI	GHT (I	LOW)			AODER. (MEDIU			6. SU	BSTANT (HIGH)			

UNIT I - BASIC CONCEPTS AND FIRST LAW

Basic concepts - concept of continuum, comparison of microscopic and macroscopic approach, Path and point functions. - Intensive and extensive, total and specific quantities. - System and their types, Thermodynamic Equilibrium State, path and process. - Quasi-static, reversible and irreversible processes. - Heat and work transfer, definition and comparison, sign convention. - Displacement work and other modes of work - pv diagram, Zeroth law of thermodynamics – concept of temperature and thermal equilibrium– relationship between temperature scales –new temperature scales, First law of thermodynamics – application to closed and open systems – steady and unsteady flow processes.

UNIT II - SECOND LAW AND AVAILABILITY ANALYSIS

Heat Reservoir, source and sink. - Heat Engine, Refrigerator, Heat pump. - Statements of second law and its corollaries. - Carnot cycle Reversed Carnot cycle, Performance. - Clausius inequality. - Concept of entropy, t-s diagram, Tds Equations, entropy change for - pure substance, ideal gases – different processes, principle of increase in entropy. Applications of II Law. High and low grade energy. Available and non-available energy of a source and finite body, Energy and irreversibility, Expressions for the energy of a closed system and open systems, Energy balance and entropy generation, Irreversibility I and II law Efficiency

UNIT III - PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE

Formation of steam and its thermodynamic properties, p-v, p-T, T-v, T-s, h-s diagrams. p-v-T surface, Use of Steam Table and Mollier Chart, Determination of dryness fraction. Application of I and II law for pure substances, Ideal and actual Rankine cycles, Cycle Improvement Methods - Reheat and Regenerative cycles, Economizer, preheater, Binary and Combined cycles

UNIT IV - IDEAL AND REAL GASES, THERMODYNAMIC RELATIONS

9 Hrs

9 Hrs

9 Hrs

Properties of Ideal gas- Ideal and real gas comparison- Equations of state for ideal and real gases- Reduced properties-Compressibility factor-.Principle of Corresponding states, Generalized Compressibility Chart and its use-. Maxwell relations, Tds Equations, Difference and ratio of heat capacities, Energy equation, Joule-Thomson Coefficient, Clausius Clapeyron equation, Phase Change Processes. Simple Calculations

UNIT V GAS MIXTURES AND PSYCHROMETRY

Mixtures of ideal gases, Psychrometry and its applications. Speci-c and relative humidity. Dew point.Saturation and wet bulb temperature. Psychrometric chart. Conditioning of air and applications (air-evaporative cooling, cooling towers, humidi-cation,etc. Reacting systems. 1-step reactions. Stoichiometry, equivalenc ratio. Enthalpy of formation. Conservation of mass. 1 st law analysis.Heat of reaction and properties. Adiabatic ame temperature. Work of reaction.Enthalpy of formation. 2 nd law analysis. Application to combustion, fuel cells.Introduction to multi-step reactions and minor species

TEXT BOOKS

1 Nag.P.K., "Engineering Thermodynamics", 4thEdition, Tata McGraw-Hill, New Delhi, 2008

2 Cengel. Y and M.Boles, "Thermodynamics - An Engineering Approach", 7th Edition, TataMcGraw Hill, 2010

REFERENCES

1 Natarajan E., "Engineering Thermodynamics: Fundamentals and Applications", AnuragamPublications, 2012

2 Holman.J.P., "Thermodynamics", 3rd Edition, McGraw-Hill

3 Rathakrishnan. E., "Fundamentals of Engineering Thermodynamics", 2nd Edition, Prentice-Hall of India Pvt. Ltd

4 Chattopadhyay, P, "Engineering Thermodynamics", Oxford University Press, 2010

5 Arora C.P, "Thermodynamics", Tata McGraw-Hill, New Delhi, 2003

9 Hrs

Total : 45 Hours

PROGRAM	M		B.E (N	AVAL	ARCHI	ГЕСТИ	RE & C	FFSHC	ORE EN	IGINEE	RING)					
Course Co	ode		Course	e Name	e					L	Т		Р		С	
UALE2P	A		Soft sk	tills - I	Ι					0	0		4		2	
Year and	Seme	ster	I Year	: & II S	Semest	er			Co	ontact I	Hours 1	Per W	eek			
Prerequisi	ite cou	irse	Nil						4	Hrs						
Course ca	ategor	У	Human Social S			Mana	igemen	t course	es Pro	ofession	al Core	·]	Professi	onal El	ective	
			Bas	ic Scien	ice	Engi	neering	Scienc	e	Open l	Elective		N	Iandato	ry	
Course O	5		lec 2. To	tures a help le	nd con earners	nprehe devel	nd the op the	m by a ir spea	isking king s	questi kills ar	ons, se nd spea	ek cla 1k flue	rificati ntly in	ons.	isten to ontexts.	
Course (Jucor		spe 2. Inf 3. De 4. Ma 5. De	ke use aking er the l velop s ke use velop g	e of An and wr knowle skills o of list good a	ticles, riting s edge or on inter ening ttitude	Prepo kills n publi cactive and sp , beha	sitions c spea Englis eaking vior ar	s, Pror king a sh skills nd con	nouns, and con for eff amunic velopm	Adject iduct o fective cation s ient	tives a f meet presen skills	and Adverbs in their eetings sentation			
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	
C01	-	-	-	-	-	2	2	2	2	2	-	1	-	-	-	
CO2	-	-	-	-	-	2	1	2	2	3	-	-	-	-	-	
CO3	-	-	-	-	-	2	1	2	1	2	-	1	-	-	-	
CO4	-	-	-	-	-	2	2	3	2	3	-	2	-	-	-	
CO5	-	-	-	-	-	3	2	1	3	2	-	2	-	-	-	
CO6	-	-	-	-	-	2	1	2	3	3	-	2	-	-	-	
AVER AGE	-	-	-	-	-	2.2	1.5	2	2.2	2.5	-	1.6	-	-	-	
	RELATI	ON LEV	ELS							IODERA (MEDIUI			3. SU	BSTANI (HIGH)	IAL	

UNIT 1: GRAMMAR AND FOUNDATON

Training the students on second phase of grammar such as Articles, Prepositions, Pronouns, Modal Auxiliaries, Parts of Speech, Adjectives and Adverbs.

UNIT II: INTRO TO PROFESSIONAL ETHICHS

Stepping the students to advanced learning resource and introducing them about International standards How to conduct meetings, huddle, public speaking, free speech. Dress code.

UNIT III: INTERACTIVE ENGLISH

The main objective is English for International communication. It course contains conversations, snapshots, readings, activities, a greater variety and amount of listening materials and more visuals to introduce vocabulary, more opportunities to build fluency, and up-to-date art and design.

UNIT IV: LISTENING AND SPEAKING

Types of Listening –Introduction to International Standards of listening skills. Presentation skills: delivery (emphasis and phrasing) / making it interesting / body language / referring to visual aids

UNIT V: INTERVIEW SKILLS AND PERSONALITY DEVELOPMENT

12 Hrs

12 Hrs

12 Hrs

12 Hrs

Prepare for the interview, Know common interview questions and questions, Describe what employers want, Know proper attitude and effort employers are looking for, Describe body language and its impact on the interview

TOTAL: 60 Hours

TEXT BOOKS:

1. Essential Grammar in use- Raymond Murphy ,Cambridge , New Third Edition **REFERENCE BOOKS:**

1. New Interchange (English for International Communication) Jack C. Richards

PROGRAM		BE-N	A & O	E												
Course Code	:	Cours	e Nam	e :				L		Т		Р		С		
UAMC1F	PA	Engin	eering	Mecha	nics La	aborato	ory	0		0		2		1		
Year and			Ţ	Year (I	I Seme	ster)										
Semeste			1		i benne	ster)		Con	tact ho	ours per						
Prerequisi	ite							(2Hrs)								
course					r											
	and	Μ	lanagei course		Pr	ofessio	nal Core	e	Profe	essional	Elective					
~	Social Sciences							_								
Course cate	egory				_								Mandat			
		Bas	sic Scie	nce	E	nginee	<u> </u>	(Jpen E	lective						
						Scien	ce									
		1 5	1	1 . 1			v		1 1	f metals						
Course Outo	come	 5. To After 1. Ev ten 2. De spe 3. Ex 4. Es 5. Ex 6. Ex 	Detern success aluate sion te evelop eciment perime timate amine perime	nine m sful con- the valuest. the pro- s nt with the mo- the stif nt with	odulus mpletic ues of <u>p</u> ocedur Deflec dulus of fness of given	of rigition of the second seco	e cours tress, br erform est on N ity of N pen coi	open s e, the s reaking Hardn Iild Ste Iild ste I and cl	pring a students stress ess tes el, Alu el using osed co	s should and ulti st and f uminium g torsion oil sprin	finding 1 to find t n test g and gr	to ess of th hardness he youn ade then	s numbe g's mod n.	specimer r with v ulus.	various	
DOG/COG	DO1		ength o			DOC	D07	DOQ	DOO	DO10	DO11	DO12	DCO1	DCOO	DCO2	
POS/COS	PO1 2	PO2 3	PO3 3	PO4	PO5	PO6 3	PO7	PO8	PO9 3	PO10	PO11	PO12 3	PSO1	PSO2	PSO3	
CO1 CO2	3	3	3			3			3	3		3	3			
CO2 CO3	3	2	2			3			3	3		3	$\frac{2}{2}$			
CO3 CO4	3	3	3			3			3	3		3	3			
C04 C05	3	3	3			3			3	3		3	3			
CO5	3	2	2			3			3	3		3	2			
AVERAGE	3	2.7	2.7			3			3	3		3	2.5			
CORREI LEV	LATIO ELS	N	1.	SLIGH	T(LO	-	2.	MODE		(MEDI	JM)			TIAL(H	IGH)	

LIST OF EXPERIMENTS

- 1. Test on Ductile Materials: Finding Young's Modulus of Elasticity, yield points, percentage elongation and percentage reduction in area, stress strain diagram plotting, tests on mild steel.
- 2.Hardness Test: Determination of Rockwell's Hardness Number for various materials like mild steel, high carbon steel, brass, copper and aluminium.
- 3.Beam Deflection Test: Deflection test on Mild steel and Aluminium- relation between load and deflection.
- 4. Impact test: Finding the resistance of materials to impact loads by Izod test and Charpy test.
- 5. Tests on springs of circular section: Determination of modulus of rigidity, strain energy, shear stress and stiffness by load deflection method (Open / Closed coil spring)
- 6.Shear test: Single or double shear test on M.S. bar to finding the resistance of material to shear load.
- 7. Compression Test: Finding Compression strength of a concrete block.
- 8. Fatigue Test: Finding Number of cycles to failure of a given specimen.
- 9. Cupping Test: Testing the deformability of a sheet and Finding the Cupping number.

TOTAL: 30 HOURS

PROGRA	Μ		B.E (N.	AVAL	ARCHI	ГЕСТИ	RE & C	OFFSHC	ORE EN	IGINEE	RING)						
Course C		T	Physic	s Labo	oratorv			_		Ĺ	T		Р		C		
UAPH2P			•		-				9	0	0		2		1		
Year and			I Year	× 11 S	Semest	er				ntact I	lours l	Per Wo	eek				
Prerequis			Nil	itios an	d	Mana	gomon	teourse		2 Hrs Professional Core Professional Electiv							
Course c	alegoi	У	Humanities and Management courses Pr Social Sciences						510551011			1 010551		ccuve			
		-	Bas	ic Scier	nce	Engi	neering	Science	e	Open 1	Elective		Mandatory				
									-						v		
Course O	bjectiv	ves	s The aim of this lab is to fortify the students with ar								adequ	ate wo	ork exp	erienc	e in the		
	5		measu				-				-		-				
			instrun	nents i	nvolve	d.											
						<u> </u>		~									
Course	Outcor	nes	After s			-											
										length			on a conv	ev len	c		
										o get I					5		
					ify No	-				0 900 1	1 40101	mmu	1011				
					Torsic			-									
			6.	Under	rstand	Poise	ulli's f	low									
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
C01	-	-	-	-	-	2	2	2	2	2	-	1	-	-	-		
CO2 CO3	-	-	-	-	-	2	1	2 2	2	32	-	- 1	-	-	-		
CO4	-	-	-	-	-	2	2	3	2	3	-	2	-	-	-		
CO5	-	-	-	-	-	3	2	1	3	2	-	2	-	-	-		
CO6 AVERAGE	-	-	-	-	-	2 2.2	1 1.5	2	3 2.2	3 2.5	-	2 1.6	-	-	-		
	RELATIO	ON LEV	/ELS		4. SL	16HT (L		2	5. N	10DERA		1.0	6. SU	BSTANT			
			the mo	ment c				eel abo		(MEDIUN		otatio	n	(HIGH))		
			the free				2										
			– Grati					-					,				
			igs – rad						ens								
		-	e axis c			leterm	inatio	1									
		-	Diamet			tor											
			f a low 1 – Dispe	-		lei											
			bending			nicrosc	ope										
			dulum -														
		•	oiseulli														
12. U	niform	n bend	ling – Y	oung'	s mod	lus of	the m	aterial	of a g	iven b	ar						
TEVT D	OOV												TOT	AL: 30) Hour		
TEXT B				Down	oond N	Iurnhy	Cam	hridaa	Not	v Thir	l Editi	on					
1 Essenti	191 L Tru		n In nee														
1. Essenti REFER I				- Kayn		Iurpiry	,Calli	bridge	, 1101	v I IIII	Lan	UII					

PROGRAM	BE-	Naval arch	itecture of	& Offsh	ore Eng	ineering	9							
Course Code	Cou	se Name :									L	Т	Р	С
UAEE1PB	ELE	CTRICAL	AND EI	LECTR	ONICS	LABOI	RATOR	Y			0	0	2	1
Year and	I Ye	ar (II Sem	ester)				Contac	t hours	per wee	k				
Semester		`					(2Hrs)		•					
Prerequisite course	NIL													
Course Objective	тес	aim of suremen olved.				-				-				
	At t	he end of	the co	urse, tł	ne stud	ent sh	ould be	e able	to:					
	1		re know neter, o			tills ab	out ele	ectric i	nstrun	nents, s	such as	s amm	eter, vo	oltmet
Course	2		•			ties al	oout m	nain el	lectrica	l com	ponent	ts, suc	h as r	esistor
Outcome	3	Identify and learn properties about main electrical components, such as re capacitors, inductors, ,Acquire knowledge and skills about voltage source, AC power sources and equipmentAcquire knowledge and skills about transformers	servio											
	4	Acqui	e know	ledge	and sk	ills ab	out tra	nsform	ners					
	5	Perform	the wor	king of	diode,F	ET,etc.								
	6	Perfor	m the w	orking	g of va	rious I	Electro	nics de	evices.					
PPOs / COs PC	D1 P	O2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 2	2	2 2	2	2	-	-	-	-	2	-	1	2	1	1
CO2 3		3 2	2	3	-	-	-	-	2	-	1	2	1	1
CO3 3		3 3	2	2	-	-	-	-	2	-	1	2	1	1
CO4 2		2 2	2	3	-	-	-	-	2	-	1	2	1	1
CO5 2		2 2	2	3	-	-	-	-	2	-	1	2	1	1
CO6 3		3 3	2	3	-	-	-	-	2	-	1	2	1	1
average 2.	5 2	.5 2.33	2	2.67	-	-	-	-	2	-	1	2	1	1
CORRELA				7. SL	IGHT (L	0 FFF	8. N		ATE (ME		9.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	NTIAL ()	

1. Measurement of 'Low and High' resistances by Voltmeter and Ammeter method.

2. To obtain the current and voltage distribution in A.C. 'R-L-C' series circuits and draw the vector diagrams.

3. To obtain the current and voltage distribution in AC 'R.L.C' parallel circuits and draw the vector diagrams.

4. To measure the power and power factor of a single-phase load by voltmeter method & ammeter method.

5. To measure the power input to 3-phase induction motor using two watt meters.

6. Characteristics of PN Junction Diode.

7. Characteristics of Zener Diode

8. Characteristics of JFET

9. Study of Half wave and Full wave Rectifiers

10. Study of CRO and LISSAJOUS pattern

Total: 30 Hours

PROGRA			B.E (N			TECTU	RE & C	FFSHC	ORE EN	IGINEE	RING)				
Course C	lode		Course	e Name	e					L	Т		Р		С
UAWS2I	PB		Works	hop Pr	actices	s Labo	ratory	·II		0	0		3		2
Year and	Seme	ster	I Year	: & II S	Semest	er			Co	ontact H	Hours I	Per We	eek		
Prerequis	site cou	ırse	Nil						3	Hrs					
Course c			Human	ities an	d	Mana	agemen	t course	es Pr	ofession	al Core	I	Professi	onal El	ective
	U	- -	Social S	Sciences											
		-	Bas	ic Scier	ice	Engi	neering	Scienc	e	Open 1	Elective		Μ	Iandato	ry
Course O	bjectiv	ves	1. To	provid	e expo	sure to	the st	udents	with	hands	on exp	erienco	e on el	ectric a	arc
	5		weldin	-	-						1				
Course	Outcon	mes	After s	success	ful co	mpleti	on of (Course	, the s	tudents	will b	e able	to		
			1.	Outlir	ne the o	operati	on of 1	lathes a	and dr	illing r	nachin	es.			
						-				oin the					
										e and d			ne		
					-		-		-	ng, hac	-			and tap	ping
					-				-	ompon		0,	0	1	1 0
			6.							nts usir		weldin	g equi	pments	5
						F			Je je je se je		-0		8 - 1	r	
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	2	-	2	-	-	-	1	2	-	-	-	-	-
CO2	2	-	1 - 2							2	-	-	-	-	-
CO3	2	-	2							2	-	-	-	-	-
CO4	2	-					-	2	2	-	-	-	-	-	
CO5	2	-	2	-	1	-	-	-	2	2	-	2	-	-	-
CO6	2	-	3	-	2	-	-	-	1	2	-	2	-	-	-
AVERAGE	2	-	1.8	-	1.7	-	-	-	1.5	2	-	2	-	-	-
COR	CORRELATION LEVELS				4. SL	IGHT (L	OW)	5. N	AODER	ATE (ME	DIUM)	6.	SUBSTA	NTIAL (HIGH)

ELECRIC ARC WELDING

Introduction, familiarization of different types of welding machines- welding Transformer, functions, tools, and equipment and environmental - Basic procedures of striking the arc - different methods of joining metals- different welding joints in different positions - welding defects - testing of welding joints - Practical exercises of welding of different thickness of metals in different positions to develop and improve hands on skills.

OXY - ACETELENE WELDING

.

25 Hrs

20 Hrs

Types of oxy-acetylene flames and uses. - Acetylene gas properties and generating methods. - Oxygen gas and its properties – familiarization of tools and equipments - Gas cylinders, regulators, hoses and gas welding and gas cutting blow pipes - DS Processors - Procedures for setting up the equipments - Checking for leakage of gases, setting of jobs filler rods, flux, flame setting and controls of flame safety - personal safety protection, safety of cylinders, tool equipments and environmental safety-Procedures for gas welding, brazing and gas cutting - Square Butt & Lap joint on M.S. sheet 2 mm thick by brazing - Silver brazing on copper tube to tube - Marking and straight line cutting of MS plate. 10 mm thick by gas. - Beveling of MS plates 10 mm thick by gas cutting

TOTAL: 45 Hours

SEMESTER III

PROGRA	M	BE-I	Naval	Arch	itectu	re & (Offsho	re Eng	ineer	ing							
Course Co	de	F					тт	L		T		Р			С		
UAMT30)1	Engi	ineerii	ng Ma	itnema	atics I	11	3		1		0			4		
Year and Semester	r		II Y	ear (s	emest	er III)				(Contac	t hours	per w	eek			
Prerequisi course	te				JIL							(4Hrs	5)				
Course cate	gory	an	imanit d Soc	ial		anage: cours		Р	rofes Co	sional ore		Pro	ofessio	nal Ele	ctive		
		Bas	ic Sci	ence		nginee Scien		Ol	pen E	lective			Man	d per week fessional Electiv Mandatory many application lems. To acquair y of situations. of partial difference levelop Z trans			
			\checkmark														
Course Objective	e	2.	studer To int equati techni	nt with roductions to ques	n Four the the hat n for dis	rier tra effecti nodel screte	ansfor ive ma sever time	m tech athema al phy system	nique tical vsical s.	es used tools fo proces	in wid r the so sses a	e varie olution nd to	s per week s) ofessional Elective Mandatory many applications in plems. To acquaint the ty of situations. s of partial differential develop Z transform PSO1 PSO2 PSO2 1 2 2 1 2 2 2	s. ferential			
Course Outc	ome	1. 2. 3. 4. 5.	Defin Estim Sumn Analy Apply	the j ate the narize ze the the p	princip e Four wide e math princip	ples o rier tra applio nemationes of	f parti ansfor cation cal pr trans	al differm coef s of PE finciple forms	erenti ficie DEs s on in eng	transfoi gineerir	tions rms ng appl	ication		in Eng	incering.		
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			PSO3		
C01	2	2	2	2	1	1	1	-	1	-	-	1					
CO2 CO3	2	2	2	2	1	1	1	-	1	-	-	1		_	=		
<u>C03</u> C04	2	2	2	2	1	1	1	-	1		-	1					
CO5	3	3	3	1	1	1	1	-	1	-	- 1 1 1 2 2						
CO6	3	3	3	1	1	1	1	-	1	-	1	1	1	2	2		
AVERAGE	2.33	2.33	2.33	1.67	1	1	1	0	1	0	1	1	1	2	2		
CORREL LEVE		N	1. \$	SLIGH	IT(LO	W)	2.1	MODEI	RATE	(MEDI	JM)	3.	SUBST	'ANTIA	L(HIGH)		

UNIT I - PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equation – Solution of PDE by direct Integration- Solution of equation *Pp* + Qq = R -Nonlinear equations of First order – Four types -

f(p,q) = 0, f(z, p,q) = 0, f(x, p) = f(y,q) and z = xp + yq + f(p,q)

UNIT II - FOURIER SERIES

Definition of Fourier's series - Fourier Coefficients - Expansion of functions in Fourier series - Even and odd functions – Half range Fourier series for any interval $\Box \Box l$, $l \Box$. Harmonic analysis – Estimation of Fourier coefficients given values of function in it domain. 12 Hrs

UNIT III - APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

12 Hrs

Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (excluding insulated edges). 12 Hrs

UNIT IV - FOURIER TRANSFORMS

Definition-Fourier Integral Theorem-Fourier Transform-Properties of Fourier transform (Without proof)-Convolution-Relation between Fourier and Laplace transforms.

UNIT V - Z - TRANSFORMS

12 Hrs

Total: 60 Hours

Properties of the z-transform and how it is related to the discrete-time Fourier, sampling of continuous-time signals and the conditions needed for perfect reconstruction, analyse the associated quantization error, finite impulse response (FIR) and infinite impulse response (IIR) discrete-time filters.

TEXTBOOKS:

- 1. Veerarajan. T., "Transforms and Partial Differential Equations", Tata McGraw Hill Education Pvt.Ltd., New Delhi, Second reprint, 2012.
- 2. Grewal. B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi, 2012.
- 3. Narayanan.S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students" Vol. II & III, S.Viswanathan Publishers Pvt Ltd. 1998.

REFERENCES:

- 1. Bali.N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 7th Edition, Laxmi Publications Pvt Ltd , 2007.
- 2. Ramana.B.V., "Higher Engineering Mathematics", Tata Mc-GrawHill Publishing Company Limited, NewDelhi, 2008.
- 3. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2007.
- 4. Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, Wiley India, 2007.
- 5. Ray Wylie. C and Barrett.L.C, "Advanced Engineering Mathematics" Tata Mc Graw Hill Education Pvt Ltd, Sixth Edition, New Delhi, 2012.
- 6. Datta.K.B., "Mathematical Methods of Science and Engineering", Cengage Learning India Pvt Ltd, Delhi, 2013.

"Department of Naval Architecture & Offshore Engineering" **Designed by**

PROGRA	Μ	BE-l	Naval	Archi	tectu	re & C	Offsho	re Eng	ineeri	ng						
Course Co	de	Fund	damer	ntals	of		Nava	L		T		Р			С	
UANA30	2	Arch	nitectu	ıre				3		0		0			3	
Year and			ΠY	ear (s	emest	er III)										
Semester				our (b	ennest			_		(Contact		per we	eek		
Prerequisi course	te			N	IIL							(3Hrs	5)			
Course		an	imani d Soc	ial		anager course		Р	rofess Coi			Pro	ofessio	nal Ele	ctive	
category	,								\checkmark							
		Bas	ic Sci	ence		nginee Scieno	<u> </u>	OI	oen El	ective			Man	datory		
Course Objective	e	2.	2. To know about the Shipyard process and its production.													
		Afte	r com	pletio	n of tl	ne cou	rse, tl	ne stud	ents v	vill be a	able to	:				
		1.	Recog	gnize o	liffere	ent typ	bes of	ships								
		2.	Expla	in var	ious r	ules a	nd pri	nciples	s in sh	ip buil	ding					
Course			-				-	-		•	•	mirem	ent in s	hipyar	ł	
Outcome	•					-	-	cesses				[
				•		plan	-									
				•		•		-	calci	ulations						
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	2	2	3	2	1	1	1	-	1	-	-	1	2	3	3	
CO2	2	2	2	2	1	1	1	-	1	-	-	1	2	2	3	
CO3	2	2	2	2	1	1	1	-	1	-	-	1	1	2	3	
CO4	2	2	2	1	1	1	1	-	1	-	-	1	1	2	2	
CO5 CO6	3	3	3	1	1	1	1									
	2.33	2.33	2.5	1.5	1	1	1	0	1	1	1	1	1.33	2.33	2.5	
CORREL	AVERAGE 2.33 2.3 CORRELATION LEVELS			SLIGH	-	-	-			MEDIU					L(HIGH)	

UNIT 1: Introduction to Naval Architecture

Introduction to the development of the merchant ship in the context of developing world trade. Introduction to basic design feature and ship terminology. Classification of ship by types and its functions.

UNIT II: Types of Ships and General arrangement

Different types of ships, General arrangement related to the ship type including cargo and passenger ship, fishing vessels, warships, workboats and vessels for pleasure.

UNIT III: Shipyard Process

Shipyard layout and Materials used in ship building. Basic hydrostatic concept of a floating body, Role and impact on design and operation of Classification Societies, IMO and Regulating Authorities.

UNIT IV: Lines plan and Different types of rules

Lines plan – fairing process- table of offsets. Interaction rules – trapezoidal rule; Simpson's rule (1-4-1, 1-3-3-1 and 5, 8,-1 rule) 6 ordinate rule; Tchebycheff's rule.

9 Hrs

9 Hrs

9 Hrs

UNIT V: Hydrostatic	Calculations	9 Hrs
Displacement, TPC, M	ICTC1, BM, etc.volumes and moments, Bonjean curves, applicatio	n of Hydrostatic
calculations and its cur	rves.	
		Total: 45 Hours
TEXTBOOKS:		
1. Lewis, E.U.; -Pri	nciples of Naval Architecturel, (2nd Rev.), SNAME, New	Jersey,
U.S.A.		
2. Rawson & Tuppe	r; Basic Ship Theory.	
REFERENCES:		
1. Tupper, E.C.: Intr	roduction to Naval Architecture, Butterworth-Heinemann, UK, 199	98.
2. Ship construction	by DJ Eyres	
Designed by	"Department of Naval Architecture & Offshore Engineerin	ıg"

PROGRA	М	BE-	Naval	Arch	itectu	re & (Offsho	re Eng	gineeri	ng					
Course Co	de	The		China				L		Т		Р		(2
UANA30	3	Theo	ory of	Smps				3		0		0			3
Year and Semester Prerequisi	•		II Y			er III)				C				ek	
course					IIL							(01115)			
Course cate	orv	an	manit d Soc cience	ial	M	anage cours		P	rofess Coi	re		Prof	ession	al Elect	ive
Course care	gory								\checkmark			$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
		Bas	ic Scie	ence		nginee Scien	<u> </u>	Oj	pen El	lective			urs per week Hrs) Professional Elective Mandatory s v added weight and lost lations $\frac{012 \text{ PSO1 PSO2 PSC}{1 2 3 3}$ 1 2 2 3		
Course Objective1. To understand the basic concepts of Ship stability 2. To learn Transverse and Longitudinal Stability 3. Stability of ship in damage conditionAfter completion of the course, the students will be able to: 1. Explain the stability of ship in various loading conditions 2. Illustrate the basics of ship theory 3. Describe the transverse stability parameters for the ship 4. Define the longitudinal stability parameters of the ship 5. Recognize the stability of vessel in damage condition by added weight and los buoyancy method 6. Design the ship parameters as per various rules and regulations												d lost			
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	1	1	2	-	1	-	-	1	2	3	3
CO2	3	2	2	2	1	1	2	-	1	-	-				
CO3	2	3	2	2	1	2	1	-	1	-	-				
CO4	2	2	2	1	1	1	1	-	1	-	-				2
CO5	3	3	3	1	1	1	2	-	1	1	1	-	-	-	2
CO6	3	3	3	1	1	2	1	3	1	1	1	1			2
AVERAGE CORRELA	2.67 ATION	2.67	2.5	1.5	1 IT(LO	1.33	1.5	3 AODEI	1	1	1	1			2.5

UNIT 1: Introduction

Introduction:- Potential energy and equilibrium; Stability of ships – stable and unstable conditions (including submerged vessels) Stability terms;

UNIT II: Basics of ship theory

Equivolume inclinations - shift of C.O.B.due to inclinations, C.O.B. curve in lateral plane, metacentre, pro-metacentre and metacentric radius, metacentric height, metacentre curve, surface of flotation, curve of flotation, righting moment and lever; Moments due to wind, shift of cargo, passengers, turning and non-symmetrical accumulation of ice; Effect of superstructure on stability.

UNIT III: Transverse Stability

Transverse stability:- Form and weight stability - stability functions, Initial stability – GM, GZ at small angles of inclinations, wall sided ships; Stability due to addition, removal and transference (horizontal, lateral and vertical) of weight, suspended weight and free surface of liquids; Stability while docking and grounding; Inclining experiment. Large angle stability - Diagram of statically stability (GZ - curve), Characteristics of GZ - curve, static equilibrium criteria; Methods for calculating the GZ - curve (Krylov, Prohaska, etc.); Cross

9 Hrs

6 Hrs

curves of stability; Dynamical stability -	- diagram of dynamical	stability, dynamical	stability criteria.

UNIT IV: Longitudinal Stability

Longitudinal stability - trim, longitudinal metacentre, longitudinal centre of flotation, moment to change trim, trimming moment; trim calculations - addition, removal and transference of weight, change of density of water.

UNIT V: Damage Stability

9 Hrs

Total: 45 Hours

9 Hrs

Damage stability - deterministic and probabilistic approach. Stability in Waves. IMO recommendations for Intact and damage stability rules. Compartmentation and floodable length calculation.

TEXTBOOKS:

- 4. Edward V Lewis, Principle of Naval Architecture, Vol-1, III EDITION, The Society of Naval Architects and Marine Engineers, 1988
- 5. K.J. Rawson & E.C. Tupper, Basic Ship Theory, V Edition, Butterworth Heinmann, 2001

REFERENCES:

- 1. E.C.Tupper, Introduction to Naval Architecture, III Edition, Butterworth Heinmann, 2002
- 2. C.B. Barrass and Captain D.R. Derrett, Ship Stability for Masters and Mates, Elsevier, 2006

Designed by "Department of Naval Architecture & Offshore Engineering"

Vear and Semester Prerequisite course Course category I Course Objective 2 4	Humanities and Social Sciences Basic Science 1. To gain	r (seme NIL s I ce	ls ester III) Manage cours Enginee Scien	ment	 P	rofess	sional		(3Hrs)		ek	3
Vear and Semester Prerequisite course Course category I Course Objective 2 4	II Yea Humanities and Social Sciences Basic Science 1. To gain	r (seme NIL s I ce	ester III) Manage cours Enginee	ment			Co		hours p (3Hrs)		ek	
Semester Prerequisite course Course category Course Objective Course Objective	Humanities and Social Sciences Basic Science 1. To gain	NIL s I ce	Manage cours Enginee	ment	P		sional		(3Hrs)			
Semester Prerequisite course Course category Course Objective Course Objective	Humanities and Social Sciences Basic Science 1. To gain	NIL s I ce	Manage cours Enginee	ment	P		sional		(3Hrs)			
Course category [] Course Objective [2] Course [2] Course Objective [2] Course [2] Cou	and Social Sciences Basic Science 1. To gain	s I ce	cours	es	P						al Elect	
Course Objective	and Social Sciences Basic Science 1. To gain	ce	cours	es	P				Prof	essiona	al Elect	
Course Objective	1. To gain	ce	-	ering								ive
Course Objective 2	Ū.			-	Ol	pen El	lective			ber week essional Elect Mandatory s and strain for 3D. or various type dentify bendir ness of cylind $\frac{PSO1 PSO2}{2 2 2}$ 2 2 2 1 2 2 1 2 2 1 3 1 1 2 1 1.5 2.17		
Course Objective 2	Ū.		✓									
23) To docio	knowle	edge on	simple	e stress	s and s	strain,					
23 	To design	gn a blo	ock base	d on st	tress a	nd stra	ain,		0 3 a a Professional Elective Mandatory to: ind stress and strain for in 2D & 3D. agram for various types able to identify bending the thickness of cylinder 1 1 1 1 agram for various types able to identify bending the thickness of cylinder 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1			
A	3. To desig						,			0 3 ours per week Hrs) Professional Elective Mandatory stress and strain for 2D & 3D. am for various types e to identify bending thickness of cylinder 22 2 1 2 2 1 2 2 1 1 2 1 1 2		
	After comple							hla to				
											•	
-				nd its i	types a	are an	d how	to fin	d stres	s and s	strain f	or
	various	section	s.									
2	2. Explain	princip	al stres	s and s	train a	nd its	applic	ation i	n 2D &	z 3D.		
	3. Describe	e shear	force. b	ending	g mom	ent						
					-		mome	nt diac	oram fo	or vario	ous tvn	es
course outcome	of beam			iugi uii	1 00 00	iiaiiig	mome	in ang		or vario	sus typ	•••
				on ch	on atra		notion	and ah		dantify	handi	
		-	-			ess eq	uation	and au		uentify	Denan	ig
	stress &											
6	-		•		nns and	i able	to eval	uate th	e thick	ness of	cylind	er
	& bucki			umns								
		O4 PO		PO7	PO8	PO9	PO10	PO11				PSO3
CO1 2 CO2 2		$ \frac{2}{2} 2 $	1	22	-	1	-	-	-			
		$\frac{2}{2}$ $\frac{2}{2}$		1	-	1	-	-				
CO4 2	2 2	1 1	1	1	-	1	-	-				
CO5 2	÷ ÷	1 1	1	2	-	1	1	1	-	-	-	
CO62AVERAGE2.0		1 1 .5 1.5	2 5 1.33	1	- 0	1	1	1				
AVERAGE 2.0 2 CORRELATION LEVELS		<u>IGHT(L</u>		1.5 2. N	~	1.0 RATE(1.0 (MEDIU					

UNIT 1: Stress and Strain

Rigid bodies and deformable bodies – Tension, compression and shear stresses, Hooke's law, Modulus of Elasticity, Deformation of simple and compound bars - Stress and strain in bars with varying sections-taper section. Temperature stresses, Factor of safety, Elastic constant – Volumetric strain, Relationship between three elastic constants.

UNIT 2: Principal stresses and strains

Stress on an oblique section, General two dimensional stress system, Principal planes and principal stresses, Strain on an oblique section, Determination of principal strains Principal strain in three dimensions. Principal stresses determined from principal strains, Mohr's Circle for stress and strain.

9 Hrs

Beam – Types of beams, Loads – types of loads. Shear force, bending moment, Sign conventions, shear force and bending moment diagrams for cantilever, simply supported and over hanging with different loads, point of contraflexure, Maximum bending stress **UNIT 4: Bending and shear stresses in beams**

Theory of simple bending, bending stress, neutral axis, Relation between bending stress and radius of curvature, relation between bending moment and radius of curvature, bending stress in symmetric section, bending stress in unsymmetrical section. Shear stress- shear stress at a section in a loaded beam, distribution of shear stress for various sections

UNIT 5: Torsion

Introduction, Pure torsion, assumptions, derivation of torsional equations, polar modulus, torsional rigidity / stiffness of shafts, Power transmitted by solid and hollow circular shafts, Calculation of Shaft diameter. Bending due to torsion.

TEXTBOOKS:

1. Strength of Materials by Dr.R.K.Bansal

UNIT 3: Shear Force and Bending Moment

2. Strength of Materials by Dr. S. Ramamrutham

REFERENCES:

- 1. Strength of Materials by R.S.Khurmi
- 2. Strength of materials by S.Senthil

Designed by "Department of Naval Architecture & Offshore Engineering"

9 Hrs

9 Hrs

9 Hrs

Total: 45 Hours

PROGRAM	BE-	Naval	Arch	itectu	re & (Offsho	re Eng	ineeri	ng							
Course Code	171	11.	1	_			L		Т		Р		(2		
UAMC308	Flui	d Mec	chanic	S			3		0		0		3	5		
	•												and analyze the turbines SO1 PSO2 PSO2 2 2 2 3 1 2 1 2 1 2 1 2 1 1 2 2 1			
Year and		пν	ear (s	omost	or III)										
Semester		11 1	Cal (S	emest)			C	ontact	hours _l	per wee	ek			
Prerequisite			N	١IL							(3Hrs)					
course																
		umani		M	anage	ment	Р	rofess	sional		Dura		1 1 1	•		
		nd Soc			cours	es		Co	re		Proi	0 3 urs per week Hrs) Professional Elective Mandatory Mandatory Second Elective Mandatory Second Elective	ive			
Course categor	у	Science	8													
				Et	nginee	ring										
	Bas	sic Sci	ence		Scien		Ol	pen E	lective			3 Sper week s) ofessional Elective Mandatory Mandatory Soft urbines $2 PSOI PSO2 PS$ $2 2 2$ $1 2$ $2 2$ $1 2$ $1 1$ $1.5 1.67 1$				
					\checkmark	1										
	1.	To un	dersta	and th	e prop	oerties	and ch	naract	eristics	of flui	ids					
Course	2.						rough									
Objective								• •	1. 1.		0 3 t hours per week (3Hrs) Professional Elective Mandatory uids o: o: oil colspan="2">Sol PSO2 plications and analyze the t types of turbines PO12 PSO1 PSO2 PS 1 2 2 1 2 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	3.						of pum	•								
	Afte	er com	pletio	n of t	he cou	urse, tl	he stud	ents v	vill be	able to	:					
	1.	Identi	fy var	ious p	proper	ties of	f fluids									
	2.	Descr	ibe di	fferen	t gov	erning	equati	ons fo	or fluid	l flow.						
	3.				-	-	oundary					3 $5 per week$ $5)$ $5 of essional Elective$ $Mandatory$ $6 ons and analyze the sof turbines$ $2 PSO1 PSO2 PSO2$ $2 2 2$				
Course Outcom	e 4.	Analy	• •				•	iajei	conce	Pus						
		•									1:		o o 1	a 41a a		
	5.					or pu	mps ai	ong v	viun un	en app	incatio	ns and	anaryz	e the		
		flow t	•	-	-											
	6.															
POS/COS PC CO1 2	-	PO3 2	PO4 2	PO5 2	PO6	PO7 2	PO8	PO9	PO10	PO11				PSO3		
CO1 2 CO2 2		2	2	2	1	2	-	1	-	-	-		_			
CO3 2		2	2	2	2	1	-	1	-	-						
CO4 2		2	1	1	1	1	-	- 1 1 2 2						1		
CO5 2		3	1	1	1	2	-	1	1	-	1	1	1	2		
205 2		3	1	1	2	1	-	1	1	-	1	1	1	2		
CO6 2																
CO62AVERAGE2.	0 2.5	2.33	1.5	1.5	1.3	1.5	0	1.0	1.0	0	1.0	1.5	1.67	1.83		
CO6 2	0 2.5	2.33	1.5 SLIGH				0 MODEI			Ŭ						

UNIT 1: FLUID PROPERTIES AND FLOW CHARACTERISTICS

Units and dimensions- Properties of fluids- mass density, specific weight, specific volume, specific gravity, viscosity, compressibility, vapor pressure, surface tension and capillarity. Flow characteristics – concept of control volume - application of continuity equation, energy equation - Equation of motion – Eulers' equation of motion – Bernoulli's equation. - Momentum equation

UNIT 2: FLOW THROUGH CIRCULAR CONDUITS

Hydraulic and energy gradient - Laminar flow through circular conduits and circular annuli- Boundary layer concepts – types of boundary layer thickness – Darcy Weisbach equation – friction factor- Moody diagram- commercial pipes- minor losses – Flow through pipes in series and parallel

UNIT 3: BUOYANCY AND FLOATATION

Buoyancy – center of Buoyancy – Metacentre – Metacentric height – Analytical method for determining meta centre – Condition for Equilibrium of a floating and sub-merged Bodies – experimental method of determination of Meta centric height

9 Hrs fic

9 Hrs

UNIT 4: PUMPS

Impact of jets - Euler's equation - Theory of roto-dynamic machines - various efficiencies- velocity components at entry and exit of the rotor- velocity triangles - Centrifugal pumps- working principle work done by the impeller - performance curves - Reciprocating pump- working principle - Rotary pumps -classification.

UNIT 5: TURBINES

Classification of turbines - heads and efficiencies - velocity triangles components of velocity triangle, Calculation of radial and axial components. Example for Axial, radial and mixed flow turbines. Specific speed - unit quantities - performance curves for turbines - governing of turbines.

TEXTBOOKS:

- 1. Dr. R.K.Bansal A text book of Fluid Mechanics and Hydrulic Machines -, Laxmi Publications.
- 2. Modi P.N. and Seth, S.M. "Hydraulics and Fluid Mechanics", Standard Book House, New Delhi 2004.

REFERENCES:

- 1. K. L., "Engineering Fluid Mechanics", Eurasia Publishing House(p) Ltd., New Delhi2004
- 2. Robert W.Fox, Alan T. McDonald, Philip J.Pritchard, -Fluid Mechanics and Machineryl, 2011.

Designed by	"Department of Naval Architecture & Offshore Engineering"

9 Hrs

9 Hrs

Total: 45 Hours

PROGRA	Μ	BE-	Naval	Arch	itectu	re & (Offsho	ore Eng	ineeri	ng							
Course Co UAEE30		Mar	ine El	ectric	al Tec	hnolc	ogy	L 2		T 0		P 0		2			
UALLSU	Z							Z		0		0		4	2		
Year and Semester	r		II Y	ear (s	emest	er III))			C			per wee	ek			
Prerequisi course	ite			Ν	JIL							(2Hrs)					
Course		an	imanit d Soc cience	ial	Ma	anage cours		Р	rofess Coi			Prof	ession	al Elect	ive		
category	7	Bas	ic Sci	ence		nginee Scien		OI	√ ben El	ective			Mand	atory			
Course Objective	e	1. 2. 3. 4. 5.	resista DC m Electr	otors achin e swi nce achin ical ir	and A es tch bo es & I nstalla	C mo ards, Lighti tions	Neutra ng sys & saf	al syste stems in ety and	n ship instru	s 1menta	tion		Mandatory y and Insulation				
Course Outcome	e	1. 2. 3. 4. 5.	Define Expla Opera Recog Categ	e AC in the te AC gnize s orize	motor princ C & D ship s lightii	starte iple o C mae witch ng sys	ers f AC chines board tems	he stud generat and ot layout and me ons, saf	ors otain i and i asurir	ts char ts char 1g devi	acterist acteris ces.	tics. tics					
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	2	2	2	2	2	1	2	-	2	-	-	2	2	2	2		
CO2 CO3	2													3			
CO3	2	2	2	1	-	1	1	-	1	-	-	-	2	2	1		
CO5	2	3	3	-	1	1	2	-	1	1	-	1 1 1 2 2					
CO6	2	3	3	1	1	2	1	-	1	1	-	1	1	1	2		
AVERAGE CORREL LEVE		2.5 N	2.3 1. S	1.6 SLIGH	1.6 IT(LO	1.3 W)	1.5 2. I	0 MODEF	1.5 RATE(1.0 MEDI	0 JM)	1.2 3. S	1.5 UBSTA	1.67 NTIAL	1.83 (HIGH)		

UNIT 1: AC MOTORS & AC MOTOR STARTERS

Understand the Principle of Operation of a Direct On-Line Starter (Dol) Starter, Star Delta Starter, Autotransformer Starter, Understand the Need and Means for Motor Protection. Understand the Construction and Characteristics of a Squirrel Cage Induction Motor. Understand the Principle of Operation of a Single-Phase Motor

UNIT II: AC GENERATOR

Understand the Construction and Principle of Operation of a Three Phase Ac Generator, Ac Regulation on Ac Generator, Ac Generator Active and Reactive Load Sharing, Generator Synchronizing Procedure (Simulator)

6 Hrs

UNIT III: SWITCH BOARD & EMERGENCY SUPPLIES Understand the Function of The Main Switchboard, Need and Methods Ac System Protection. Understand the Types of Neutral Systems and Earth Fault, The Operation and Maintenance of Commonly Used Batteries on Board Ship, Operation of The Emergency Generator. Understand Insulation Resistance Measurement.

UNIT IV: DC MACHINES & SHIP LIGHTING SYSTEM

Understand the Construction and Principle of Operation of a Dc Generator and Dc Motor. Understand Different Types of Lightings Installed Onboard Ships. Understand Principle Of 3 Phase Alternating Voltage Generation.

UNIT V: ELECTRICAL INSTALLATIONS & SAFETY AND INSTRUMENTATION 6 Hrs

Electric shock and burns from contact with live parts. injury from exposure to arcing, fire from faulty electrical equipment or installations and Safe Electrical Practice. Fuse Protection, General Maintenance and measurement of basic variables.

Total: 30 Hours

TEXTBOOKS:

- 1. Practical Marine Electrical By. Dennis T. Hall, Witherbys Seamanship Ltd, 1999.
- 2. Marine Electrical Technology 2nd Edition By. Elstan A. Fernandez, Shroff Publishers, 2013.

"Department of Naval Architecture & Offshore Engineering" **Designed by**

6 Hrs

PROGRAM	M	BE-	Naval	Arch	itectu	re & (Offsho	re Eng	ineeri	ng											
Course Coo	de	м	·					L		Т		Р		С							
UAME302	2	Mar	ine Er	iginee	ring			3		0		0		3							
													per week) fessional Elective Mandatory l on board the vesse on of engine power jobs carried out befo								
Year and Semester			II Y	ear (s	emest	er III))			Со			er wee	k							
Prerequisit course	te				JIL						(3Hrs)									
Course cates	oru	an	imanit d Soc cience	ial	Ma	anage cours		Р	rofess Coi			Profe	essiona	l Electi	ve						
Course calleg	gory								\checkmark												
		Bas	ic Sci	ence		nginee Scien		Ol	pen El	ective			per week per week pofessional Elective Mandatory d on board the ves on of engine pow jobs carried out b iples e demand. he dry 2 PSO1 PSO2 2 2 1 2 1 2 1 2 1 1 1 1								
Objective	•	3. Afte	dry do r com	ock pletio	n of t	It steering gear and operation and transmission of engine pow ledge about dry docking and important routine jobs carried out b of the course, the students will be able to: ne diesel engines and the general engine principles								before							
							engine namic		the gen	neral e	ngine j	orincip	les								
		3.	Identi	fy the	types	of bo	oilers a	and its	operat	tions											
Course Outco	ome	4.	Extra	ct the	desig	n and	type of	of blow	er for	the sh	ip as p	er the d	lemand	1.							
Course Outer	JIIIC				-																
			comp							0	5										
			-				•		1	C (1	1.	• .1	1								
				n the	impo	rtant 1	mainte	enance	work	s of th	e snip	in the	dry								
			dock		1		1				1	1		1							
POS/COS CO1	PO1 2	PO2	PO3	PO4	PO5	PO6	PO7 3	PO8	PO9	PO10	PO11	PO12			PSO3						
CO1 CO2	3	3	3	3	3	3	2	-	2 2	-	-	2			2 3						
CO3	2	3	2	2	2	2	1	-	2	-	-	1			1						
CO4	2	2	2	1	-	1	1	-	1	-	-	-	2	2	1						
CO5	2	3	3	-	1	1	2	-	1	1	-	1			2						
CO6	2	3	3	1	1	2	1	-	1	1	-	1			2						
AVERAGE	2.17	2.67	2.5	1.8	1.8	1.67	1.67	0	1.5	1.0	0	1.2	1.5	1.67	1.83						
CORRELA LEVE		IN	1.5	SLIGH	IT(LO	W)	2.1	MODE	RATE(MEDI	UM)	3. SU	BSTA	NTIAL(HIGH)						

UNIT I: SHIPS AND MACHINERY

Design and selection considerations; Marine diesel engines general engine principles, Low speed and medium speed diesel engines, Constructional features. Fuels, fuel oil system-Scavenging and turbo charging. Starting and reversing systems, controls and safety devices, governing; Lubrication, Lubricants and lub oil systems, cooling systems-torque and power measurement, fuel consumption's characteristics, engine lead tests and general characteristics-Heat balance, waste heat recovery system.

UNIT II: ENGINE DYNAMICS

Torsional vibration of engine and shafting, axial shaft vibration, critical speeds engine rating, rating corrections, trial tests etc. Relationship of engine to the propeller classification society rules on engine construction. Engine room arrangement and engine-mounting study of different types of marine engines available in the world market.

9 Hrs

UNIT III: MARINE BOILERS

Marine boilers types, fire tube and water tube boilers, boiler arrangements-steam to steam boilers, double evaporation boilers, exhaust gas heat exchangers, auxiliary steam plant systems, exhaust gas boilers, composite boilers. Boiler mounting, combustion, feed system, feed water treatment, Feed pumps, condensers, air rejecters, deaerators, boiler operation, coal fired boilers.

UNIT IV: MARINE STEAM TURBINES

Types of turbines, compounding - reheat turbines, turbine construction, rotors, blades, casing, Gland sealing, diaphrams, nozzles, bearings, etc. Lubrication systems, expansion arrangements, control, gearing operating procedure.

UNIT V: MARINE GAS TURBINES

Principles, construction, function, components, control and monitoring systems, and operation of a gas turbine propulsion plant and associated auxiliary support systems, Nuclear propulsion, Air Conditioning and Refrigeration- Psychrometric process

TEXTBOOKS:

- 1. Harrington; Marine Engineering, SNAME Publications.
- 2. Pounder, C.C; Marine Diesel Engines, Newnen-Butterworths, London.

REFERENCES:

- 1. Reed's Marine Engineering for Naval Architect.
- 2. Taylor, D.A.; Introduction to Marine Engineering.

Designed by "Department of Naval Architecture & Offshore Engineering"

9 Hrs

9 Hrs

9 Hrs

Total: 45 Hours

PROGR	AM	BE-	Naval	Archi	itectu	e & (Offsho	re Eng	ginee	ring												
Course C UANA3		Shi	p Des	ign C & Dr	alcula	tion		L		T		P 2		(-							
UANAS	PA		CAD		-			0		0		2]								
**	1	<u> </u>						-														
Year an Semest	er	SDCADD-1 Contact hours per week (2Hrs) II Year (semester III) Contact hours per week (2Hrs) NIL Professional Core Humanities and Social Sciences Management courses Sciences ✓ Basic Science Engineering Science I. Gaining knowledge on offset tables and ship lines plan Mandatory 1. Gaining knowledge on offset tables and ship lines plan After completion of the course, the students will be able to: 1. Identify the offset table from BSRA series Image: Science Science																				
Prerequi course					JIL							(2Hrs))									
		NIL NIL Humanities and Social Sciences Management courses Professional Core Professional Elective Sciences ✓ ✓ Basic Science Engineering Science Open Elective Mandatory 1. Gaining knowledge on offset tables and ship lines plan Mandatory											tive									
Cours	e					Core Professional Elective Imagineering Science Imagineering Open Elective Mandatory Imagineering Science Imagineering Open Elective Imagineering Mandatory Imagineering Science Imagineering Imagineering Science Imagineering Imagineering Science Imagineering Science Imagineering Imagineering Science Imagineering Imagineering Imagineering Science Imagineering Science Imagineering Imagineering Imagineering Science Imagineering Imagi																
categor	ry								v	(
		Bas	ic Sci	ence				0	pen E	Elective			Mand	latory								
								Open Elective Mandatory Set tables and ship lines plan anual drawing to AutoCAD.														
Course	-																					
Objectiv	ve																					
											10:											
								in DSK														
Course	e			tetch b				, in Au	IUCA													
Outcom	ne							stern of	fshin													
				tetch s					sinp													
									VASSA	l both m	anually	v and in	softwa	re								
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3							
CO1	2	2	2	1	1	2	2	1	1	2	2	1	2									
CO2	2	2	2	1	1	2	2	1	1	2	2	1	1	3 2 3 3								
CO3	2	2	2	1	1	2	2	1	2	2	2	1	2	2 2 2								
CO4	2	2	2	1	1	2	2	1	2	2	2	1		2 2 2								
CO5 CO6	2	2	2	1	1	2	2	1	2	2	2	1	1	22	2 3							
AVERAGE	2.0	2.0	1.83	1.0	1.0	2.0	2.0	1.0	2 1.67	2.0	2.0	1.0	1.5	2.33	2.33							
CORRE	LATIO			SLIGH						E(MEDI				TIAL(I								
LEV	'ELS		1			,	<i>2</i> . 1				0111)	5.50	DD1 /11	, I II IL(I	1011)							

UNIT 1: OFFSET TABLE

BSRA series, deriving offset table from BSRA series

UNIT II: LINES PLAN

Drawing lines plan manually using the derived offset table, drawing bilge keel, camber, stem and stern

UNIT III: AUTO CAD DRAWING

Basic CAD commands, drawing of lines plan in Auto CAD software, application of AutoCAD in ship design.

Total: 30 Hours

TEXTBOOKS:

- 1. Robert Taggard, ship design & construction, The society of naval architecture & marine engineers, 1980
- 2. Eric C.tupper, Introduction to naval architecture, reed Elsevier India pvt lmt,2010
- 3. Principles of naval architecture, vol I II & III.

REFERENCES:

1. Principles of Naval Architecture, vol I II & III.

Designed by "Department of Naval Architecture & Offshore Engineering"

PROGRA	M	BE-	Naval	Archi	itectu	re & (Offsho	re Eng	gineer	ing									
Course Co	ode	E1	d Maa	hania	Tak			L		Т		Р		С					
UAMCC	PC	Flui	d Mec	name	s Lad	orator	У	0		0		2		1					
Year an	d		пу	ear (s	amaat	or III)													
Semeste	er		11 1	cal (s	emest)			Cor	ntact h	ours pe	r week	1					
Prerequis	ite			Ν	IIL						(2	2Hrs)							
course																			
Humanities and Social Sciences Management courses Professional Core Professional Core Basic Science Engineering Science Open Elective Mandatory																			
Course category and Social Sciences Courses Core Professional Elective Basic Science Engineering Open Elective Mandatory												ve							
Course cate	anory	S	cience	es		cours	05		CU	10									
Course can	gory																		
Course category Sciences Engineering Science Open Elective Mandatory Image: Science series Image: Science series Image: Science series Image: Science series Image: Science series																			
						\checkmark	, 												
Course	,	1.	To u	nderst	and th	ne pro	pertie	s and o	charac	cteristic	es of fl	uids							
Objectiv	/e	2.	To a	nalyze	the p	erfor	mance	of pu	mps a	nd turb	oines								
		Afte	r com	pletio	n of tl	he cou	ırse, tl	ne stuc	lents v	will be	able to):							
		1.Id	entify	vario	us pro	pertie	es of f	luids a	nd go	vernin	g equa	tions fo	or fluid	flow.					
					_	-			-	iyer co									
			nalyze						5	2	1								
Course Out	come		•			•	• •		onditi	ion of e	auilih	rium							
							•			their a	•		d anal	ura tha					
			•		• •	es or	pump	s along	g with	their a	ppnca	lons a	iu anai	yze the					
			v thro	•	-														
										differe				1	I				
POS/COS CO1	PO1 3	PO2 3	PO3 2	PO4 2	PO5 1	PO6 2	PO7 2	PO8	PO9	PO10 2	PO11 2	PO12	PSO1 2	PSO2 2	PSO3				
CO1 CO2	3	2	2	2	1	2	2	1	1	2	2	1	1	3	3				
CO3	2	2	2	1	2	2	2	1	2	2	2	1	2	2	2				
CO4	2	2	2	1	2	2	2	1	2	2	2	1	2	2	2				
CO5	2	2	2	1	1	2	2	1	2	2	2	1 1 2 2							
CO6	2	2	1	1	1	2	2	1	2	2	2	1 1 2 3							
AVERAGE	2.33	2.17	1.83	1.33	1.33	2.0	2.0	1.0	1.67	2.0	2.0	1.0	1.5	2.17	2.33				
CORREL		N	1. 5	SLIGH	T(LO	W)	2.1	AODE	RATE	(MEDI	UM)	aup	<u> </u>						
LEV	ELS				, -	'				、 –	,	I SUB	STANI	TAL(H	IGH)				

LIST OF EXPERIMENTS

- 1. To find the co-efficient of discharge in venturi-meter
- 2. To verify the Bernoulli's Theorem for pipe flow
- 3. To find the co-efficient of discharge in Orifice
- 4. To find the co-efficient of discharge in Pitot Tube
- 5. To find the wetted surface of block
- 6. To find the fine coefficients of arbitrary solid shape
- 7. To find the co-efficient of discharge in Pipe Friction apparatus
- 8. To determine the discharge in Triangular Notch
- 9. To determine the Metacentric Height (GM) of the ship.
- 10. To determine the discharge of Jet Pump
- 11. To determine the discharge of Centrifugal Single stage Pump
- **12**. To determine the discharge of Reciprocating Pump

Total: 30 Hours

Desi	gned	hv
Desi	gneu	Dy

"Department of Naval Architecture & Offshore Engineering"

PROGRAM						HITEC	TURE	& OFF	SHOR	E ENGI	NEERI	/		•						
Course Cod	e		Cours	e Nan	ne						L	Т	I		С					
UALECPD			Soft s	kills -	III						2	0	2	2	2					
Year and Se	emeste	er	II Ye	ar & I	II Ser	nester	•			Co	ntact H	Iours P	Per Wee	ek						
Prerequisite	cours	se	Nil							2	Hrs									
Course cate	egory		Huma			Ν	Ianage	ment c	ourses	Pro	ofession	al Core			nal					
		-	Social	Scienc	es								I	Elective						
			Ba	asic Sci	ence		Engine	ering	Science	e	Open]	Elective		Professional Elective Mandatory tations tuational usage nmunicative duals lexical ther individua						
Course 01 '	+ :	~	1	<u>م</u> ۲_1			a 4 c 1	1	a a 1-	,										
Course Obj	ective	S	1. 2.		-		s to le			anced l	English	1	expectations ble to s in situational usage							
			2. 3.		U 1	L					vorld or	nd tha	avnooto	tions						
					0				-		ond al	iu tile e	expecta	uions						
4. Preparing them for campus Interview Course Outcomes After successful completion of Course, the students will be able to																				
Course Ou	licome	28	Alter 1.			-								untional	1160.00					
			1. 2.					•	•						•					
			۷.	activ	•	meory	. EIIII	ancing	verba		JIIadora	ung ou		mumca	uve					
			2			.1	1	• •	1 1.		C1	· · · · · ·		1 . 1	1					
			3.			•		-		•		·								
			4.	-			•		-	-										
			5.			-			•	-			d situati	ions wit	h Clair					
			6.	Enha	ances t	he ver	satility	of the	stude	nts on a	ull skills	5	1	1						
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3					
CO1	-	-	-	-	-	2	2	2	2	2	-	1	-	-	-					
CO2	-	-	-	-	-	2	1	2	2	3	-	-	-	-	-					
CO3	-	-	-	-	-	2	1	2	1	2	-	1	-	-	-					
CO4	-	-	-	-	-	2	2	3	2	3	-	2	-	-	-					
CO5 CO6	-	-	-	-	-	3	2	1 2	3	2	-	2	-	PSO2 PSO2 - -						
AVERAGE	-	-	-	-	-	2.2	1.5	2	2.2	2.5	-	1.6	-	-	-					
CORREL	ATION	LEVI	ELS		SLI	2.2 GHT (l		2	MO	DERAT DERAT EDIUM)	E	1.0	SUBS' (HIGH	TANTIA I)	L					

UNIT1:GRAMMAR AND FOUNDATON

Training the students on basic grammar and foundation and laying the standard platform. A complete standard syllabus of Cambridge is used. The main part of the 1st semester is to cover the major tenses (Present tense, Present Continuous, Past Tense, Past Continuous, Present Perfect, and Present Perfect continuous.

UNIT II: BODY LANGUAGE AND LEXICAL RESOURCE WITH BASIC WRITTEN SKILS 6 Hrs Posture, eye contact, gestures with hands and arms, speech, tone of the voice

One word substitutes, E-mail communication, creating blogs, free writing on any given topic, writing definitions. UNITIII: INTERACTIVE ENGLISH 6 Hrs

The main objective is English for International communication. It course contains conversations, snapshots, readings, activities, a greater variety and amount of listening materials and more visuals to introduce vocabulary, more opportunities to build fluency, and up-to-date art and design. The course covers the fours skills of listening, speaking, reading and writing, as well as improving pronunciation and building vocabulary.

UNITIV: LISTENING AND SPEAKING

Types of Listening -Listening and note taking-Pronunciations-Stress and Intonation- Conversation technique-Dialogue Writing -Professional Communication-Interview-Group Discussion –Power point Presentation-Lab

UNITV: INTERVIEW SKILLS AND PERSONALITY DEVELOPMENT

6 Hrs

6 Hrs

Speaking skills, Negotiation skills, Body language improvisation, listening skills, exit interviews Personality development – Self motivation, Self actualization, Self realization, Stress management

TOTAL: 30 HOURS

TEXT BOOKS:

- 1. Essential Grammar in use- Raymond Murphy , Cambridge , New Third Edition
- 2. Communication skills

REFERENCE BOOKS:

1. New Interchange (English for International Communication) Jack C. Richards

SEMESTER IV

PROGRA	Μ	BE-	Naval	Arch	itectu	re & (Offsho	ore En	gineer	ing								
Course Co UAMTCO		Prob	abilit	y and	Statis	tics		L 3		T 1		P 0		C 4				
Year and Semeste			II Y	ear (s	emest	er IV))			Co	ntact h	ours pe	er week	ī.				
Prerequist course				N	١IL						(4	4Hrs)						
Course		an	imanit d Soc cience	ial		anage cours		F	Profess Co	sional re		Profes	ssional	Electiv	/e			
category	y	Bas	ic Sci	ence		nginee Scien		0	pen E	lective		N	Mandat	ory				
			\checkmark															
Course Objectiv		2. 3.	variat Be in know manag Be ex makir	ble and troduc ledge gemer posed ng scie	d func ced to of stant prob to st entific	tions the tistica blems atistic	of ran notion al tecl al me cal me ments	dom v of sa nnique thods in the	variabl implin s use desig face o	les. ng dist ful in ned to of unce	ributio making contri	ns and g ratio bute to <u>y and v</u>	have hal dee the pr	acquir cision	ed in			
Course Outcom	e	 1. 1 2. 3. 4. 5. 6. 	Define Identi Extrac Solve Use st of hyp Desig	fy dec ct the scien tatistic pothes n and	stical n cision nature tific p cal me is	metho makin e of sa proble ethods ze the	ods inv ng ana umplir ms us in the e math	volvin alysis ng dist ing sta e realn	g one ributio tistica n of sc	and se ons to a al meth cientific chnique	veral r manag ods c exper es invo	andom ement riments lved ir	probler s and th	ns. ne testin iments	0			
POS/COS	PO 1	PO 2	PO 3	PO 4	PO5	PO 6	PO 7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1		PSO 3			
CO1	2	2	2	2	1	1	1	-	1	-	-	1	1	2	2			
CO2	2	2	2	2	1	1	1	-	1	-	-	1	1	experiments PSO1 PSO P: 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1				
CO3	2	2	2	2	1	1	1	-	1	-	-	1		PSO1 PSO2 F 1 2 1 1 2 1 1 2 1 1 2 1				
CO4 CO5	2 3	23	23	2	1	1	1	-	1	-	- 1	1	-	have acquired al decision in the process of riation. variables. roblems. and the testing experiments $\frac{PSO1 \frac{PSO}{2} F}{1 2} \frac{1}{2} \frac{2}{1} $				
CO5	3	3	3	1	1	1	1	-	1	-	1	1		al decision in the process of riation. variables. roblems. and the testing experiments $\frac{PSO1 PSO P}{2}$ $\frac{1 2}{1}$				
AVERAG	2.33	2.33	2.33	1.67	1	1	1	0	1	0	1	1		week onal Elective andatory one random have acquired al decision in he process of iation. ariables. oblems. and the testing experiments PSO1 PSO 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2				
E CORREL LEVE	ATIO			. SLIGH						MEDIUI					2 GH)			

UNIT I RANDOM VARIABLES

12 Hrs

Axioms of Probability-Conditional Probability-Total Probability-Bayes Theorem-Random Variable-Probability Mass Function-Probability Density Functions-Properties-Binomial, Poisson and Normal distribution

UNIT II TWO DIMENSIONAL RANDOM VARIABLES

Joint distributions – Marginal and conditional distributions – Covariance –Correlation and regression – Transformation of random variable – central limit theorem

UNIT III TESTING OF HYPOTHESIS

Sampling distributions –Testing hypothesis for mean ,variance, proportions and difference using normal ,t-,chi square and F- distributions –Tests for independence of attributes and goodness of fit.

UNIT IV DESIGN OF EXPERIMENTS

Analysis of variance – One way classification – Completely randomized design – Two way classifications- Randomized Block design – Latin square

UNIT V STATISTICAL QUALITY CONTROL

12 Hrs

Control charts for measurements (X and R charts) – Control charts for attributes (p, c and np Charts) – Tolerance limits - The Central Limit Theorem, distributions of the sample mean and the sample variance for a normal population, Chi-Square, t and F distributions, problems.

TEXTBOOKS:

- 7. J. S. Milton and J.C. Arnold, Introduction to Probability and Statistics^{II}, Tata McGraw Hill, 4th edition, 2007. (For units 1 and 2).
- 8. Grewal. B.S, -Higher Engineering Mathematicsl, 40thEdition, Khanna Publications, Delhi, 2007.
- 9. R.A. Johnson and C.B. Gupta, -Miller and Freund's Probability and Statistics for Engineers^{||}, Pearson Education, Asia, 7th edition, (2007)

REFERENCES:

- 1. Walpole, R. E., Myers, R. H. Myers R. S. L. and Ye. K, -Probability and Statistics for Engineers and Scientists, Seventh Edition, Pearsons Education, Delhi, 2002.
- 2. Navidi, W, -Statistics for Engineers and Scientistsl, Special Indian Edition, Tata McGraw-Hill Publishing Company Ltd, New Delhi,2008.
- 3. Spiegel, M.R, Schiller, J and Alu Srinivasan, R, -Schaum"s Outlines Probability and Statistics, Tata McGraw-Hill Publishing Company Ltd. New Delhi, 2007

Designed by "Department of Naval Architecture & Offshore Engineering"

12 Hrs

PROGRA	AM	BE-	Naval	Arch	itectu	re & (Offsho	re En	gineer	ring								
Course C	ode	Dasi	-	- ef C	1			L		Т		Р		С				
UANA4	01	Resi	stance	2 01 5	mps			3		0		0		3				
Year an Semest			II Y	ear (s	emest	er IV))			Co	ntact h	ours ne	er week	5				
Prerequis	site			Ν	NIL					0.01		3Hrs)		-				
Course	e	an	imanit d Soc cience	ial	Ma	anage cours		F	Profes Co	sional re		Profes	ssional	Electiv	ve			
categor	y								✓									
		Bas	ic Sci	ence		nginee Scien		0	pen E	lective	:	I	Mandat	tory				
Course Objectiv		4. 7 5. 1	Fo kno of ship Predic	ow th). tion c	e diffe	erent	types el resi	of res	istanc using	g diffei	ipariso	n laws ethodic		Iodel to	esting			
		Afte	r com	pletio	on of t	he cou	urse, tl	he stu	dents	will be	able t	o:						
		1.	Ident	ify dif	fferen	t type	s of re	sistan	ce act	ing on	ships.							
		2.	Class	ify an	nd inte	rpret	variou	is type	es of r	esistan	ce							
Course	e	3.	Desci	ribe th	ne mo	del tes	sting c	ondu	cted in	n Towi	ng Tan	k usin	g Frou	de's me	ethod.			
Outcom		4.					•			vave m	•		•					
						•	n resti											
		<i>6</i> .									1 tosti	na and	theor	retical	orios			
		0.	meth		ine re	suits	Of Tex	sistain	le by	moue	i testii	ig and		cucai	series			
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
CO1	2	2	3	2	1	1	1	-	1	-	-	1	2	3	3			
CO2	2	2	2	2	1	1	1	-	1	-	-	1		-	3			
CO3 CO4	2	2	2	2	1	1	1	-	1	-	-	1						
C04	3	3	3	1	1	1	1	-	1	1	1	1	1	1 2				
CO6	3	3	3	1	1	1	1	-	1	1	1	1	1	2	2 2			
AVERAGE	2.33	2.33	2.5	1.5	1	1	1	0	1	1	1	1	1.33	2.33	2.5			
CORRELATI					IT(LOW	/)	2	. MODI	ERATE(MEDIU	(M	3. S	UBSTAN	TIAL(H	/			
UNIT 1: 7	Гурея	s of R	esista	nce										9	Hrs			

UNIT 1: Types of Resistance

Introduction to Resistance, Components of ship resistance, Dimensional analysis. Laws of comparison - geometrical, dynamical and kinematic Similarity, Froude's and Reynold's law, model-ship correlation.

UNIT II: Frictional Resistance

Frictional resistance, separation and resistance due to separation, influence of curvature of the Ship's hull, form factor. Hull roughness and its influence on frictional resistance.

UNIT III: Wave Making Resistance

Wave Resistance. Wave Making resistance, pressure resistance, ship wave system, interference effects, Theoretical calculation of wave making resistance, wave breaking resistance, Bulbous bows and their effects.

UNIT IV: Prediction of Resistance

Model testing - tank testing facilities, testing methods, and prediction of resistance from model

9 Hrs

9 Hrs

tests, extrapolation, Froude's concept, laminar influence and tank wall effect, comparison of resistance prediction with results of full scale trials.

Determination of resistance from series test results - residuary resistance, effect of hull form on resistance, Statistical analysis of resistance data, Guldhammer-Harvald's and haltrop & Mennon method

UNIT V: Resistance acting on different vessel

9 Hrs

Total: 45 Hours

Resistance of high speed vessels, resistance due to Superstructure, Appendage resistance, Added resistance, Resistance in restricted and non restricted waterways.

TEXTBOOKS:

- 1. Lewis, E.U.; "Principles of Naval Architecture", (2nd Rev.), SNAME, New Jersey, U.S.A.
- 2. Rawson & Tupper, Basic Ship Theory

REFERENCES:

1. Harvald S.A., "Resistance and propulsion of Ships", John Wiley & Son

Designed by "Department of Naval Architecture & Offshore Engineering"

PROGRA	AM	BE-	Naval	Arch	itectu	re &	Offsh	ore Engi	neeri	ng								
Course Co	ode		(. G.				L		Т		Р		С				
UANA4	02	The	ory of	Struc	ctures			3		0		0		3				
Year an Semeste			II Y	ear (s	emes	ter IV)			Con	tact ho	urs per	r week					
Prerequis course				ľ	NIL													
		Hur	naniti	es and	d N	/Ianag	emen	t P	rofess	ional		Professional Elective ✓ Mandatory blems us system						
G		Soc	ial Sc	ience	s	cou	rses		Cor	e		Hrs) Professional Elective ✓ Mandatory s bblems us system :						
Course categor												✓ Mandatory es oblems ous system						
categor	y	Ba	sic Sc	ience	I	Engine Scie	eering ence	g Of	oen El	ective		N	Mandat	ory				
													ems					
Course Objectiv		2. 0 3. 5 4. 1 5. 1	Gener Struct Desig Natura	ation ural a n and al frec	of stit nalysi analy juency	ffness is of p sis of y and	matri plate a tubul respo		rious ners oers uatior	structu n of co	iral pro ntinuo	blems us syst	em					
Course Outcom		1. 5 2. 1 3. 1 4. 1 5. 1	Sketch dentif Defind Evalua Descri condit	n the s fy the e MD ate na ibe cr ions	hear f stiffn OF sy tural t ritical	force a less m vstem freque buck	and be atrix ency a cling	the stude ending m for varic and dyna load for for pure	omen ous pro mic ro plate	nt diagn oblems espons e and	cam for s e for v stiffen	Indete arious ing fo	systen r vario	18				
DOGIGOG	РО	PO I	PO	PO	PO	PO	PO		PO	PO1	PO1	PO1	PSO	PSO	PSO			
POS/COS	1	2	3	4	5	6	7	PO8	9	0	1	2	1	2	3			
CO1	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2			
CO2 CO3	2 2	22	22		1	-	-	1	1 2	2	2	1	1	2	2			
CO3 CO4	2	2	2		1	-	-	1	2	2	2	1 1 2 2						
CO5	2	2	2	1	1	-	-	1	2	2	2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
CO6	2	2	1	1	1	-	-	1	2	2	2	1	1	2	2			
AVERAG E	2	2	1.8	0.3	1	-	-	1	1.7	2	2	1	1	2	2			
CORREL LEVI		N	1.	SLIGH	IT(LOW	V)		2. MODE	RATE(N	IEDIUM	[)	3. SU	JBSTAN	TIAL(H	IGH)			

UNIT 1: Methods of Analysis for Indeterminate structure.

Continuous beams - Clapeyron's theorem or three-moment equation, Moment distribution method, Torsion of non-circular sections, shear center of simple cross sections. Strain energy method-principle of virtual work, flexibility method, stiffness method, strain energy and complementary energy, Castiglione's theorems. Introduction of theory of plasticity.

UNIT II: Stiffness matrix formulation

Matrix methods - flexibility and stiffness matrices: transformation matrices andits applications.

UNIT III: Dynamics

Undamped free vibration, Free Damped Vibration, Forced Vibration, MDOF system and obtaining natural frequencies

UNIT IV: Bending and buckling of plates

Introduction to theory of thin plates, Pure bending of plates, Small deflection analysis of laterally loaded plates, Boundary conditions, Naview solution, Lavy's` solution. Analysis of stiffened plates - orthotropic plate model and other methods. Design of plates for large deflections and permanent set - design of lifting structures such as cranes.

UNIT V: Tubular Member Design

Introduction- Tubular members, tubular member design, thickness of tubular member, diameter of the pipe line. Brief introduction to optimal member design.

TEXTBOOKS:

- 1. Timoshenko & Young; Theory of structures, McGraw Hill Publications.
- 2. Reddy, C.S; Basic Structural Analysis, Tata-McGraw Hill Publications. Timoshenko & Young; Theory of plates, McGraw Hill Publications.
- 3. Krishna Raju&Gururaja; Advanced Mechanics of solids and structures, Narosa Publications.
- 4. Mechanical vibrations by V P Singh

REFERENCES:

- 1. RD Blevins; Flow induced Vibrations, Van Nostrand Reinhold, 1990.
- 2. BC Gerwick, Jr. Construction of marine and offshore structures, CRC Press, 2000.
- 3. N Barltrop, Floating Structures, A Guide for Design and Analysis, OPL , 1998.

Designed by "Department of Naval Architecture & Offshore Engineering"

PROGRAM	BE	Naval	Arch	itectu	re & (Offsho	re En	ginee	ring										
Course Code	Nui	nerica	1 Solu	tion of	of OD	DE an	d I	_	T		Р		С						
UANA407	PD	Е					3	;	0		0		3						
	•																		
Year and		пх				\ \													
Semester		пт	ear (s	emesi	ler IV)			Co	ntact h	ours pe	er weel	ζ.						
Prerequisite			N	١IL						(.	3Hrs)								
course			Г	NIL															
	Hu	maniti	es and	1 N	/Ianag	emen	t]	Profes	sional		Drofo	voional	Electiv						
Course	So	cial Sc	ience	8	cour	ses		Co	ore		FIDIes	ssional	Electr	ve					
												\checkmark							
category	D	asic So	ionoo	I	Engine	ering	C	mon E	Elective		Mandatory								
	D	asic Sc	lence		Scie	nce	C	pen E	lective	2	г	vianuai	✓ andatory erential equation						
Course	Tai	ام مسما		:	1	la			d:		بناء 1 ماند		a1 a arres						
Objective	10	learn t	ne nur	nerica	n meu	100S 11	IVOIV	ing or	unary	and pa	rtial di	Terenti	ai equa	ations					
	Aft	er com	pletio	n of t	he cou	irse, tl	he stu	dents	will be	able t	o:								
		1. L	ist the	e prop	erties	of or	linary	partia	al diffe	rential	equati	ons							
Carrier				· ·			•	-		ify OD	-								
Course									ving O	•									
Outcome									opagati										
		5. D	Descrit	be the	classi	ficati	on of	partial	l differ	ential e	equatio	ns							
		6. E	Explain	n the e	elliptic	and I	hyperl	bolic t	ypes o	f equat	tions								
POS/COS PO		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3					
CO1 3	3	3	2	-	-	-	-	-	-	-	- 2	2	2	2					
CO2 3 CO3 2	2	2	2	2	-	-	-	-	-	-	2	2	2	2					
CO3 2 CO4 3	3	3	2	2	-	-	-	-	-	-	2	 2 2 2 2							
CO5 2	2	2	2	2	-	-	-	-	-	-	1	- 3 3							
CO6 3	3	3	2	2	-	-	-	-	-	-	2	3	3	3					
		1	1	I	1	1	1	1	1		1	2.3	24						
AVERAG E 2.7	2.7	2.7	2	2	-	-	-	-	-	-	1.8	2.5	2.4	2.4					

UNIT I – ORDINARY DIFFERENTIAL EQUATIONS

Numerical solution of first order ordinary differential equations: Piccard's method Taylor series method, Euler and modified Euler method, Runge Kutta methods.

UNIT II – HIGHER ORDER EQUATIONS

Multi-step methods:Predictor corrector methods, Systems of equations and higher order equations. Linear Boundary value problems: Shooting methods, Finite Difference Methods

UNIT III – ERRORS AND PROPAGATION

Convergence criteria, Errors and error propagation, Stiff equations. Nonlinear Boundary Value Problems

UNIT IV-PARTIAL DIFFERENTIAL EQUATIONS

Classification, Finite Difference representation, Parabolic PDE: Explicit and implicit schemes. Compatibility, Stability and Convergence

UNIT V – ELLIPTIC AND HYPERBOLIC EQUATIONS

Hyperbolic equations - wave equation, Finite difference explicit and implicit schemes, stability 3 analysis. Methods for solving diagonal systems, Treatment of irregular boundaries. ADI and SOR schemes.

Total Hours: 45

9 Hrs

9 Hrs

9 Hrs

9 Hrs

TEXT BOOKS

1. G.D.Smith,"Numerical Solution of Partial Differential Equations : Finite Difference Methods" (Oxford Applied Mathematics & Computing Science Series).

2. R K Jain ,"Numerical Methods for Scientific and Engineering Computations": M K Jain, S R K Iyengar.

REFERENCE BOOKS

1. John Wiley,"Finite Difference methods for partial Differential equations": Forsythe G.E.& Wasow, WR. 4. Gerald, C.F.& Wheatley P.O."Applied Numerical Analysis",Pearson Education Asia.

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRA	M	BE-	Naval	Arch	itectu	re & (Offsho	re En	ginee	ring							
Course Co								I	<u> </u>	T		Р		С			
UANA4		Ship	yard l	Infrast	ructu	re & I	Layout	3		0		0		3			
										Ū		0		0			
Year an	d		щv	(.													
Semeste	er		ПΥ	ear (s	emest	er IV)				Co	ntact h	ours pe	er week	2			
Prerequis	ite			N	١IL						(.	3Hrs)					
course																	
		Hu	imanit	ties	M	anage	mont	Б	Profes	sional				ional Elective ✓ andatory			
			d Soc			cours		1	Co			Profes	ssional	Electiv	ve		
Course	•	S	cience	es		cours	05		Cu	ii C							
categor	у												\checkmark	week ional Elective \checkmark andatory ed. PSO1 PSO2 PSO2 PSO2 2 3 2 1 2 2			
		Bas	ic Sci	ence		nginee		0	nen F	lective		N	Aandat	orv			
		Dus		chee		Scien	ce	<u> </u>				1	fundat	ory			
Course		1. 7	Го Un	dersta	and the	e Ship	yard l	ayout	and a	arrange	ments.						
Objectiv		2. 7	Го lea	rn shi	pyard	facili	ties an	d hov	v the	machir	nes are	organi	zed.				
Objectiv		3. 7	Fo kno	ow the	e strat	egy be	ehind s	shipya	ard in	frastru	cture						
		Afte	r com	pletio	n of tl	he cou	irse, th	e stu	dents	will be	able t	0:					
		1. I	dentif	fy type	es of s	ships a	and the	eir pu	rpose	s							
Course		2. I	Define	e basic	ship	yard u	tility a	irea	-								
Outcom		3. I	Descri	be shi	ip con	struct	ion an	d con	nmiss	ioning							
Outcom							on sho										
						•					or forw	ard pla	nning.				
		6. I	Evalua	ate sho	op flo	or pro	ductiv	ity in	dices.								
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO10	PO11	PO12	PSO1	PSO2	PSO3		
CO1	3	3	3	2	1	1	2	-	1	-	-	1		-	3		
CO2	3	2	2	2	1	1 2	2	-	1	-	-	1			3		
CO3 CO4	2	2	2	2	1	2	1	-	1	-	-	1			2		
CO5	3	3	3	1	1	1	2	-	1	1	1	1	1	3	2		
CO6	3	3	3	1	1	2	1	3	1	1	1	1	1	2	2		
AVERAGE CORRELATI	2.67	2.67	2.5	1.5 . SLIGH	1 T(LOW	1.33	1.5	3 MODI		1 (MEDIUI	1	1	1.5 UBSTAN	2.33	2.5		

UNIT 1: Introduction

Evolution of ship and Ship Building, Types of Ship- By Purpose and Size, Introduction to Ship Structures, Methods of Ship Building- Change in building process over time.

UNIT II: Basin Trial Area and Sea Trial area

Basic Ship yard Utility Area and its function – Steel Stock yard, Prefabrication Bay, Fabrication Bay, Assembly Bay, Hull Erection Bay, Launching Bay, Outfitting Bay. Machinery Shop. Electrical Shop

UNIT III: Ship Construction and Commissioning

Equipment requirement in different stages of Ship Construction and Commissioning – Steel /frame stock yard, Prefabrication Bay, Fabrication Bay, Assembly Bay, Hull Erection Bay, Launching Bay, Outfitting Bay, Machinery Shop, Electrical Shop, Basin Trial Area and Sea Trial area, Stores. Movable and Immovable Equipment

UNIT IV: Shipyard Layout

Shipyard Layout -Flow line in Ship Building process, Importance of process flow and reverse flow. Typical Layout of Large, Medium and Small Shipyards. Special Facilities typical to

-

9 Hrs

ion

9 Hrs

9 Hrs

Shipyard with Geographical constraints- Slipway, Side Launching, Synchro Lift, Air balloon launching system. HOP Concept and its Infrastructural requirement

UNIT V: Building strategy for Infrastructure

9 Hrs

Understand the condition of infrastructure assets for Dry-dock, Slipways, Building birth etc, Technology assisting the high productivity and shipyard capacity augmentation. Assessment of socio-economic development of the coastal region.

Total: 45 Hours

TEXTBOOKS:

 1. Ship Production, Prof Gokharan, IIT Kharagpur

 REFERENCES:

 1. Production Technology, R. K. Jain

 Designed by " Department of Naval Architecture & Offshore Engineering"

PROGRA	AM	BE-I	Naval	Arch	itectu	re & (Offshor	e En	ginee	ring					
Course C	ode	Mar	ine]	Mater	ials	and	Metal	L		Т		Р		С	
UANA4	03	Join	ing Te	echnic	ues			3		0		0		3	
			-		-								•		
Year an Semeste	er		II Y	ear (s	emest	er IV))			Co	ntact h		er weel	ζ.	
Prerequis course					ΊL						(3	3Hrs)			
Course	e	an	imanit d Soc cience	ial	Ma	anage cours		P	rofes Co	sional re		Profes	ssional	Electiv	ve
categor	y								\checkmark						
	-	Bas	ic Sci	ence		nginee Scien		O	pen E	lective		Ν	Mandat	ory	
Course Objectiv		2. 3.	mater To un and N To pr how t	rials u nderst NDT n resent these j	sed in and th nethoo practi propen	n marin he bas ds ical kn rties a	ne field sic prin nowled re affe	l. ciple ge of cted l	s of v the st by the	various ructure heat c	mecha e and pr of weld	nnical t copertioning pro-	testing es of m	metho	ds
Course Outcom		1. 2. 3. 4. 5.	Identi probl Defin Engin Sumr Class Categ	ify thems. The theory of the theory of theory of the theory of theory of the theory of	e cor e cor g. e vario e mate the N	re com ntempo ous ma erials : IDT m	•	in m issue used ign a	ateria s rel l in m nd co	lls scie evant arine in nstruct	to M ndustry	solve aterials	s Scie	nce a	
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	1	1	2	-	1	-	-	1	2	3	3
CO2	3	2	2	2	1	1	2	-	1	-	-	1	2	Elective tory elevant g metho netals a: itime re ence a: tures	3
CO3 CO4	2 2	3	2	2	1	2	1	-	1	-	-	1	1 2		3
CO4	3	3	3	1	1	1	2	-	1	1	1	1	1		2
CO6	3	3	3	1	1	2	1	3	1	1	1	1	1	2	2
AVERAGE	2.67	2.67	2.5	1.5	1	1.33	1.5	3	1	1	1	1	1.5		2.5
CORRELATI	ON LE	VELS	1	. SLIGH	T(LOW	V)	2.	MODE	ERATE(MEDIU	M)	3. SI	UBSTAN	TIAL(HI	GH)

UNIT - I CLASSIFICATION OF MATERIALS

The equilibrium phase diagrams, structures, and properties of common engineering materials with emphasis on mechanical testing methods, heat-treatment, international standard specifications, selection and applications of such materials. Classification of materials, mechanical testing, alloying, steels, non-ferrous alloys, plastics, ceramics, composites

UNIT – II WELDING AND WELDING PROBLEMS

General principles for welding, welding methods, welding metallurgy, welding symbol, weld design, welding procedure specifications and qualifications, pipeline welding, Different welding methods and associated defects-Weld defects, Distortion, accuracy control; Non destructive tests Welding quality control- Welding standards, Welding procedure qualification,

Effect of variables on qualification of tests, Performance Qualification of welders and operators, Test Reports. Acceptance standards, Quality assurance and audit, Consumable, classification and

9 Hrs

coding. Knowledge of WPS and the corresponding WPQR, Welding of stainless steels. Surface preparation for steel, aluminum and other materials used in marine structures. Introduction to welding for offshore applications.

UNIT – III MATERIAL FOR CONSTRUCTION

12 Hrs

Materials used in Marine Construction of fixed offshore structures in Marine Environment Materials used in Marine Construction of Floating structures in Marine Environment - (Floaters permanent and mobile)

Materials used in Marine Construction of Underwater vehicles/ Remote operated Vehicle/ Remote operated tools in subsea operations and Deep water operations.

Materials used in Marine offshore drilling units' – Mooring Lines and risers both production risers, drilling risers. Flow line / pipeline / Deep water riser system/ flexible risers.

Materials used in Marine Construction of Ship and Ship structures, Boat, Launches, Composite construction of FRP/GRP, Superstructures Deckhouse structures, Aluminum, Steel - their materials involved in constructions ... etc. Pipes- stainless steel, seamless pipes, Fabricated pipes, PVC, Properties of Structural elements/ section materials, construction materials, Propeller, Rudder, Anchor chain cable Hawse pipe, etc. Classification Society rules for Materials, Outfitting Material of ship and floaters.

Selection of materials and fabrication control of steel structures Selection of materials and fabrication control of aluminum structures

Selection of materials and fabrication control of concrete structures and steel structures Corrosion protection of structures and Condition monitoring of structures

UNIT – IV WELDING PROCESS Plates profiles and pipes

Gas metal arc welding - process, different metal transfers, power source, electrodes, shielding gas, uses of gas in metal arc welding, Mechanized system in shipbuilding - Introduction, Philosophy of automation in welding, different welding system on shipyards, welding in production shop - SAW. Gravity, welding, Auto contact, CO2 Welding

UNIT – V PANEL LINE PRODUCTION

Welding in - building berth, Dry-dock, slipways, hull shops, Internal welding on the berth. NDT Procedures and Methods, Acceptance Standards and Documentation of NDT procedures.

TEXTBOOKS:

- 1. V Raghavan Material Science and Engineering, Prentice Hall of India (P) Ltd, NewDelhi
- 2. Hanson The Engineer's Guide to Steel, Addision Wesley publication Company, Inc
- 3. Davies, A.S.; Welding Cambridge University Press, Low Price Edition, 1996:
- 4. Richard, little; Welding Technology, McGraw Hill Publications, New Delhi.
- 5. Joe Lawrance; Welding Principles for Engineers, Prentice hall Inc. Englewood cliffs, N.J.

REFERENCES:

- 1. Welding Handbook Vol. 1, 2, 3,;
- 2. American Welding Society AWS
- 3. O.P.Khanna; A Textbook of Welding Technology, DhanpatRai& Sons.
- 4. AWS D1.1 Structural Steel Code: 2010 Edition- code clinic available (codebook provided for D1.1 week seminar participants only)
- 5. API 1104 Pipelines 20th Edition (code clinic available) with Errata /Addendum July 2007, Errata 2 December 2008

6 Hrs

- 6. AWS D1.2 Structural Aluminum Code: 2003 or 2008 Edition
- AWS D1.5 Bridge Welding Code: 2008 Edition
 ASME Sec IX: 2010 Edition w/ 2011 Addenda, B31.1 & B31.3 2010 Editions
- 9. ASME Sec VIII (Div 1) & ASME Sec IX: 2007 Editions with 2008 Addenda

10. AWS Publications

"Department of Naval Architecture & Offshore Engineering" **Designed by**

PROGRAM	N	BE-N	Javal A	Archite	cture 8	د Offsł	nore Er	ginee	ring								
Course Cod	le							I	Ŭ,	Т		Р		С			
UANA404	4	Stren	gth of	Ships				3	;	0		0		3			
											1						
Year and			п	Year (s	omost	T (1)											
Semester			11	rear (s	emeste	51 I V)				С	ontact h	ours per	r week				
Prerequisit	e			N	JIL						(3Hrs)					
course																	
			maniti		1	Manage	ement	Pr	ofessio	onal Cor	0	Profe	ecional l	3 ceck onal Elective ndatory response d wave loading btain response SO1 PSO2 2 2			
		Soc	cial Sc	iences		cour	ses	11	0103510		C	11010	55101141 1	eek onal Elective ndatory response d wave loading obtain response SO1 PSO2 F 2 2			
Course categ	gory								v								
		Ba	asic Sc	ience		Engine Scier	-	(Open E	Elective		1	Mandato	ory			
Course Objective	;	2. 3.	To det To lea	ermine rn basi	the se cs of s	ction r hip vib	nodulu ration	s and and m	scantli ethods	gement ng calcu to deter able to	ilations	ne dynar	nic resp	onse			
			-							rious con							
													and wa	ve loadi	ng		
			condit								F				0		
Course Outco	ome			be basi	c stati	stical a	nalvei	s for st	nine								
Course Outeo	лис						•		•	tions for	• shin						
										and freq		lomain					
										-	•		o obtair	raspor	0.00		
					requer			l' allu	WIDOI	system	i anu m	emous i	0 001411	riespor	150		
POS/COS	PO1	PO2	analyt	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	DSO1	DSO2	PSO3		
CO1	2	2	2	2	2	1	2	-	1	-	-	1			2		
CO2	2	2	2	2	2	1	2	-	1	-	-	1			3		
CO3	2	3	2	2	2	2	1	-	1	-	-	1			1		
	2	2	2	1	1	1	1	-	1	-	-	1	2	2	1		
CO4		6				1	2	-	1	1	-	1 1					
CO5	2	3	3	1	1	-			-			1	1	1	2		
		3 3 2,5	3 3 2.33	1 1 1.5	1 1.5	2 1.3	1 1.5	- 0	1 1 1.0	1 1 1.0	- 0	1 1 1.0	1 1 1.5	1 1.67	2 2 1.83		

UNIT 1: Various Loads on ship and Loading Distribution

Loads and moments acting on ship structures - still water loads, physical loads, weight and buoyancy distribution. Determination Longitudinal and vertical bending and shear, load curve, S.F curve, B.M curve, deflection curve.

UNIT II: Shear force and Bending Moment calculations

Loads and moments due to oblique regular waves - vertical bending and shear – wave. B.M determination (static wave). Determination of horizontal bending and shear load curve, S.F curve, B.M curve, deflection curve. Determination of torsional moments..

UNIT III: Calculation of loads and response in irregular seaway (Introduction)

Loads in a real seaway - wave loads (strip theory etc), irregular seaway, sea spectrum, transfer function, wave BM, torsional moments. Probabilistic approach - short & long term distribution of loads, probability of survival. Slamming loads - shipping of green seas. Load calculation by classification society rules

9 Hrs

9 Hrs

Longitudinal Strength during launching and docking. Local strength assessment - secondary bending,	
tertiary bending, beam bending (plate bending). Thin plates in ship structures - loads, boundary	
conditions, bending, stiffened plates, submarine hull membrane and bending theory of cylindrical shells.	
UNIT V: Analytical method to obtain vibrations and Special topics 91	Hrs
Introduction to vibration: - Sources of vibration, measures to control vibration, methods to determine natural	
frequency, Stodala iteration; Special Topics - Strength of superstructure and deckhouses Longitudinal strength	
during launching and docking	
Practicals:	
Longitudinal strength calculation	
Transverse strength calculation	
Total: 45 Hours	
TEXTBOOKS:	
1. Muckle .W Strength of Ships	
2. Lewis, E U. Principles of Naval Architecture (2 nd Rev) Vol III 1989 SNAME, New York, Owen Hughes,	
Ship Structural design	
3. Mechanical Vibrarions by V.P Singh	
REFERENCES:	

1. Mechanics of Materials, James M. Gere, Stephon P. Temoshenko

"Department of Naval Architecture & Offshore Engineering" **Designed by**

UNIT IV: Strength and Scantling Calculations

Analysis of ship structure - longitudinal strength calculation, .total BM (Mg + Mw + Ms etc.,), application of beam theory, hull girder section modulus. Strength of superstructure and deck houses, Longitudinal Strength during launching and docking. Local strength assessment - secondary bending

PROGR	AM	BF-	Naval	Arch	itectu	re & (Offsho	re Fn	oineer	ino						
Course Code			3E-Naval Architecture & Offshore							T		Р		С		
		Design of Machine Elements					<u> </u>			-			3			
UAMCC02			~					3		0		0		3		
Year ar	nd		пу	oor (a	amaat	or W	`									
Semester			II Year (semester IV)						Contact hours per week							
Prerequi	site								(3Hrs)							
course		NIL														
course	Humanities															
Course		and Social Manageme				Management		F	Professional							
							Core			Professional Elective						
		S	Sciences													
categor	ry															
		Basia Saisman Engineering					ering	0								
		Basic Science			Science			0	Open Elective			Mandatory				
						~										
		1. '	Γοιμ	nderst	and t	he c	tandar	d pro	redu	res fo	r desi	on of	vario	ue ma	chine	
Cours	0					ine s	lanuai	u pro	Jecuui	105 10	ucsi	gii Oi	vario	us ma	cinic	
		components														
Objecti	ve	 To learn various methods available in design of various machine elements To learn the usage of standard practices and data 														
		After completion of the course, the students will be able to:														
	1. Identify the design process and various stresses & strains due to different															
Course Outcome		loading conditions.														
		e														
		2. Describe the design procedure for curved beams, shafts and couplings will be														
			earnt.													
		3. Explain the procedure for designing different types of joints.														
		4. Interpret the design of energy storing elements like flywheels and springs														
		5. l														
			conne	cting 1	rod.			-								
		connecting rod.6. Categorize various methods available in design of machine elements														
	PO	PO	PO	PO		PO	PO			PO1	PO1	PO1		.s PSO	PSO	
POS/COS	1	2	3	4	PO5	6	7	PO8	PO9	0	1	2	PSO1	2	3	
CO1	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2	
CO2	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2	
CO3	2	2	2	-	1	-	-	1	2	2	2	1	1	2	2	
CO4 CO5	2	22	2	- 1	1	-	-	1	2	2	2	1	1	2	2	
CO5	2	2	1	1	1	-	-	1	2	2	2	1	1	2	2	
AVERAG	2	2	1.8	0.3	1			1	1.7	2	2	1	1	2	2	
E		_	1.8	0.3	1	-	-	1	1./	2	2	1	1	2	2	
	CORRELATION		1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3.							3. S	3. SUBSTANTIAL(HIGH)					
LEVELS																

UNIT 1: STEADY STRESSES AND VARIABLE STRESSES IN MACHINE MEMBERS

9 Hrs

Introduction to the design process - factor influencing machine design, selection of materials based on mechanical properties -- Preferred numbers, fits and tolerances – Direct, Bending and torsional stress equations – Impact and shock loading – calculation of principle stresses for various load combinations, eccentric loading – Design of curved beams – crane hook and C^{c} frame - Factor of safety - theories of failure – stress concentration – design for variable loading – Soderberg, Goodman and Gerber relation

UNIT 2: DESIGN OF SHAFTS AND COUPLINGS

9 Hrs

Design of solid and hollow shafts based on strength, rigidity and critical speed – Design of keys, key ways and splines - Design of crankshafts -- Design of rigid and flexible couplings.

UNIT 3: DESIGN OF TEMPORARY AND PERMANENT JOINTS

Threaded fasteners - Design of bolted joints including eccentric loading, Knuckle joints, Cotter joints – Design of welded joints, riveted joints for structures - theory of bonded joints.

UNIT 4: DESIGN OF ENERGY STORING ELEMENTS

TEXTBOOKS:

9 Hrs

9 Hrs

Design of various types of springs, optimization of helical springs -- rubber springs -- Design of flywheels considering stresses in rims and arms, for engines and punching machines.

UNIT 5: DESIGN OF BEARINGS AND MISCELLANEOUS ELEMENTS 9 Hrs

Sliding contact and rolling contact bearings – Hydrodynamic journal bearings, Sommerfeld Number, Raimondi and Boyd graphs, — Selection of Rolling Contact bearings.

Total: 45 Hours

		~ ~									
1.	Shigley J	.Е а	and Mischke	C. F	L.,	-Mechanical	Engineering	Designl,	Sixth	Edition,	Tata
	McGraw-	Hill	, 2003.								
RE	FERENC	ES:									

2. Bhandari V.B, -Design of Machine Elements, Second Edition, Tata McGraw-Hill Book Co, 2007.

Designed by "Department of Naval Architecture & Offshore Engineering"

PROGR	AM						Offsho		ginee	<u> </u>						
Course C	lode	Ship	desi	gn ca	lculat	ion d	rawing	g I	_	Т		Р		С		
UANA4	PA	& d1	afting	g II (S	DCAI	DD II))	()	0		3		1		
Year an	nd		пν	ear (s	amaat		\ \									
Semest	er		пт	ear (s	emest)			Co	ntact h	ours p	er weel	k		
Prerequi	site			N	۸IL						(4	45Hrs)				
course	e			Г	NIL											
		Hur	naniti	es and	i N	Ianag	ement]	Profes	sional		Drofe	ani amal	Electiv		
Cours	_	Soc	ial Sc	iences	5	cour	ses		Co	ore		Profes	ssionai	Electr	ve	
00000	•								•	(
categor	ſy	Do	sic Sc	ionoo	H	Engine	ering	6)mon T	lastin		r	Manda	to my		
		Ба	sic Sc	lence		Scie	nce		pen r	Elective	2	1	Mandat	lory		
Cours		1. To perform hydrostatic calculations & bonjeans														
	-	,	2. To	o perf	orm d	amag	ed stal	oility	calcul	ations						
Objecti	ve		3. To	o perf	orm s	tructu	ral cal	culati	ons							
		Afte	r com	pletio	n of tl	he coi	ırse, tł	ne stu	dents	will be	e able t	o:				
			1. E	valuat	e vari	ous h	vdrodv	nami	ic calc	ulation	ns in sh	nip				
C	_	,					• •			ally and		.				
Cours		,					ole len									
Outcon	ne	4									ics wit	h avail	able so	oftware		
										d in Au						
									•				ng arra	angeme	ents	
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1 CO2	2	2	2	1	1	2	22	1	1	2	2	1	2	3	2	
CO2 CO3	2	2	2	1	1	2	2	1	2	2	2	1	2	2	2	
CO4	2	2	2	1	1	2	2	1	2	2	2	1	2	2	2	
CO5	2	2	2	1	1	2	2	1	2	2	2	1	1	2	2	
CO6	2	2	1	1	1	2	2	1	2	2	2	1	1	2	3	
AVERAGE	2.0	2.0	1.83	1.0	1.0	2.0	2.0	1.0	1.67	2.0	2.0	1.0	1.5	2.33	2.33	
CORRELAT				OT TOT	IT(LOW	T		MOD					UBSTAN			

UNIT 1:HYDROSTATIC CALCULATION & CURVES

Hydrostatic particulars, calculation of hydrostatics, plotting of hydrostatic particulars in graph

UNIT II: BONJEAN CURVES

Calculation of bonjean curves & plotting it manually and in Auto CAD

UNIT III: FLOODABLE LENGTH CALCULATION & CURVES

Floodable length calculation, drawing floodable length curve both manually and in software

UNIT IV: STRUCTURAL CALCULATIONS

Shear force and Bending moment calculation of mid-ship, Scantlings

Total: 45 Hours

Designed by "Department of Naval Architecture & Offshore Engineering"

PROGRA	AM	BE-	Naval	Arch	itectu	re & (Offsho	re En	ginee	ring					
Course C UAME4		Mar	ine Er	nginee	ring I	Labora	atory			T 0		P 2		C 1	
								Ŭ		0				1	
Year an Semeste			II Y	ear (s	emest	er IV)				Cor	ntact h	ours pe	er week	C	
Prerequis course					IIL						(2	2Hrs)			
Course		an	imanit d Soc cience	ial		anager cours		P	Co			Profes	ssional	Electiv	/e
categor	У	Bas	ic Sci	ence		nginee Scien	<u> </u>	0	✓ pen E	lective		N	Aandat	ory	
Course Objectiv	-	1. T	o lear	n vari	ious p	arts o	f mari	ne eng	gines	and its	operat	ions			
Course Outcom	-	1. Io 2. E 3. E 4. C 5. A	dentif Define Descril Dbserv Analyz	y mari vario be var ve vari xe the	ine en us par ious p ous o result	gines ts of a parts o perati s obta	a mari of mar ons of ined f	ne en ine en main rom tl	gine gine engin ne eng nstruc	will be ne gine tes tion de	st		ators		
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	2	1	2	-	1	-	-	1	2	2	2
CO2	2	2	2	2	2	1	2	-	1	-	-	1	2	2	3
CO3 CO4	2	3	2	2	2	2	1	-	1	-	-	1	1 2	2	1
CO4 CO5	2	2	2	1	1	1	1 2	-	1	- 1	-	1	2	2	2
CO6	2	3	3	1	1	2	1	-	1	1	-	1	1	1	2
AVERAGE	2.0	2.5	2.33	1.5	1.5	1.3	1.5	0	1.0	1.0	0	1.0	1.5	1.67	1.83
CORRELATI	ON LE	VELS	1.	SLIGH	T(LOW	<i>n</i>	2	. MODI	ERATE	MEDIUN	(N	3. S	UBSTAN	TIAL(HI	GH)

LIST OF EXPERIMENTS

Main Engine Identification /Construction Details of Various Parts of Main Engine –Cylinders, Cylinder Heads, Pistons, Turbo Charger, Governors, Base Plate, Foundation and Fitment, Foundation Bolts, Chalk Fasts/Steel Chalks, Crank Shafts, Fly wheels, L O Sump, L O Pump, S W Pump, F W pump, S W Pump, F W Pump, S V Mounts, Injectors etc

1. Starting and Stopping Checks of Main Engine, Parameters to be observed during the operation of Main engine

Start Main engine after Starting Checks, Run Main Engine for 15 Mins, Observe all parameters, and readings of

- (a) L O Pressure
- (b) S W Temperature
- (c) F W Temperature
- (d) Exhaust Temperature
- (e) Engine Room
- (f) L O temperature
 - 2. Starting Air System, Tracing of air system, Valves, Main engine Starting Air valve, Air bottles and its arrangements

- 3. Study/identify lifting arrangement of Main Engine
- 4. Identification of Construction Details ship generator, Installation details of Prime mover, and alternator, M SB parts, Power distribution system, Starting and stopping checks of generator
- 5. Run the generator and take it in load. Note down various parameters. Stop generator after observing stopping checks of generator
- 6. Undestanding the details of starting air compressor. Reading the air system line from air compressor to air bottle. Makin note of materials of system pipes with valve details"

Total: 30 Hours

Reference Books

- 1. Harrington; Marine Engineering, SNAME Publications
- 2. Pounder C.C; Marine Diesel Engines, Newnen Butterworths, London.
- 3. Khetagurov, M; Marine Auxiliary Machinery and systems, Peace Publishers, Moscow.
- 4. Taylor, D.A.; Introduction to Marine Engineering
- 5. Reed's Marine Engineering for Naval Architect
- 6. Marine Pumps and Piping Systems.

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGR	AM	BE-	Naval	Archi	itectu	re & (Offsho	ore En	ginee	ring					
Course C	Code	Ctura	n ath a	f Mc+		Laha	notor	I	_	Т		Р		С	
UAMCO	CPG	Stre	ngtn c	of Mat	erials	Lado	ratory	0)	0		2		1	
Year a	nd		пv				\ \								
Semest	er		Пĭ	'ear (s	emest	ler Iv)			Co	ntact h	ours p	er weel	k	
Prerequi	site			N	TTT					(2Hrs)				
cours				Г	JIL										
		Hur	naniti	es and	l N	/ anag	t l	Profes	sional		Drafa		Electi		
C		Soc	ial Sc	iences	3	cour	ses		Co	ore		Profes	ssional	Electr	ve
Cours															
catego	ry	D			I	Engine	ering	6	т	71		1	1 1		
		ва	sic Sc	ence		Scie	nce	C	pen I	Elective		ľ	Manda	tory	
							\checkmark								
Cours	e	Тос	lemor	nstrate	pract	tically	what	is ha	rdnes	s & sti	rength	of ma	terials	and ho	W
Objecti	ve			absort	•	•					0				
- J.						•	•	ha ctu	danta	will be	abla t	0.			
										ting str			ariala		
										e vario		or mau	citais		
Cours	e									the resu					
Outcor	ne											na taat			
										ed fron s used				miala	
										s used inalyze					
POS/COS	PO1	PO2	0. C PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	2	1	2	2	1	1	2	2	1	2	2	2
CO2	3	2	2	2	1	2	2	1	1	2	2	1	1	3	3
CO3	2	2	2	1	2	2	2	1	2	2	2	1	2	2	2
CO4	2	2	2	1	2	2	2	1	2	2	2	1	2	2	2
CO5	2	2	2	1	1	2	2	1	2	2	2	1	1	2	2
	2 2.33	2	1	1	1	2	2	1	2	2	2	1	1	2	3
CO6	1 / 55	2.17	1.83	1.33	1.33	2.0	2.0	1.0	1.67	2.0	2.0	1.0	1.5	2.17	2.33
CO6 AVERAGE CORRELAT		VELS	1	. SLIGH	T(I OW	2	<u></u>	MODI	TD ATE	MEDIU	MD .	2 0	IDCTAN	TIAL(H)	(CH)

- 1. Tension test and Compression test on a mild steel rod in a Universal Testing machine
- 2. Izod Impact test on metal specimen
- 3. Charpy Impact test on metal specimen
- 4. Hardness test on metals Brinell
- 5. Hardness test on metals Rockwell Hardness Number
- 6. Three point Bend test.
- 7. Ultimate tensile test of metallic materials.
- 8. Deflection test of beams made of different materials.
- 9. Fatigue test of Ductile materials.
- 10. Compression test on helical springs
- 11. Torsion test on mild steel rod Fatigue test on mild steel
- 12. Compression test on a Bricks

Total: 30 Hours

Designed by

"Department of Naval Architecture & Offshore Engineering"

PROGRAM			B.E (1	NAVAI	ARC	HITEC	TURE	& OFF	SHOR	E ENGI	NEERI	NG)			
Course Cod	le		Cours	se Nar	ne						L	Т	F		С
UALECPE			Soft s	kills -	IV						2	0	2	2	2
Year and Se	emeste	er	II Ye	ar & l	V Sei	nestei	•			Co	ntact H	Iours P	Per Wee	ek	
Prerequisite	cours	se	Nil							2	Hrs				
Course cate			Huma Social			N	Ianage	ment c	ourses	Pro	ofession	al Core		Professio Elective	onal
			Ba	asic Sci	ience		Engine	ering	Science	2	Open	Elective		Mand	atory
Course Obje			Prepa	ring tl	nem to	achi	eve th	eir org	ganiza	brofess tional	goals	thics	b 10.40		
			 Im Pr co d. Di sk Fc Co 	provis epare f llabora stingu ills ormula onstruc	se on the them a tate with the set te and ct them	he usag s ones h indiv tween apply uselves	ge of g elf exp vidual standa variou	ramma oressin such a rds and s form active	ar and g beha s to in d illust s of w partici	vocabu vioral e prove j rate a c ritten c	lary in ethics pronunc hange i ommun n the cl	all circu tiation n listen ications	umstanc ing and s that ar l unders	speakii e learnt	
PPOs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	2	2	2	2	2	-	1	-	-	-
CO2	-	-	-	-	-	2	1	2	2	3	-	-	-	-	-
CO3	-	-	-	-	-	2	1	2	1	2	-	1	-	-	-
CO4	-	-	-	-	-	2	2	3	2	3	-	2	-	-	-
CO5	-	-	-	-	-	3	2	1	3	2	-	2	-	-	-
CO6	-	-	-	-	-	2	1	2	3	3	-	2	-	-	-
AVERAGE CORREL	- ATION	- I LEVI	- ELS	-	- SLI	2.2 GHT (I	1.5 LOW)	2		2.5 DERAT EDIUM)	- E	1.6	- SUBS' (HIGH	- ΓΑΝΤΙΑ Ι)	- L

UNIT1: GRAMMAR AND FOUNDATON

Training the students on basic grammar and foundation and laying the standard platform. A complete standard syllabus of Cambridge is used. The main part of the 1st semester is to cover the major tenses (Present tense, Present Continuous, Past Tense, Past Continuous, Present Perfect, and Present Perfect continuous.

UNITII: PROFESSIONALETHICS :

How to address the gathering, people, authorities, open forum, how to conduct the meetings, huddle, calibration. Learning about organizational behaviors, achieving organizational goals, nurturing professional integrity.

UNITIII: INTERACTIVE ENGLISH

Second level: The main objective is English for International communication. It course contains conversations, snapshots, readings, activities, a greater variety and amount of listening materials and more visuals to introduce vocabulary, more opportunities to build fluency, and up-to-date art and design. The course covers the fours skills of listening, speaking, reading and writing, as well as improving pronunciation and building vocabulary.

UNITIV: LISTENING AND SPEAKING

Basics of International listening, reading, writing and speaking skills.

6 Hrs

6 Hrs

6 Hrs

UNIT V: WRITTEN ENGLISH

6 Hrs

Write a summary of short lectures on familiar topics by making / taking notes- Views expressed in a discussion. Writing an Informal Letter on a situation /Descriptive Paragraph (person/place/event/diary entry)

TOTAL: 30 HOURS

TEXT BOOKS:

- 3. Essential Grammar in use- Raymond Murphy , Cambridge , New Third Edition
- 4. Communication skills

REFERENCE BOOKS:

1. New Interchange (English for International Communication) Jack C. Richards

SEMESTER V

PROGRA	М	BE-N	aval Aı	chitect	ure & (Offshore	e Engin	eering							
Course Co UCNA50		Wave	Hydro	dynami	CS			L 3		T 0		Р 0		C 3	
Year and Ser Prerequisite of			II	[Year (semest	er V)		_		(nours per (3Hrs)	week		
Trerequisite		-	imanitie cial Sci	es and	-	Manag cour		P		onal Core		· /	essional	Elective	
Course cate	gory	В	asic Sci	ience		Engine Scie	-			Elective			Mandat	ory	
Course Obje	Objective 1. Understand the mechanics of water waves 2. Understand the waves deformation and currents 3. Understand the irregular waves and forces After completion of the course, the students will be able to:														
Course Outo	come	1. 7. 2. 7. 3. 7. 4. 7. 5. 7.	Γο inve Γο appl Γο relat Γο use t Γο discu Γο state	stigate y the ba e the m he extr uss the	the app asic phy et ocea eme sea wave fo	ropriate ysical p in condi	e wave rinciple itions b tion for n struct	theories es of the ased on input t ures.	s e ocean i wave o	and coa		ronment			
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO2	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO3	2	2	2	1	1	2	2	1	2	2	2	1	1	2	2
CO4	3	3	2	1	2	2	2	2	3	3	3	2	2	2	2
CO5	3	3	2	2	2	2	1	2	3	3	3	2	2	2	3
CO6	2	3	2	2	2	1	1	1	2	2	3	2	1	3	3
AVERAGE	2.33	2.50	2.00	1.50	1.50	1.75	1.50	1.33	2.00	2.33	2.50	1.50	1.33	2.17	2.33
CORREI LEV		N	1.	SLIGH	IT(LOV	W)	2.	MODE	RATE	(MEDIU	JM)	3. SU	JBSTAN	TIAL(H	IGH)

UNIT 1: WATER WAVES

Fluid mechanics basics, Wave s- Definition of wave parameters, classification of water waves, the sinusoidal wave profile, some useful functions and numerical methods

Two-dimensional wave equation and wave characteristics, Wave theories - Linear wave theory - Small amplitude wave theory

UNIT II: SMALL AMPLITUDE WAVES

Small amplitude wave theory – introduction, wave length and period, wave dispersion, wave table, water particle kinematics, water particle displacements, group celerity, wave energy and power, Sub surface pressure

UNIT III: FINITE AMPLITUDE WAVES

Non-linear waves - Introduction, finite amplitude waves, Wave steepness, Non-linear wave theory - Stoke's wave theory , Cnoidal wave theory, Solitary wave theory, Stream function wave theory ,validity of wave theories

UNIT IV: WAVE DEFORMATIONS AND CURRENTS

Wave deformation - Wave Refraction, Wave diffraction, Reflection, and breaking of waves Water Currents - Introduction, Classification, Wave current interaction, effects of currents

UNIT V: CHARACTERISTICS OF IRREGULAR WAVES

Irregular waves- Introduction, ocean wave analysis methods, spectral method, statistical methods and parameters, sea

9 Hrs

9 Hrs

9 Hrs

9 Hrs

state, Probability distributions for a sea state Examples of frequency spectra and spectral parameters, Directional spectra, Random wave simulation, kinematics and dynamics of irregular waves

TOTAL: 45 Hours

TEXT BOOKS

- Introduction to Near shore Hydrodynamics Water wave mechanics for engineers and scientists by Robert G Dean and Robert A Dalrymple
- 3. Coastal Hydrodynamics Mani J.S (2011) PHI Learning Pvt. Ltd
- 4. Water waves and ship hydrodynamics by Hermans , A.J.

REFERENCE BOOKS:

- 1. Airy, G.B. 1845. Tides and waves , Metrop ,article 192
- 2. Chakrabarti S.K .1987. -Hydrodynamics of offshore structures -. WIT Press , Southampton , UK.
- 3. An introduction to hydrodynamics and water waves BY Bernard LeMehaute, 1976 Springer Verlag
- **Designed by** "Department of Naval Architecture & Offshore Engineering"

PROGRA	M	BE-N	aval Aı	chitect	ure & (Offshore	e Engir	eering							
Course Co	ode	Dropu	lsion o	fShipe				Ι		Т		Р		С	
UANA50)1	riopu		sinps				3	3	0		0		3	
Year and Ser			II	l Year (er V)				(nours per	r week		
Prerequisite of			NIL							(3Hrs)					
	manitie			Manag		Р	rofessio	onal Cor	e	Prof	essional	Elective			
Course cate		cour			(
course care	asic Sci	ience		Engine Scie				Elective			Mandat	ory			
1. To enable the students to acqui															
Course Obje					-		0	the con of ship p	-						
						urse, the									
		1.	To inve	stigate	the fun	dament	tal aspe	cts of s	hip pro	pulsion.					
		2.	To judg	ge the p	ropelle	r desigi	1 conce	pts							
Course Outo	come	3.	To con	pare th	e hydro	odynam	ic and	strengtl	n part o	f propell	er.				
		4.	To int	erpret t	he desi	gn feati	ures								
		5.	To de	scribe t	he prop	oulsion	devices								
		6.	To de	fine the	propul	lsion an	d prop	ulsion d	levices						
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO2	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO3	2	2	2	-	1	-	-	1	2	2	2	1	1	2	2
CO4	3	2	2	-	1	2	1	1	2	2	2	2	1	2	2
CO5	CO5 2 2 2 1 2 1									2	2	2	2	3	3
CO6	CO6 2 3 2									3	2	2	2	3	3
AVERAGE 2.16 2.00 1.50 1.33 2.00 1.33									2.00	2.16	2.00	1.50	1.33	2.33	2.33
CORREI LEV		N	1.	SLIGH	T(LOV	W)	2.	MODE	RATE	(MEDIU	M)	3. SU	JBSTAN	TIAL(H	IGH)
UNIT I	Basics	s of pro	pulsion	1											9 Hrs

UNIT I **Basics of propulsion**

Propeller as a thrust producing mechanism; historical development; Screw propeller screw propeller geometry, sections, propeller drawing, construction details.

Propeller theories- Momentum theory, Blade element theory, Circulation theory.

Interaction between Hull and Propeller - Wake and wake fraction, Resistance augment and thrust deduction factor, propulsive efficiency in open water and behind conditions, hull efficiency, quasi propulsive coefficient, transmission efficiency; Powering.

UNIT II **Propeller design**

Cavitation - Types, Cavitation Number, Effects of cavitation, Prevention of cavitation, Design for minimum cavitation, Cavitation tests.

Design of propellers - propeller families and series; Open water tests-Presentation of data, Kt-Kq diagrams, Design charts,:-Bp-\delta, T-J, P-J charts. Use of charts in. propeller design and performance study;Selection of engines-diesel engine characteristics.

UNIT III Strength Calculation

Propeller strength - Materials and their qualities, strength calculation. Model testing of propellers- Test facilities, Laws of comparison, open. Water diagram self-propulsion tests- British and continental Methods 9 Hrs

UNIT IV **Design Aspects**

Shrouded propellers-Action of propeller in a nozzle; wake fraction and thrust deduction fraction in nozzle, load factor of nozzles, design of propeller nozzle system, design charts.

9 Hrs

Controllable Pitch propellers-Advantages, special features in geometry, design aspects. Super cavitating propellers-application UNIT V **Propulsion System** 9 Hrs Diesel Engine, Wind Propulsion, Electric Propulsion, Solar powered, Water jet propulsion, Ship standardization trials **Total: 45 Hours TEXT BOOKS** 1. Lewis, E.U; 'Principles of Naval Architecture' (2nd Rev.) Vol. 2, 1989, SNAME New York 2. Harvald S.A.; "Resistance and Propulsion of Ships", John Wiley & Sons., 1983 3. Ghose, J.P and Gokarn, R.P, "Basic Ship Propulsion", Allied Publishers, 2004 4. Tupper,E.C;Introduction to Naval Architecture, Butterworth-Heinemann,Ã, 1998. Carlton J, Marine Propellers and Propulsion, Elsevier 2007 **REFERENCE BOOKS:** 1. Lewis, E.U.; "Principles of Naval Architecture ", (2nd Rev), SNAME, New Jersey, U.S.A Barnaby K; Basic Naval Architecture. **Designed by** "Department of Naval Architecture & Offshore Engineering"

PROGRA	M	BE-N	aval Aı	chitect	ure & (Offshor	e Engir	eering							
Course Co	ode	Monin	e Desig	~				I	,	Т		Р		С	
UANA50	gn				3		0		0		3				
Year and Ser	nester		II	l Year (semest	er V)				(Contact l	nours per	week		
Prerequisite of	course				VIL							(3Hrs)			
			imaniti			Manag	ement	Р	rofessio	onal Core	a,	Prof	essional	Elective	
~		So	cial Sci	iences		cour	ses	-			-	1101			
Course cate	egory					. .				✓					
		В	asic Sc	ience		Engine	-		Open H	Elective			Mandate	ory	
						Scie	nce							•	
		1 U1	Idersta	nd the r	narine :	activitie	26								
Course Obje	activa			param											
Course Obje				nd the s		-	-								
				tion of	1 1		-	nte will	ha ahla	to					
		1	-								ship desi	on			
		2		weigh t				ies una	cost us	peets in	sinp desi	511			
		3		examine				ip desig	gn						
Course Outo	come	4								o design					
		5	. To 1	recogni	ze the c	lifferen	t ship s	ystem							
		6	. To o	define t	he ship	system	design	l							
DOG/COG	DO1	DOD	DO2	DO 4	DOS	DOC	D07	DOD	DOO	DO10	DO11	DO12	DCO1	DCOO	DCO2
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO2	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO3	2	3	3	1	1	1	-	1	2	2	2	1	1	2	2
CO4	3	3	2	1	2	1	1	2	2	3	2	1	1	2	3
CO5	3	3	3	1	2	1	1	2	2	3	3	2	2	3	3
CO6	3	2	1	1	1	1	1	2	2	3	2	2	1	3	3
AVERAGE	2.50	2.50	2.17	1.00	1.33	1.00	1.00	1.50	1.67	2.50	2.17	1.33	1.17	2.33	2.50
CORREI LEV		N	1.	SLIGH	T(LOV	V)	2.	MODE	ERATE	(MEDIU	JM)	3. SU	JBSTAN	TIAL(H	IGH)

UNIT 1: INTRODUCTION

LEVELS

Introduction - General aspects of Marine Activities, Transportation of cargoes, Marine services & Operations, Marine Industries, Engineering Economics in Ship Design. - Economic criteria, Initial cost, Operating cost, RFR; Owner's requirements.

UNIT II: SHIP DESIGN

Methods of ship design - design using basic type ships, Design using coefficients, Design using iteration methods, design spiral; design categories (dead-weight carrier, capacity carrier, linear dimension ship). Ship parameters - displacement, displacement coefficient, displacement Equation, volume equation, solution of the cubic equation

UNIT III: PARAMETERS IN SHIP DESIGN

Ship dimension -length, breadth, depth, draught, form coefficients; shape of the hull, mass estimation - lightship mass - steel mass, outfit mass, engine plant mass; dead weight.

Design of hull form - conventional method of lines, distortion of existing forms; stem and stern contours, Bulbous Bow.

UNIT IV: GENERAL ARRANGEMENT

General arrangement - Subdivision of the ship's hull and erections, arrangement of spaces, arrangement of tanks, superstructure and deckhouses, arrangement of engine plants, Cargo handling capacity. Hold capacity and stowage factor

UNIT V: MARINE SYSTEM DESIGN

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Marine System Design: Bilge and Ballast system, Ventilation system, Air conditioning and Refrigeration system, Berth and Offshore Mooring systems, Anchor handling system for ships and shore structures, windlass, Capstan, storage and offloading systems, Fire-fighting system, Stern gear, Steering gear, Rudder, Lifesaving equipment.

-

TOTAL:45 Hrs

TEXT BOOKS

1. Marine design by Thomas C Gilmer

2. Marine design by Mariana Vasquez

REFERENCE BOOKS:

1. Lewis, E.U; 'Principles of Naval Architecture' (2~d Rev.) Vol.III, 1989, SNAME New York.

2. Schneekluth, H. Ship Design for Efficiency and Economy, Butterworths, 1987. Taggart; Ship Design and Construction, SNAME

Designed by "Department of Naval Architecture & Offshore Engineering"

PROGRA	Μ	BE-N	aval Aı	chitect	ure & (Offshor	e Engin	eering							
Course Co UANA50		Ship l	Product	ion			_			T 0		Р 0		C 3	
Year and Ser			II	Year (er V)				(hours per	r week		
Prerequisite of	course				VIL							(3Hrs)			
			imanitie			Manag		Р	rofessio	onal Core	e	Prof	essional	Elective	
		So	cial Sci	ences		cour	ses					-			
Course cate	egory					Dension							~		
		В	asic Sci	ience		Engine Scie	-		Open H	Elective			Mandat	ory	
		1								p sectior	ı.				
Course Obje	ective	2	. Hov	v shipy	ard faci	ilities a	nd mac	hines a	e organ	nized.					
		3								us produ	ction sta	ges.			
						irse, the			be able	e to:					
		1				ern of sl			1						
Course Out		2								ce resour					
Course Outo	come	-				ctivity, ty netw					111122110	n figures	•		
						bact of									
		-				mbly pr									
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO2	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO3	2	2	2	2	1	-	1	1	2	2	2	1	1	2	2
CO4	2	3	2	2	1	2	1	1	2	3	2	1	2	2	2
CO5	3	3	2	2	2	2	2	2	3	3	3	2	2	3	3
CO6	3	3	2	1	2	1	2	2	3	3	3	2	2	3	2
AVERAGE	2.33	2.50	2.00	1.75	1.33	1.67	1.50	1.33	2.00	2.50	2.33	1.33	1.50	2.33	2.17
CORREL		N	1.	SLIGH	T(LOV	N)	2.	MODE	RATE	(MEDIU	JM)	3. SU	JBSTAN	TIAL(H	IGH)
LEV	LLS														

UNIT - I: CONCEPS IN SHIP BUILDING

Introduction to shipbuilding: - Structure of the shipbuilding process, special aspects of transport in shipbuilding, principles of flow line production in shipbuilding mechanisation, automation, numerical control, computer control, trends of future development; Relations with supply industry, pattern of the shipbuilding, location and layout of shipyards, area, labour and other sources, coastline etc.

UNIT – II: DATA GENERATION

Data generation for shipbuilding process - generation of hull forms, generation of frame plan, shell plate development, generation of hull components, lofting, nesting. Storage and preparation of material - Introduction, material handling and storage, transport system in steel stockyard, material preparation (straightening of plates and rolled sections, shot blasting, prepainting), material preparation flow line devices and their control systems.

UNIT – III: FABRICATION

Fabrication of component parts:- the cutting process - tools, physical-chemical background of the cutting process, mechanical cutting, devices for thermal cutting, general description of the various machines, photoelectric and NC-control devices, edge preparation, problems of accuracy; bending of rolled and build up sections ,general description of bending, control of the bending process, automation of bending; plate bending, uniaxial bending, biaxial bending (devices, cold bending, heat-line bending), possibilities of automated plate bending

UNIT - IV: ASSEMBLY

Assembly of Ship's Structure: Prefabrication - general remarks, basic problems of prefabrication, pattern of prefabrication, welding in prefabrication

Sub-assemblies: built up T -bars, web frames, machine foundations etc.; Welding deformation and straightening; Prefabrication of flat sections - panels,' panel production line, preassembly of biaxial stiffened panels - welding procedures. Assembly of flat corrugated sections, flat sections with curvature - assembly jigs, welding process, its nature, theoretical background, strengthening of flat sections. Preassembly of volume units - preassembly of double bottom sections - different structural arrangements, variants of the assembly process, welding problems; Preassembly of side tank units - structural

9 Hrs

9 Hrs

9 Hrs

arrangement; Special assembly systems (ROTAS, GAMMA- Systems, etc.); Preassembly of the fore and aft end structure; Preassembly and outfit of superstructures.

UNIT - V: ERECTION AND LAUNCHING

Erection of ship's hull- General assembly methods, handling of –preassembled units in the erection area – cranes, heavy-duty truck: preassembly of blocks – special types, welding in ship's hull assembly – welding methods applied welding defects, welding deformation of the ships hull; quality control (X-ray tests etc) scaffolds.

Launching – general method, launching by floating off (building dock, launching dock, floating) mechanical launching methods (slip, life) launching from inclined building berths – stern launching, launching calculations model and large scale-experiments.

Testing of materials and methods of Destructive testing, Non Destructive Test

TEXT BOOKS

- 4. Taggart; Ship Design and Construction, SNAME
- 5. StorchR.Lee, Hammon C.P. & Bunch H.M.; Ship Production, Cornell Maritime Press, Maryland, USA, 1988

REFERENCE BOOKS:

- 1. Dormidontov V.K. & et.al; Shipbuilding Technology, Mir Publishers, Moscow.
- 2. Eyres D.J.; Ship Construction William Heinemann Ltd, London, 1982

Designed by "Department of Naval Architecture & Offshore Engineering"

9 Hrs

Total: 45 Hours

PROGRA	M	BE-N	aval Aı	rchitect	ure & (Offshor	e Engir	eering							
Course Co		Shin l	Renair	& Conv	ersion	Techno		Ι		Т		Р		С	
UANA50)5	Sinhi	(cpan)		0131011	Teenne	nogy	3		0		0		3	
N/ 10		r				T Z)					a				
Year and Sen Prerequisite c			11	I Year (semest NIL	er V)						n <mark>ours pe</mark> (3Hrs)	r week		
Prerequisite c	course	Ц	manitie			Manag	oment					(3118)			
			cial Sci			cour		P	rofessio	onal Core	e	Prof	essional	Elective	
Course cate	gory												\checkmark		
		В	asic Sc	ience		Engine Scie	-		Open H	Elective			Mandat	ory	
Course Obje	ective	1 2 3	. Unc	lerstand	l the sh l the ma	ipyard i anner ir	facilitie 1 which	s and n resour	nechani ces infl	uence th		tion stag	ges.		
Course Outc	come		. To c 2. To c 3. To c 4. To c 5. To c	develop lefine tl compare lemons liscuss	ship re ne berth the lal trate the the acti	epair str n prepar bor, ma e produ vity net	rategy ration f terial, 1 ctivity tworks	or ship nachine and ma for plai	repair e and sp chine u nning p	bace reso tilization urposes.	n figures		ts. nt functio	ons.	
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO2	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO3	2	2	2	1	1	-	-	1	2	2	3	1	1	2	2
CO4	2	3	3	1	2	2	2	2	3	3	3	2	2	3	3
CO5	3	3	2	2	2	2	1	2	3	3	2	2	2	3	3
CO6	3	3	2	2	2	1	1	1	3	2	2	1	2	3	3
AVERAGE	2.33	2.50	2.17	1.50	1.50	1.67	1.33	1.33	2.17	2.33	2.33	1.33	1.50	2.50	2.50
CORREI LEV		N	1.	SLIGH	T(LOV	W)	2.	MODE	ERATE	(MEDIU	JM)	3. SU	JBSTAN	TIAL(H	IGH)

UNIT-I **INTRODUCTION**

Introduction to ship repair industry, Steel work, Mechanical work, Electrical works, General works, Tank cleaning, Tank testing, Light ship survey, Inclining experiment, Pipe Purging, Laser Scanner for Ballast Water Installation, Flash light cuts inspection

UNIT-II DRY DOCKING REPAIR

Berth preparation, Docking and undocking ,Shifting of Blocks after docking the vessel, Dock Services, Hull preparation, Hull Panting Rudder works, Removal of rudder and stock surveys, Propeller polishing at site, Tail shaft works, Tail shaft stern tube clearance, Removal of tail shaft for survey, Glands and seals (Simplex type), Sea chest, Anodes in hull and in sea chest, Sea valves, ship side storm valves, docking plugs, valves, Fenders and hollow fenders, Anchors and cables. 9 Hrs

UNIT-III CAPACITY PLANNING

Estimation of future capacity of ship conversion methods, strategies for modifying capacity, models for capacity planning under the special conditions of ship repair and conversion. Work completion, Dry survey, Inspection and commissioning of shipboard Piping systems and Equipments.RO-RO Conversion.

UNIT-IV CONVERSION STANDARDS

Conversion standards - Conversion standards in several parts of the ship Conversion process. Work measurement systems, methods of man - hour determination, use of computers, correlation between size of series and needed man - hours. Systems of maintenance and quality control. FPSO, FSO, FSU Conversion - Inquest producer, Conversion of processing plant, Conversion of boilers and stream turbines, conversion of turret and mooring systems, complete overhaul of the engine plant, modernise of electrical and alarm systems, Crew accommodation spaces, Modernise helicopter deck

UNIT-V SHIP REPAIR STANDARDS AND BEST PRACTICES

Overlook on various standards for ship repair, Guidelines of classification society, IACS Ship repair Standards and Best Practices, Coatings - IMO standards, ISO Documentation, Document management, Repair Invoice and settlement, Reports and record Keeping.

9 Hrs

9 Hrs

9 Hrs

Total: 45 Hours

TEXT BOOKS

- 1. Taggart; ship design and construction, SNAME chapter 15, 1980
- 2. Storch R. Lee, Hammon C.P. & Bunch H.M.; Ship Production, Cornell Maritime Press, Maryland, USA, 1988
- 3. Dormidontov V. K. & et.al; Shipbuilding Technology, Mir publishers, Moscow.
- 4. Eyres D.J.; Ship Construction William Heinemann Ltd, London, 1982
- 5. Buffa, Modern production operations management, 6th edition, Wiley 1980
- 6. C/WP6(2008)6 Council working party on ship building
- 7. Ship repair and conversion technology A Publication of The Royal Instituton of Naval Architects.www.rina.org.uk/srct

REFERENCE BOOKS:

- 1. Lewis, E.U.; "Principles of Naval Architecture ", (2nd Rev), SNAME, New Jersey, U.S.A
- 2. Barnaby K; Basic Naval Architecture.

AWS Publications

- 1. Certification Manual for Welding Inspectors CM: 2000
- 2. Welding Inspection Handbook WI: 2000
- * D1.1/D1.1M Structural Welding Code-Steel D1.1/D1.1M: 2010

Designed by

"Department of Naval Architecture & Offshore Engineering"

PROGRA	М	BE-N	aval Aı	chitect	ure & (Offshore	e Engir	eering							
Course Co UANA50		Corro	sion an	d Prote	ction E	ngineer	ring	I 3		T 0		P 0		C 3	
Year and Ser			II	I Year (er V)				(nours per	r week		
Prerequisite of	course				NIL							(3Hrs)			
			manitie cial Sci			Manage cour		Р	rofessio	onal Cor	e	Prof	essional	Elective	
Course cate	egory	B	asic Sci	ience		Engine Scie			Open I	Elective			✓ Mandate	ory	
Course Objective 1. To evaluate corrosion life and select suitable methods of corrosion protection 2. To familiarize the different marine construction materials 3. To understand the NDT testing and SHM of marine structures After completion of the course, the students will be able to:															
Course Outo	come	1. To 2. To 3. To 4. To 5. To	investi weigh examin interpro identify	gate the the corr the the d the use o the N	corros rosion p ifferent f lightw DT test	ion of 1 protection protect protect veight r ing of 1	materia on met tive coa nateria narine	ls used hods atings ls in ma structur	in mari urine co re	e to: ne field onstructionstructionstructure					
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO2	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO3	2	2	2	-	1	-	-	1	2	2	2	1	1	2	2
CO4	3	2	2	-	1	1	2	1	2	2	2	1	1	2	3
CO5	3	3	3	1	1	2	2	2	2	3	2	2	1	3	3
CO6	3	3	2	2	1	2	1	2	3	3	3	2	2	3	3
AVERAGE	2.50	2.33	2.17	1.50	1.00	1.67	1.67	1.33	1.83	2.33	2.17	1.33	1.17	2.33	2.50
CORREI LEV		N	1.	SLIGH	IT(LOV	MODE	ERATE	(MEDIU	JM)	3. SU	JBSTAN	TIAL(H	IGH)		

UNIT I : MATERIALS

Different types of materials and their applications in marine environment. Properties and selection of materials for marine environment. Corrosion and corrosion protection methods. Codes of practice for materials in marine environment.

UNIT II : COATINGS

Protective Coatings – Introduction: Health & Safety, Access Systems, Surface Preparation: Abrasive Blast Cleaning, Health and Safety, Blast Media, Abrasive Blast Cleaning Standards and Quality Control, Abrasive Blast Cleaner Operational Procedures, Process Control, Paint Types, Paint Application Introduction Health and Safety, Paint Materials, Airless Spray Equipment, Conventional Air Spray Equipment, Plural Component Spray Equipment, Inspection

UNIT III : PROTECTION

Cathodic Protection, Design & Construction, Marine PSPC Coating Failure, Metallic Coatings, Concrete, Coating Surveys Paint manufacture: Specialist Coatings ISO and Other International Standards, Quality Management, Paint Testing, Soluble Salts, Fire Protection

UNIT IV : COMPOSITES

Introduction to composites for marine environment

UNIT V : DESTRUCTIVE AND NON-DESTRUCTIVE TESTING

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Testing of materials and methods of Destructive testing, Non Destructive Test – Visual Inspection, Liquid Penetration Test, Radiographic Test – Introduction, principle, X-Ray radiography procedure, gamma ray, Magnetic Particle Test, Ultrasonic Test.

Total: 45 Hours

REFERENCE BOOKS:

- 1. Hsu, H.T. 1981. Applied Offshore Structural Engineering: Gulf Publishing Co., Houston
- 2. API-RP2A. 1989. Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms: 18th edn. American Petroleum Institute, Washington, D.C.
- 3. Corrosion and Protection, Engineering, ISSN 1619-0181, Springer Science & Business Media, 2004
- 4. Handbook of Cathodic Corrosion Protection

Designed by "Department of Naval Architecture & Offshore Engineering"
--

PROGRA	М	BE-N	aval Aı	chitect	ure & (Offshore	e Engin	eering							
Course Co	de	HULI	L SUR	VEY	& HU	JLL H	EALTH	I L	,	Т		Р		С	
UANA50	7	MON	ITORI	NG				3		0		0		3	
Year and Sen			II	Year (er V)				(nours per	week		
Prerequisite c	ourse				VIL						((3Hrs)			
~			nanities ial Scie		N	Aanage: cours		P	ofessio	onal Core	;	Profe	essional	Elective	
Course cate	gory	Ba	sic Scie	ence	1	Enginee Scien			Open E	Elective			Mandate	✓ ory	
Course Obje	ctive	2. To	unders	stand st	rength	analysis			-	p buildin	g				
Course Outc	ome	 To To To To To 	formul value examin demor	ate the corrosione the r strate t n the va	differe on life a equirer he strue trious h	nt mate and sele nent for ctural st ull prot	ect suita r period	ed in n ble me ic surv s follov system	narine c thods o ey of th	e to: construct f corrosi ne hull st null mair	on prote ructure				
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	-	1	-	_	1	1	2	2	1	1	2	2
CO2	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO3	3	2	2	-	1	1	1	1	2	2	2	1	1	2	2
CO4	3	3	3	2	1	1	2	2	2	2	2	2	1	2	3
CO5	3.0	3.0	2.0	1.0	1.0	1.0	2.0	2.0	1.0	3.0	3.0	2.0	2.0	3.0	3.0
CO6	2.0	2.0	1.0	1.0	1.0	1.0	1.0	2.0	2.0	3.0	3.0	2.0	2.0	3.0	3.0
AVERAGE	2.5	2.3	2.0	0.7	1.0	0.7	1.0	1.5	1.5	2.3	2.3	1.5	1.3	2.3	2.5
CORREL LEV		N	1.	SLIGH	T(LOV	V)	2.	MODE	RATE	(MEDIU	M)	3. SU	JBSTAN	TIAL(H	IGH)

UNIT 1 OPERATION CYCLE

Types of Ship; Operation Cycle of Ships. Overview of Materials for Shipbuilding; An overview of Material property, Types of Ship building Steel. Marine Environment; Effects of Marine environment. Corrosion and its effect on Hull.

UNIT II HULL STRUCTURE

Hull Structure – Types of Hull, Concept of Hull as a simple beam; Loads, Forces, Stresses and Moments that act on ship's Hull in seaway; Introduction to mid-ship section and its relevance in Ships structural strength; Scantling of ship and its relevance in overall strength of ship. Lines plan and shell expansion drawing.

UNIT III HULL SURVEY

Need for hull survey; Periodicity of Hull survey, Types of Hull survey. Methods of hull survey - Visual, Hammer, Ultrasonic thickness gauging, Ultrasonic survey. Method of recording Survey findings, Survey Report, Analysing survey report, K-Factor Calculation, Standards of Hull Health; Classification of Hull status – Sound, Defective, Suspect, Critical.

UNIT IV STANDARDS

Hull Structural standards, IACS standards, Ship Building Standards. Ship Repair Standards. Defining the hull defect and prescribing corrective action. Relevance Hull condition status and action to be taken on Hull survey report. Ship Defect List; Hull Maintenance Schedule. Introduction to Principles of Hull survey regulations of Naval ships

9 Hrs

9 Hrs

9 Hrs

UNIT V CORROSION PROTECTION

Hull Corrosion Protection System Fundamentals of protective coating, its defects and effects. Cathodic Protection, Design & Construction, Marine PSPC Coating Failure, Metallic Coatings, Concrete, Coating Surveys Paint manufacture: Specialist Coatings ISO and Other International Standards, Quality Management, Paint Testing, Soluble Salts, Fire Protection Preferential corrosion, Galvanic Cell, Sacrificial Anodes - Types, ICCP system. Underwater Hull survey, Survey of Sacrificial Anodes

Total : 45 Hours

TEXT BOOKS

- **1.** EYRES, D.J , Ship construction, 1994
- **2.** TAYLOR, D.A, Merchant ship construction ,2002
- **3.** KEMP, Ship construction ,2002

REFERENCE BOOKS:

1. PURSEY,H.J, Merchant ship construction ,2002

Designed by "Department of Naval Architecture & Offshore Engineering"

PROGRA	M	BE-N	aval A	rchitect	ure & (Offshor	e Engin	eering							
Course Co	ode	Marin	ne Trai	nsportat	tion ar	nd Eng	gineering	g L	,	Т		Р		С	
UANA50	08	Econo	omics	-				3		0		0		3	
		_													
Year and Ser			II	l Year (er V)				(nours per	week		
Prerequisite of	course				NIL						((3Hrs)			
			nanitie		N	Aanage		P	ofessio	nal Core	,	Profe	essional	Elective	
C .		Soc	ial Scie	ences		cours	es	_							
Course cate	egory														
		Ba	sic Scie	ence	1	Enginee Scien			Open E	lective			Mandate	ory	
						Scien	ce		~	/					
		1	Unc	lerstand	the ca	rgo trar	isportati	ion pro	Cess						
Course Obje	ective	2		tify the				ion pro	0035						
	cente	3		lerstand											
		After					e studen	ts will	be able	to:					
		1					1 system								
		2					ansport		ement						
Course Outo	omo	3					ing rout								
Course Out	Come	4					peconon	nics app	proach						
		5		discuss											
		6). To (define t	he trans	sport m	anagem	ent and	1 the do	ocking ac	tivities				
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	-	105	-	-	100	109	2	2	1	1 1	2	2
CO2	2	2	2	_	1	-	-	1	1	2	2	1	1	2	2
CO3	2	2	2	2	1	-	-	1	2	2	2	1	1	2	2
CO4	2	2	3	2	1	2	1	1	3	2	2	1	2	2	2
CO5	3	3	3	1	1	2	2	1	3	3	3	2	2	3	3
CO6	2	2	1	1	1	1	1	1	2	2	2	3	1	2	3
AVERAGE	2.17	2.17	2.17	1.50	1.00	1.67	1.33	1.00	2.00	2.17	2.17	1.50	1.33	2.17	2.33
CORREL		N	1	SLIGH		<i>V</i>)	2	MODE	RATE	(MEDIU	(M)	3 51	IBSTAN	TIAL(H	IGH)
LEV	LEVELS			SLIUI	II (LU)	,	2.				(1 , 1)	5.50	DOTAN	1171(11	1011)

UNIT - I SHIPS AND CARGOES

9 Hrs Development in shipping and cargo handling, Principle shipping organization. Liner and tramp shipping services, conference system, Chartering Charter parties, Theory of freight rates. Bill of lading. Carriage of goods by sea act. Introduction to transport economics-Traffic and transportation system- difference between traffic and transportation system measuring traffic transport performance-Regulation of road, rail transport and inland waterway transport

UNIT-II TRANSPORT MANAGEMENT

Economics of transport management-Direct cost of transportation and cost recovery-cost calculation in a transport-Time cost and distance costs- Hour efficient and kilometer efficient variable costs-common costs-costs for peak and off-peak periods-Waiting time in transport firms. Risk management, processes and practice. Underwriting and loss adjustment principles applied to marine insurance, Particular average. General average. P&I clubs. Hull policy

UNIT-III ROUTING

Shortest path method- Round trip method-assignments of origin and destination pricing in a transport firm- optimum size and composition of the vehicle fleet- optimal replacement logistical costs- concept of business logistics- transportation costs- Handling costs- Inventory costs-External costs of transport Ownership of vessel, Shipping company and its administration. Ship management, Open register. Manning of ships. Engagement and discharge of crew, Seamans welfare

UNIT- IV SUPPLY

Transport supply and demand- Demand for transport-Aggregate models- micro economic approach to transport -choice behavior- empirical application- demand analysis Salient features, Registration of ship, Ships paper. Duties regarding pollution, Shipping causalities, Penalties under merchant shipping Act

UNIT- V POLICY

Transport policy -charging for external costs- pricing policy- Infrastructure policy- role of transport economist in government. Economics of new and second-hand tonnage, Laying up of ships. Ship acquisition and subsidies repairs and

9 Hrs

9 Hrs

9 Hrs

maintenance Difference between repairs and maintenance, Voyage and dry-dock repairs, Types of maintenance (breakdown, planned and condition monitoring) Latest changes in the policy, Applicability of the policy for international trades **Total: 45hours**

PROGRA				rchitect							-				
Course Co		Cost		imation		endering	g fo			<u>T</u>		P		<u>C</u>	
UANA50)9	Shipb	ouilding	& Alli	ed Indu	istry		3		0		0		3	
Year and Ser	nester		II	I Year (semest	er V)					Contact	hours per	r week		
Prerequisite of					VIL							(3Hrs)	, week		
-			imaniti			Manage	ement	P	rofessio	onal Core	_	Prof	essional	Elective	
G		So	cial Sci	iences		cour	ses	1	10103510		-	1101	cssionar	Licenve	
Course cate	egory					Engine	oring								
		В	asic Sc	ience		Scier			Open I	Elective			Mandat	ory	
									v	/					
		1.		ndersta											
Course Obje	ective	2.								ptimizat					
		3. After		tion of						of ship de	esign				
		1								ipbuildii	ng projec	cts			
		2	. To	select d	esign o	ptimiza	tion for	r differe	ent spee	ed combi	ination				
Course Outo	come	3								ures of c	lesign				
		45		implem identify						s nipbuildi	nσ				
		6								ne design					
POS/COS	PO1												PSO1	PSO2	PSO
CO1	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO2	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO3	2	2	2	-	1	-	-	1	2	2	2	1	1	2	2
CO4	3	2	2	-	1	1	2	2	2	2	3	2	1	2	3
CO5	2	3	2	1	1	2	1	2	3	1	2	1	1	3	3
CO6	3	3	2	2	1	2	1	1	3	1	3	2	1	3	3
AVERAGE	2.33	2.33	2.00	1.50	1.00	1.67	1.33	1.33	2.00	1.67	2.33	1.33	1.00	2.33	2.50
CORRE		N	1.	SLIGH	T(LO)	V)	2.	MODE	ERATE	(MEDIU	JM)	3. SU	JBSTAN	TIAL(H	IGH)
LEV UNIT I: CO		ГТАЛ А 7			(-			-			,			· · · ·	9 Hr
Shipbuilding				lering a	nd cont	tracts. F	Freight	market	and op	erating e	conomic	cs.			УПІ
				U			U		1	U					
UNIT II : Cl Chartering of				aritime	designs	s. Overa	all optir	nizatio	n for sp	eed size	combina	ations of	ships.		9 Hı
UNIT III: E	CONO	MIC F	TEATU	RES	•		-		-				•		9 Hr
Relative imp UNIT IV : S					nomic i	eatures	. Impor	tance a	nd use	of ICT 1	n maritii	ne desig	ns.		9 Hı
Safety manag					oorts an	d ISO	certifica	ations.							/ 111
UNIT V: MA Overview ab									Comm	orcial 1	Markatir		and find	ncial act	9 Hı
shipbuilding			lai iaws	101 1140	ing, w	lanagen	nem pra	actices	.com	lercial, I	viaiketti	ig, Legai		inciai asj	
1 0		11 0													
TEXT BOO			_	_	_	_									
 Shipbuil Cost Ma 										Product	Cost in	the Mer	itimo Ind	lucter by	Ion C
Z. COSLIVIZ	mageill	cm m s	mpour	ung P	ammg	, Analy	sing an		ronnig	riouuci	Cost III	uie wiafi	ume mo	usuy by	Jan C
Fischer REFERENC															

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRAM	[BE-N	aval Ar	chitectu	ıre & C	Offshore	Engin	eering							
Course Code	e	SHIP	YARD					I	,	Т		Р		С	
UABS508		MAN	AGEM	ENT/P	RACTI	ICES		3		0		0		3	
Year and Seme			II	l Year (er V)				(nours per	week		
Prerequisite cou	ırse				VIL							(3Hrs)			
			imanitie			Manag	ement	Р	rofessic	nal Core	,	Prof	essional	Elective	
a		So	cial Sci	ences		cour	ses	-	0100010			1101			
Course catego	ory					<u> </u>									
		В	asic Sci	ience		Engine Scie			Open E	lective			Mandate	ory	
										\checkmark					
		1. T	Inderst	and the	variou	s ship t	vpes an	d differ	ent stag	ges in de	sign				
Course Object	ivo						-		-	nt of ship	-				
Course Object	1100			•			U		U		•				
					-		-		• •	ity & saf	ety				
			-			irse, the				to:					
				-		rd proce		-							
						-	-			of shipy	ard				
Course Outcon	ne					ng capao	•	•							
					-			-		or quality	y, produ	ct & safe	ty		
						rd Layo									
	201					and ma					DOI1	DOID	DECI	Daoa	DGGG
	201	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2 2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO2 CO3	2	2	2	-	1	-	- 2	1	2	2	2	1	1	2	2
CO3	2	3	3	- 1	2	2	2	2	3	2	3	2	3	3	2
CO4	3	3	3	2	2	1	2	2	2	3	3	2	3	3	3
CO6	3	2	3	2	2	1	1	2	1	3	1	2	2	2	3
	2.33	2.33	2.50	1.67	1.50	1.33	1.75	1.50	1.67	2.50	2.17	1.50	1.83	2.33	2.33
CORRELA	CORRELATIO LEVELS			SLIGH						(MEDIU			JBSTAN		

UNIT 1 INTRODUCTION

Overview of the entire marine business, the various types of ships available, different markets for ship, financial issues and their correlation to shipyard operations. Various stages of a shipbuilding contract and the main processes requirement. Different stages in ship design - early contract design, procurement issues, post contract, ship functions, design approval and production needs

UNIT 2 SHIP REPAIR

Defining Ship construction, ship repair and conversion activities – comparison and Contradictions (differences between) Typical Organisation Structure of Shipyards – Function of each section / Department.

Critical role play of – Production, Planning, Quality Assurance, Material and Stores requirement, EHS and Housekeeping, Yard Utility and Maintenance, Marketing and Finance.

UNIT 3 PLANNING AND STRATEGIES

Appropriate planning & strategies for different stages and events shipyard projects. Ship construction project scheduling and critical role of procurement. Tools used in Project monitoring and Planning

UNIT 4 PRODUCTION PROCESS

Managing various shipyard production processes effectively - steel structure production, material cutting & forming, unit and block assembly, machinery and hull outfitting, system testing and commissioning. Shipyard Layout and Infrastructure. Monitoring project progress closely and manage a successful project handover upon completion and commissioning.

UNIT 5 STANDARDS AND SHIPYARD MANAGEMENT

Overlook on various standards for ship repair, Guidelines of classification society, IACS Ship repair Standards and Best Practices, Coatings – IMO standards.

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Management Styles- Executive / Authoritative, Participatory, Consensus; Leadership styles. People Skill/ Relationship management.

Total: 45 Hours

TEXT BOOKS

- 1. Jessie Riposo (Author), Brien Alkire (Author) U.S. Navy Shipyards: An Evaluation of Workload- and Workforce-Management Practices
- 2. NATIONAL STEEL AND SHIPBUILDING CO SAN DIEGO CA (Author)- The National Shipbuilding Research Program. Air Quality Best Management Practice (AQBMP) Resource Document for Shipyards Paperback 1995
- **3.** Handbook on Employment Management in the Shipyard: Dealing with Modern Methods and Practices of Employment Management. Special Bulletin. Labor Loss
- 4. Ruben Kretzschmar- Best Management Practices for Oregon Shipyards

REFERENCE BOOKS:

- 1. <u>http://www.ibc-asia.com/training/maritime/shipyard-management-design-planning- operations/overview</u>
- 2. <u>http://www.dnvusa.com/services/training/industries/maritime/technical_competence/s</u> <u>hipyard operations management.asp</u>

"Department of Naval Architecture & Offshore Engineering"

PROGRA	М	BE-N	aval Aı	chitectu	ire & C	Offshore	e Engin	eering							
Course Co		Funds	amental	s of Of	shore 9	Structur	·es	L		Т		Р		С	
UANA5()3	1 unu	incita	3 01 011		Juctur	05	3		0		0		3	
<u>X</u> 10		1		XZ (T Z)					<u> </u>		1		
Year and Ser			11.	Year (semesto VIL	er V)				(nours per	week		
Prerequisite of	course	Hur	nanities			Aanage	ment					(3Hrs)			
			ial Scie		1	cours		P	ofessio	onal Core	•	Prof	essional	Elective	
Course cate	egory									\checkmark					
		Ba	sic Scie	ence	Engi	neering	Scienc	e	Open E	lective			Mandate	ory	
		1								fshore st					
Course Obje	ective	2					-			cture and		-			
		3								s taken i	n offshoi	e field			
				tion of											
		1 2		lesign t						ires e constru	ation				
										ucture ar		ng lines			
Course Outo	Course Outcome	4		lemons							ia moon	ing innes			
		5								en place	in offsh	ore indus	stry.		
		6	. To l	ist the r	nateria	ls, load	ing and	installa	tion of	offshore	e structur	e			
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO:
CO1	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO2	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO3	2	2	2	2	1	2	-	1	2	2	2	1	1	2	2
CO4	3	3	3	1	1	2	1	2	2	3	3	1	2	2	2
CO5	3	3	2	1	1	2	2	2	1	3	3	1	2	3	3
CO6	3	3	1	1	1	1	1	2	1	2	3	1	1	1	3
AVERAGE	2.50	2.50	2.00	1.25	1.00	1.75	1.33	1.50	1.33	2.33	2.50	1.00	1.33	2.00	2.33
CORREI LEV		N	1.	SLIGH	T(LOV	W)	2.	MODE	ERATE	(MEDIU	JM)	3. SU	JBSTAN	TIAL(H	IGH)
UNIT 1: Int	roducti	ion to C	Offshor	e Struc	tures								9	Hrs	
Introduction	n – De	epwate	er chall	enges	– Fund	ctions (of Offs	shore S	tructu	res – O	ffshore	Structur	e Confi	guration	is –

Bottom – Supported Fixed Structures – Complaint Structures – Floating Structures.

UNITII: Offshore Material and Construction

Introduction – Structural Steel – Topside Materials – Advanced Composite materials – Corrosion Control - Material Reliability and Monitoring - Fracture Control

UNIT III: Offshore Loads and Response

Introduction - Gravity Loads - Hydrostatic Loads - Resistance Loads - Current loads on Structures - Current Drag and Lift Force - Steady and Dynamic Wind Loads on Structures - Wave Loads on Structures - Introduction to design.

UNIT IV: Mooring system and Topside layout facilities

Introduction — Mooring Hardware components – Industry Standards and Classification Rules Introduction - General layout Considerations - Areas and Equipment - Deck Impact Loads - Deck Placement and Configuration - Float over Deck Installation - Helideck - Platform Crane

UNIT V: Offshore Installation

Regulations and codes of practice. Topsides and General layout Considerations of offshore platforms. Foundation

9 Hrs

9 Hrs

9Hrs

systems for offshore structures, Towing, launching and installation of offshore structures and pipe lines.Fixed Platform Substructures – Floating Structures – Foundations – Subsea Templates – Platform Installation Methods. TOTAL HOURS: 45

TEXT BOOKS

- 1. Subrata K Ckakrabarti., Handbook of Offshore Engineering Vol 1
- 2. Subrata K Ckakrabarti., Handbook of Offshore Engineering Vol 2

REFERENCE BOOKS:

- 1. API RP 2A. Planning Designing and Constructing Fixed Offshore Platforms, API
- 2. McClelland, B & Reifel, M.D., Planning & Design of fixed Offshore Platforms, VanNostrand, 1986
- 3. Graff, W.J., Introduction to Offshore Structures, Gulf Publ. Co. 1981.
- 4. Reddy, D.V & Arockiasamy, M., Offshore Structure Vol.1 & 2, Kreiger Publ. Co 1991

Designed by "Department of Naval Architecture & Offshore Engineering"

CO1 2 2 2 2 - 1 - - 1 1 2 2 1 1 2 CO2 2 2 2 2 2 - 1 - - 1 1 2 2 1 1 2 CO3 2 2 2 2 1 1 - 2 1 1 2 2 1 1 2 CO3 2 2 2 2 1 1 - 2 1 2 2 1 1 2 CO4 2 2 3 2 1 2 3 3 3 2 1 1 2 CO5 2 3 3 2 2 1 1 2 3 3 3 2 2 1 CO6 3 3 3 2 2 2 1 2 3 3 3 2 2 1 LUDD <thtd>1<!--</th--><th>PROGRA</th><th></th><th></th><th></th><th></th><th></th><th></th><th>e Engine</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thtd>	PROGRA							e Engine								
Year and Semester III Year (semester V) Contact hours per week (3Hrs) Prerequisite course Humanities and Social Sciences Management courses Professional Core Professional Elective Course category Basic Science Engineering Science Open Elective Mandatory 1 Understand the structural design & calculation of ship hull Understand the response of ship structural elements 3 Understand the response of ship structural elements 3 Understand the response of ship structural elements 3 Understand the response of ship structural elements 3 Understand the response of ship structural elements 6 To evelop the structural design & calculation of ship hull 2 To weigh the longitudinal ship strength 7 To examine the structural elements under bending and buckling 3 To examine the structural elements 6 To list the ship design calculation 1 1 2 1 1 2 CO2 2 2 2 1 - 1 1 2 2 1 1 Course Outcome 3 To iterpret the failures in ships 5 To discuss arrangement of structural elements 6							ı Drav	wing &								
Prerequisite course NIL Course category Humanities and Social Sciences Management courses Professional Core Professional Elective Course category Basic Science Engineering Science Open Elective Mandatory Course Objective 1. Understand the structural design & calculation of ship hull Mandatory Course Objective 2 Understand the response of ship structural clements Mandatory After completion of the course, the students will be able to: 1. To evelop the structural design & calculation of ship hull 2. To verse the longitudinal ship strength 3. To course the failures in ships 6. To list the ship design calculation FOOS PO1 PO1 PO1 PO1 PS02 PS0 CO1 2 2 2 1 1 2 2 1 1 2 CO3 2 2 2 1 1 2 2 1 1 2 CO4 2 3 3 2 2 1 1 2 2 1 1 2 CO4 2 3<	UANA5F	PA	Drafti	ng III S	SDCAE	DD-III			0		0		4		2	
Prerequisite courseNIL(3Hrs)(3Hrs)Humanities and Social ScienceManagement coursesProfessional CoreProfessional ElectiveCourse categoryCourse categoryImage categoryAfter completion of the course, the students will be able to:Image categoryImage categoryIm	Year and Ser	nester		II	I Year (semest	er V)					Contact l	nours per	r week		
Social SciencescoursesProfessional CoreProfessional ElectiveCourse categoryBasic Science \checkmark Basic ScienceOpen ElectiveMandatoryImage: Course Objective1. Understand the structural design & calculation of ship hullCourse ObjectiveAfter completion of the course, the students will be able to:1. To develop the structural design & calculation of ship hull2. To weigh the longitudinal ship strengthTo develop the structural design & calculation of ship hull2. To weigh the longitudinal ship strengthTo develop the structural elements under bending and buckling4. To interpret the failures in ships5. To discuss arrangement of structural elements6. To list the ship design calculationPOS/COSPOIPO2PO3PO4PO5PO6PO7PO8PO10PO11PO12PO3PO6PO7PO8PO10PO11PO12PO3PO6PO7PO8PO1PO12 <t< td=""><td>Prerequisite of</td><td>course</td><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></t<>	Prerequisite of	course					,						-			
Social SciencescoursesCourse categoryImage: coursesBasic ScienceEngineering ScienceOpen ElectiveMandatoryCourse Objective1.Understand the structural design & calculation of ship hull 2.Understand the response of ship structural elements 3.Understand the types of failures in shipCourse ObjectiveAfter completion of the course, the students will be able to: 1.To develop the structural design & calculation of ship hull 2.After completion of the course, the students will be able to: 1.After completion of the course, the students will be able to: 1.To examine the structural design & calculation of ship hull 2.Post course of structural design & calculationPost course of structural design & calculationPost coursePost coursePost coursePost course of structural design & calculationCourse OutcomePOS COSPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01PS02PS02CO122221122112CO322221122112CO322221122112CO42233221122112CO3222211221122 <th< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td>Manage</td><td>ment</td><td>D</td><td>rofossic</td><td>anal Cor</td><td>、 </td><td>Drof</td><td>ossional</td><td>Floativo</td><td></td></th<>						1	Manage	ment	D	rofossic	anal Cor	、 	Drof	ossional	Floativo	
Basic ScienceEngineering ScienceOpen ElectiveMandatoryImage: ScienceImage: ScienceAfter completion of the course, the students will be able to:Image: ScienceImage: ScienceImage: ScienceImage: ScienceImage: ScienceImage: ScienceImage: Science			Soc	ial Scie	ences		cours	es	1.			-	1101	essional	Licenve	
Basic Science Science Open Elective Mandadory Image: Course Objective 1. Understand the structural design & calculation of ship hull 1. Course Objective 2. Understand the tresponse of ship structural elements 3. Understand the trypes of failures in ship Course Outcome After completion of the course, the students will be able to: 1. To develop the structural design & calculation of ship hull 2. To weigh the longitudinal ship strength 3. To examine the structural elements under bending and buckling 4. To interpret the failures in ships 5. To discuss arrangement of structural elements 6. To list the ship design calculation 5 To discuss arrangement of structural elements 6. To list the ship design calculation 1 2 2 1 1 2 CO2 2 2 2 1 1 2 2 1 1 2 CO3 2 2 2 1 1 2 2 1 1 2 CO4 2 3	Course cate	egory					<u> </u>				\checkmark					
Course Objective 1. Understand the structural design & calculation of ship hull 2 Understand the response of ship structural elements 3 Understand the types of failures in ship After completion of the course, the students will be able to: To develop the structural design & calculation of ship hull To weigh the longitudinal ship strength To examine the structural elements under bending and buckling To interpret the failures in ships To discuss arrangement of structural elements To list the ship design calculation POS/COS POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS0 To list the ship design calculation POS/COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS0 CO1 2 2 2 2 2 1 1 1 - 1 1 2 2 1 1 2 CO2 2 2 2 2 2 2 1 1 1 - 2 1 1 2 2 2 1 1 1 2 CO3 2 2 2 2 2 2 1 1 2 1 2 2 3 3 3 2 2 1 1 2 CO4 2 2 2 3 3 2 2 1 2 2 1 1 1 2 2 3 3 3 3 2 2 2 1 CO6 3 3 3 3 2 2 2 2 2 2 1 1 2 2 3 3 3 3 2 2 2 1 CO6 3 3 3 3 2 2 2 2 2 2 1 1 2 2 2 3 3 3 2 2 2 1 CO6 3 3 3 3 2 2 2 2 2 2 1 1 2 2 2 3 3 3 2 2 2 1 CO6 1 3 3 3 2 2 0 1 1 5 1.33 1.50 1.67 2.00 2.50 2.33 1.33 1.33 1.67 CO6 CORELATION LEVELS LSIGHT(LOW) MODERATE(MEDIUM) SUBSTANTIAL(HIGH) LSUF PERIMENTS Ship in calm water, wave bending, stresses due to bending Types of stiffeners, girders & various strengthening member			Ba	sic Scie	ence		-	-		Open E	Elective			Mandat	ory	
Course Objective 2 Understand the response of ship structural elements 3 Understand the types of failures in ship After completion of the course, the students will be able to: 1 To develop the structural design & calculation of ship hull 2 To weigh the longitudinal ship strength 3 To exismine the structural design & calculation of ship hull 2 To weigh the longitudinal ship strength 3 To exismine the structural elements under bending and buckling 4 To interpret the failures in ship 5 To discuss arrangement of structural elements 6 To list the ship design calculation POS/COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS02 PS0 CO1 2 2 2 1 1 2 2 1 1 2 CO3 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2							Scien	ce								
Course Objective 2 Understand the response of ship structural elements 3 Understand the types of failures in ship After completion of the course, the students will be able to: 1 To develop the structural design & calculation of ship hull 2 To weigh the longitudinal ship strength 3 To exismine the structural design & calculation of ship hull 2 To weigh the longitudinal ship strength 3 To exismine the structural elements under bending and buckling 4 To interpret the failures in ship 5 To discuss arrangement of structural elements 6 To list the ship design calculation POS/COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS02 PS0 CO1 2 2 2 1 1 2 2 1 1 2 CO3 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2			1	Und	erstand	the str	uctural	design a	v calci	lation of	of ship h	ull				
3 Understand the types of failures in ship After completion of the course, the students will be able to: To develop the structural design & calculation of ship hull To weigh the longitudinal ship strength To examine the structural elements under bending and buckling To ist the ship design calculation POS/COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS0 CO1 2 2 2 - 1 - 1 1 2 2 1 1 2 CO2 2 2 2 - 1 - 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 <td>C O1.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	C O 1.							-			-					
After completion of the course, the students will be able to: 1. To develop the structural design & calculation of ship hull 2. To weigh the longitudinal ship strength 3. To examine the structural elements under bending and buckling 4. To interpret the failures in ships 5. To discuss arrangement of structural elements 6. To list the ship design calculation POS/COS POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS0 CO1 2 2 2 2 2 2 1 1 1 - 1 1 2 2 1 1 1 2 CO2 2 2 2 2 2 2 2 1 1 1 - 2 1 1 2 2 2 1 1 1 2 CO3 2 2 2 2 2 2 2 1 1 1 2 2 1 2 2 2 1 1 1 2 CO4 2 2 3 3 2 1 2 1 2 1 1 2 3 3 3 2 2 1 1 1 2 CO6 3 3 3 2 2 2 2 1 1 1 2 3 3 3 2 2 1 1 1 2 CO6 3 3 3 2 2 2 2 1 1 1 2 3 3 3 2 2 1 1 1 2 CO6 3 3 3 2 2 2 2 1 1 1 2 3 3 3 3 2 2 1 1 1 2 CO6 3 3 3 3 2 2 2 2 1 1 1 2 3 3 3 3 2 2 1 1 1 2 CO6 3 3 3 3 2 2 2 2 1 1 1 2 3 3 3 3 2 2 2 1 1 1 2 1 2	Course Obje	ective								ur erem	ents					
Image: Course Outcome 1. To develop the structural design & calculation of ship hull 2. To weigh the longitudinal ship strength 3. To examine the structural elements under bending and buckling 4. To interpret the failures in ships 5. To discuss arrangement of structural elements 6. To list the ship design calculation POS/COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS0 CO1 2 2 2 2 1 - - 1 1 2 2 1 1 2 CO3 2 2 2 1 1 - 2 1 1 2 2 1 1 2 CO4 2 2 2 1 1 2 2 1 1 2 CO5 2 3 3 2 2 2 1 1 2 2 3 3 2 2 1 1 2 2 3 3 2 2 1 1						• 1										
Course Outcome 2. To weigh the longitudinal ship strength 3. To examine the structural elements under bending and buckling 4. To interpret the failures in ships 5. To discuss arrangement of structural elements 6. To list the ship design calculation POS/COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO CO1 2 2 2 2 1 1 2 2 1 1 2 CO2 2 2 2 1 1 2 2 1 1 2 CO3 2 2 2 1 1 2 2 1 1 2 CO4 2 3 3 2 2 1 1 2 2 1 1 2 CO5 2 3 3 2 2 2 1 1 2 2 1 1 2 CO6 3 3 2 2 1 1 </td <td></td> <td></td> <td>After</td> <td></td>			After													
3. To examine the structural elements under bending and buckling 4. To interpret the failures in ships 5. To discuss arrangement of structural elements 6. To list the ship design calculation POS/COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS0 CO1 2 2 2 1 - - 1 1 2 2 1 1 2 CO2 2 2 2 - 1 - - 1 1 2 2 1 1 2 CO3 2 2 2 1 1 - 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 3 3 2 2 1										ilation	of ship h	ull				
$\begin{array}{c} \text{Course Outcome}\\ \text{4. To interpret the failures in ships}\\ \text{5. To discuss arrangement of structural elements}\\ \text{6. To list the ship design calculation}\\ \hline \hline POS/COS & POI & PO2 & PO3 & PO4 & PO5 & PO6 & PO7 & PO8 & PO9 & PO10 & PO11 & PO12 & PSO1 & PSO2 & PSO2 \\ \hline CO1 & 2 & 2 & 2 & 2 & 2 & - & 1 & - & - & 1 & 1 & 2 & 2 & 1 & 1 & 2 \\ \hline CO2 & 2 & 2 & 2 & 2 & 2 & - & 1 & - & - & 1 & 1 & 2 & 2 & 1 & 1 & 2 \\ \hline CO3 & 2 & 2 & 2 & 2 & 2 & 1 & 1 & - & 2 & 1 & 2 & 2 & 2 & 1 & 1 & 2 \\ \hline CO4 & 2 & 2 & 3 & 3 & 2 & 1 & 2 & 1 & 2 & 3 & 3 & 3 & 2 & 2 & 1 & 1 & 2 \\ \hline CO5 & 2 & 3 & 3 & 2 & 2 & 2 & 2 & 1 & 1 & 2 & 3 & 3 & 3 & 2 & 2 & 1 \\ \hline CO6 & 3 & 3 & 3 & 2 & 2 & 2 & 2 & 1 & 1 & 2 & 2 & 3 & 3 & 2 & 2 & 1 \\ \hline CO6 & 3 & 3 & 3 & 2 & 2 & 2 & 2 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 2 & 2 & 1 \\ \hline CO6 & 3 & 3 & 3 & 2 & 2 & 2 & 2 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 2 & 2 & 1 \\ \hline CO6 & 3 & 3 & 3 & 2 & 2 & 0 & 1.50 & 1.50 & 1.33 & 1.50 & 1.67 & 2.00 & 2.50 & 2.33 & 1.33 & 1.33 & 1.67 \\ \hline CORRELATION \\ \hline LEVELS & 1. SLIGHT(LOW) & 2. MODERATE(MEDIUM) & 3. SUBSTANTIAL(HIGH) \\ \hline LIST OF EXPERIMENTS \\ 1. Ship in calm water, wave bending, stresses due to bending \\ 2. Types of stiffeners, girders & various strengthening members. \\ 3. Plates under bending forces, plates under buckling, types of failures, shell expansion plan \\ 4. Leakage, collapse, fatigue, bending, bending and bucking of beams, \\ 5. Equivalent width of bending plates, weight curve, buoyancy curve, shear force & bending moment diagram \\ 6. Types of bulkheads, watertight bulkhead design & drawing, arrangement of watertight & non-watertight bulkhead penetration \\ \hline TOTAL HOURS 6 \\ \hline \end{array}$										1 1						
5. To discuss arrangement of structural elements 6. To list the ship design calculation POS/COS POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS0 CO1 2 2 2 1 - 1 1 2 2 1 1 2 CO2 2 2 2 2 1 - 1 1 2 2 1 1 2 CO3 2 2 2 1 1 - 2 1 1 2 2 1 1 2 CO3 2 2 2 1 1 - 2 1 2 2 1 1 2 CO4 2 2 3 2 2 2 1 1 2 3 3 2 2 1 1 2 2 3 3 2 2 1 1 2 2 3 3 2 2 1 1 2 2 3 3 2 2 1 1 2 2 <td>Course Outo</td> <td>come</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ts unde</td> <td>er bendi</td> <td>ing and t</td> <td>ouckling</td> <td></td> <td></td> <td></td> <td></td>	Course Outo	come	_						ts unde	er bendi	ing and t	ouckling				
6. To list the ship design calculation POS/COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO2 CO1 2 2 2 2 1 1 - - 1 1 2 2 1 1 2 CO2 2 2 2 1 1 - - 1 1 2 2 1 1 2 CO3 2 2 2 1 1 - 2 1 1 2 CO4 2 2 3 3 2 2 1 1 2 3 3 2 2 1 1 2 CO5 2 3 3 2 2 2 1 1 2 2 3 3 2 2 1 1 2 2 3 3 2 2 1 1 2 2 3 3 1									iral ele	ments						
POS/COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS02 PS02 CO1 2 2 2 2 - 1 - - 1 1 2 2 1 1 2 CO2 2 2 2 2 1 1 - 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 3 3 2 2 1 1 2 3 3 2 2 1 1 2 2 3 3 2 2 1 1 2 2 3 3 2 <t< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>mento</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			-							mento						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						1	0									
CO2222211122112 $CO3$ 222211-21222112 $CO4$ 2223212123332112 $CO4$ 22332121123332112 $CO5$ 23322211233322112 $CO6$ 3332221122332211 $CO6$ 3332221122332211 $CO6$ 3332221122332211 $CO6$ 3332211.501.501.672.002.502.331.331.331.67 $CORRELATION$ LEVELS1SLIGHT(LOW)2MODERATE(MEDIUM)3SUBSTANTIAL(HIGH)LIST OF EXPERIMENTS1Ship in calm water, wave bending, stresses due to bending2.Types of stiffeners, girders & various strengthening members.3Plates und						PO5	PO6	PO7	PO8	PO9	PO10	PO11		PSO1	PSO2	PSO
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								-	-							
CO42232121233321112CO5233222112333221CO63332222112233221AVERAGE2.172.332.502.001.501.501.331.672.002.502.331.331.331.67CORRELATION LEVELS1. SLIGHT(LOW)2. MODERATE(MEDIUM)3. SUBSTANTIAL(HIGH)LIST OF EXPERIMENTS1. Ship in calm water, wave bending, stresses due to bending2. Types of stiffeners, girders & various strengthening members.3. Plates under bending forces, plates under buckling, types of failures, shell expansion plan4. Leakage, collapse, fatigue, bending, bending and bucking of beams,5. Equivalent width of bending plates, weight curve, buoyancy curve, shear force & bending moment diagram6. Types of bulkheads, watertight bulkhead design & drawing, arrangement of watertight & non-watertight bulkhead penetrationTOTAL HOURS 6																
CO5233222112333221CO6333222212233221AVERAGE2.172.332.502.001.501.501.331.501.672.002.502.331.331.331.67CORRELATION LEVELS1. SLIGHT(LOW)2. MODERATE(MEDIUM)3. SUBSTANTIAL(HIGH)LIST OF EXPERIMENTS1. Ship in calm water, wave bending, stresses due to bending2. Types of stiffeners, girders & various strengthening members.3. Plates under bending forces, plates under buckling, types of failures, shell expansion plan4. Leakage, collapse, fatigue, bending, bending and bucking of beams,5. Equivalent width of bending plates, weight curve, buoyancy curve, shear force & bending moment diagram6. Types of bulkheads, watertight bulkhead design & drawing, arrangement of watertight & non-watertight bulkhead penetrationTOTAL HOURS 6																
CO6333222212233221AVERAGE2.172.332.502.001.501.501.331.501.672.002.502.331.331.331.67CORRELATION LEVELS1. SLIGHT(LOW)2. MODERATE(MEDIUM)3. SUBSTANTIAL(HIGH)LIST OF EXPERIMENTS1. Ship in calm water, wave bending, stresses due to bending2. Types of stiffeners, girders & various strengthening members.3. Plates under bending forces, plates under buckling, types of failures, shell expansion plan4. Leakage, collapse, fatigue, bending, bending and bucking of beams,5. Equivalent width of bending plates, weight curve, buoyancy curve, shear force & bending moment diagram6. Types of bulkheads, watertight bulkhead design & drawing, arrangement of watertight & non-watertight bulkhead penetrationTOTAL HOURS 6				-						-	-					
CORRELATION LEVELS 1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH) LIST OF EXPERIMENTS 1. Ship in calm water, wave bending, stresses due to bending 2. Types of stiffeners, girders & various strengthening members. 3. Plates under bending forces, plates under buckling, types of failures, shell expansion plan 4. Leakage, collapse, fatigue, bending, bending and bucking of beams, 5. Equivalent width of bending plates, weight curve, buoyancy curve, shear force & bending moment diagram 6. Types of bulkheads, watertight bulkhead design & drawing, arrangement of watertight & non-watertight bulkhead penetration																
LEVELS 1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH) LIST OF EXPERIMENTS 1. Ship in calm water, wave bending, stresses due to bending 2. Types of stiffeners, girders & various strengthening members. 3. Plates under bending forces, plates under buckling, types of failures, shell expansion plan 4. Leakage, collapse, fatigue, bending, bending and bucking of beams, 5. Equivalent width of bending plates, weight curve, buoyancy curve, shear force & bending moment diagram 6. Types of bulkheads, watertight bulkhead design & drawing, arrangement of watertight & non-watertight bulkhead penetration TOTAL HOURS 6	AVERAGE	2.17	2.33	2.50	2.00	1.50	1.50	1.33	1.50	1.67	2.00	2.50	2.33	1.33	1.33	1.67
LEVELS LIST OF EXPERIMENTS 1. Ship in calm water, wave bending, stresses due to bending 2. Types of stiffeners, girders & various strengthening members. 3. Plates under bending forces, plates under buckling, types of failures, shell expansion plan 4. Leakage, collapse, fatigue, bending, bending and bucking of beams, 5. Equivalent width of bending plates, weight curve, buoyancy curve, shear force & bending moment diagram 6. Types of bulkheads, watertight bulkhead design & drawing, arrangement of watertight & non-watertight bulkhead penetration TOTAL HOURS 6			N	1	SLIGE	ITA OV	V)	2	MODE	RATE	(MEDII	IM)	3 SI	IBSTAN	ITIAI (H	IGH)
 Ship in calm water, wave bending, stresses due to bending Types of stiffeners, girders & various strengthening members. Plates under bending forces, plates under buckling, types of failures, shell expansion plan Leakage, collapse, fatigue, bending, bending and bucking of beams, Equivalent width of bending plates, weight curve, buoyancy curve, shear force & bending moment diagram Types of bulkheads, watertight bulkhead design & drawing, arrangement of watertight & non-watertight bulkhead penetration 					SLIGI	II(LO)	(,)	2.	WIODI		(INILDIC	(111)	5.50	DSTAR		1011)
 Types of stiffeners, girders & various strengthening members. Plates under bending forces, plates under buckling, types of failures, shell expansion plan Leakage, collapse, fatigue, bending, bending and bucking of beams, Equivalent width of bending plates, weight curve, buoyancy curve, shear force & bending moment diagram Types of bulkheads, watertight bulkhead design & drawing, arrangement of watertight & non-watertight bulkhead penetration 																
 Plates under bending forces, plates under buckling, types of failures, shell expansion plan Leakage, collapse, fatigue, bending, bending and bucking of beams, Equivalent width of bending plates, weight curve, buoyancy curve, shear force & bending moment diagram Types of bulkheads, watertight bulkhead design & drawing, arrangement of watertight & non-watertight bulkhead penetration 	-				-			-								
 4. Leakage, collapse, fatigue, bending, bending and bucking of beams, 5. Equivalent width of bending plates, weight curve, buoyancy curve, shear force & bending moment diagram 6. Types of bulkheads, watertight bulkhead design & drawing, arrangement of watertight & non-watertight bulkhead penetration 	• •		-			-	-									
 5. Equivalent width of bending plates, weight curve, buoyancy curve, shear force & bending moment diagram 6. Types of bulkheads, watertight bulkhead design & drawing, arrangement of watertight & non-watertight bulkhead penetration TOTAL HOURS 6			-	-				-		, shell e	expansion	n plan				
6. Types of bulkheads, watertight bulkhead design & drawing, arrangement of watertight & non-watertight bulkhead penetration TOTAL HOURS 6										haar fa	rea & ha	nding m	omant di	ogrom		
penetration TOTAL HOURS 6	-			• •		-		• •				-		-	ht hullth	and
TOTAL HOURS 6		JUIKIIE	aus, wa	atertign	i ouiki	ieau de	sign &	. urawli	ig, air	angeme	ant of W	atertight	a non-	-watering	ni buikn	eau
	Penetration													тот	AL HOI	JRS 6
TEXT BOOKS														101		
	TEXT BOO	KS														
1. Robert Taggard, ship design & construction, The society of naval architecture & marine engineers, 1980	2. Eric c		-					•					2			

2. Eric c.tupper, Introduction to naval architecture, reed Elsevier India pvt lmt,2010

REFERENCE BOOKS:

1.Principle of naval architecture, vol IDesigned by"Department of I "Department of Naval Architecture & Offshore Engineering"

PROGRA	M	BE-N	aval Ar	chitectu	ıre & C	Offshore	e Engin	eering							
Course Co	ode	SOFT	WARE	2	LA	ABORA	TORY	– <u> </u>	,	Т		Р		С	
UANA5F	PΒ	AVE	AVA M	ARINE	E- TRIE	BON-II		()	0		4		2	
		•							•		•		•		
Year and Sen	nester		II	Year (semest	er V)				(Contact l	nours per	week		
Prerequisite c	course			N	VIL							(3Hrs)			
		Hur	nanities	s and	N	Manage:	ment	D	efeccio	onal Core		Deaf	essional	Elective	
Course cate	COM	Soc	ial Scie	ences		cours	es	r.	loiessic	mai Core	;	FIOI	essional	Elective	
Course cale	gory									\checkmark					
		Ba	sic Scie	ence	Engi	neering	Scienc	e	Open E	lective			Mandate	ory	
		1. Un	derstan	d the de	sign so	oftware	AVEV	A MAF	RINE						
Course Obje	ativa	2. Un	derstan	d the in	itial de	sign of	ship usi	ing soft	ware						
Course Obje	ecuve	3. Un	derstan	d the hy	drostat	tic and l	hydrody	namic	s calcul	ations					
				-											
		After	comple	tion of	the cou	irse, the	e studen	ts will	be able	to:					
				gate the	softwa	are fully	for shi	p desig	n						
			•	-		uilding				sign					
				-		tic and				-					
Course Outc	come			•		nd mod		•							
			-			tural de	-	coninq	ies						
						eps with	-	halm	finates	atora					
		0.10	Tepear	ine son	wale su	eps with	nout the	e neip c	n msu u	ciors					
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO2	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO3	2	2	2	2	1	1	2	1	2	2	2	1	1	2	2
CO4	2	2	3	2	2	1	2	2	3	3	2	1	1	3	2
CO5	3	2	3	2	2	1	2	3	3	3	3	2	2	3	3
CO6	3	3	3	2	2	1	2	2	3	2	3	2	2	3	3
AVERAGE	2.33	2.17	2.50	2.00	1.50	1.00	2.00	1.67	2.17	2.33	2.33	1.33	1.33	2.50	2.33
	CORRELATION LEVELS			SLIGH	T(LOV	W)	2.	MODI	ERATE	(MEDIU	(M)	3. SU	JBSTAN	TIAL(H	IGH)

LIST OF EXPERIMENTS

1. Introduction - Creating of New Project - Creating of New Database, SURFACE – Introduction-Basic Tool Bars Primitives- Creating and Manipulating 2D Primitives –Blending- Outputs-Offset Table, COMPARTMENT- Introduction Basics of Compartment

2. LINE(DESIGN)- Introduction-Basics- Creating Design and Defining-Basic Curves-Creating Control Curves- Creating A Surface – Outputting the surface – Curve Fairing – Modifying the surface directly

3. Hydrostatic- Introduction Basics- Performing Fundamental Calculations- Running More Complicated Calculations. Hydrodynamics- Introduction Basics – Powering Calculations- Maneuvering Calculations- Sea keeping Calculations-Dynamic Positioning Calculations.

4. HULL DRAFTING- Introduction- Getting Started- Viewing the Ship Model- Basic Geometry- Dimensioning. HULL STRUCTURAL DESIGN- Introduction- Initialization,

5. Curved Hull Modeling- Reference Surface Design (RSO)- Displaying Compartments- Functional Structures- Curved Surfaces- Design Utilities- Block Division.

6. PLANAR HULL MODELING - Planar Hull Modelling Concept- Getting Started- Seams- Plates- Excess- Weld Tap

Pieces- Panel Specific Curves & Topological points- Stiffeners- Flanges- Notches- Cut outs Holes & Doubling Plate-Brackets- Position Number.

TOTAL: 60 HOURS

TEXT BOOKS

1. AVEVA MARINE MANUALS

REFERENCE BOOKS:

2. AVEVA MARINE TRAINING MANUALS

Designed by "Department of Naval Architecture & Offshore Engineering"

PROGRA	Μ	BE-N	aval Aı	chitect	ure & (Offshor	e Engin	eering																		
Course Co	ode	SEAN	/ANSF		P		-	L	,	Т		Р		С												
UANA5F	PC	SEAN	ANSE	IIF LA	D			0		0		2		1												
Year and Ser			III	Year (er V)				(nours per	week													
Prerequisite of	course				VIL						((3Hrs)														
			nanities		N	Manage		P	ofessio	nal Core		Profe	essional	Elective												
C .		Soc	ial Scie	ences		cours	es		~	/																
Course cate	gory					Ducince			V	, 																
		Ba	sic Scie	ence		Enginee Scien			Open E	Elective			Mandate	ory												
						Scien	LE																			
		1	. To 1	inderst	and the	equipn	nent's c	n boar	1 ship		1															
Course Obje	ective	2				mmunic			# Ship																	
5		3							and por	wer distr	ibution															
		After	After completion of the course, the students will be able to:																							
		 To investigate the various deck equipment To select the equipment for various operations 																								
		2	. To s	select th	ne equi	pment f	or vario	ous ope	rations																	
		3	. То е	examin	e the co	ondition	s of de	ck, eng	ine and	electrica	al equipr	nent														
Course Outo	come	4	. To i	mplem	ent the	differen	nt main	tenance	e sched	ule																
		5	. Тос	classify	the equ	uipmen	t based	on ope	ration																	
		6		-	-	-		-		on board																
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3											
C01	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2											
CO2	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2											
CO3 CO4	2	2	2	-	1	-	-	1	2	2	2	1	1	2	2											
C04	2	2	2	- 1	1	-	-	1	2	2	2	1	1	2	2											
CO6	2	2	1	1	1	-	-	1	2	2	2	1	1	2	2											
AVERAGE	2	2	1.8	0.3	1	-	-	1	1.7	2	2	1	1	2	2											
CORREI		N	1	SLIGH		X/)	2	MODE	DATE	(MEDIU	M)	3 51	BSTAN	TIAL(H	ICH)											
LEV				SLIUI		(۷.	MODI		(MEDIC	(IVI)	5.50	DSTAN	TIAL(II	1011)											
LIST OF EX	PERI	MENT	S																							
1. Vario	us Decl	ks. All t	the equi	ipment	fitted c	on the d	eck (lik	e wind	lass, ca	pstan, w	inches, c	ranes, bi	tts Bolla	rd etc.												
Engin	e room	(the m	ain eng	ine and	auxilia	ary engi	ine, cor	npresso	rs, feed	l pumps,	fuel oil	pumps, e	xhaust s	ystem, a	nd											
-	accesso					-				-		-														
2. Locat	ion of	various	s tanks	and t	heir us	age A	ccess ?	arrange	ments	(ladders	gang v	vavs) A	ccomme	dation a	area											
														Location of various tanks and their usage. Access arrangements (ladders, gang ways). Accommodation area Equipments used for anchoring and mooring (Ground tackle equipments like anchor, anchor chain, wire rope,												
Equin	ments	used fo	or anch	oring a	ind mo	oring (Ground	l tackle	equin	ments li	ke anch	or, anche	or chain	wire ro	ope.											

- shackles, chain shoppers) chain lockers etc.
- 3. Bulwark and guard rail. Communication equipments. Fendering
- 4. Cargo holds .Doors and hatches. Bulk heads. Wheel house. Masts, top light, range light. Steering gear compartment.
- 5. AC & Refrigeration equipments. Propeller shaft system. Piping and valves.

6. Electrical equipments, like generators, motors, control panel etc. After the visit the students shall submit a report for evaluation.

TOTAL HOURS: 30

Designed by

"Department of Naval Architecture & Offshore Engineering"

SEMESTER VI

PROGRA	М	BE-N	aval A	rchitect	ure & (Offshor	e Engin	eering								
Course Co			PUTA			Ν	/IARIN			Т		Р		С		
UANA60)2	HYD	RODY	NAMIO	CS			3		1		0		4		
Veer and Car	nastar		TT	Vaar	amaat	w VI)					Tomto at 1					
Year and Ser Prerequisite of			111	Year (NIL	er vi)						no <mark>urs pe</mark> i (4Hrs)	week			
	Jourse	Hu	manitie			Manag	ement					· /				
			cial Sci			cour		P	rofessio	onal Core	2	Prof	essional	Elective		
Course cate	egory								v	(
		В	asic Sci	ience		Engine			Open F	Elective			Mandat	orv		
						Scie	nce		openi					019		
G 011		1				-			ach in r	narine h	ydrodyna	amics rel	ated pro	blems.		
Course Obje	ective	2				-	ial flow		1.0							
		3								ow mode	ling					
		After	comple													
										general						
Course Outo	come									ine hydro om pote						
										external						
			6. To define computational skill by solving the benchmark fluid mechanic case study													
POS/COS	PO1	PO2														
CO1	2	2														
CO2	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2	
CO3	2	2	2	-	1	-	-	1	2	2	2	1	1	2	2	
CO4	3	3	2	-	1	1	1	1	2	2	2	1	2	3	3	
CO5	3	3	3	2	2	1	1	2	3	3	3	2	2	3	3	
CO6	2	2	2	1	1	2	1	1	2	3	3	2	1	2	3	
AVERAGE	2.33	2.33	2.17	1.50	1.17	1.33	1.00	1.17	1.83	2.33	2.33	1.33	1.33	2.33	2.50	
CORREI LEV		N	1.	SLIGH	IT(LOV	V)	2.	MODE	ERATE	(MEDIU	JM)	3. SU	JBSTAN	TIAL(H	IGH)	
	LLD															
UNIT 1: Cor	ncept o	f nume	erical a	pproac	h										12 Hrs	
Introduction	to num	erical n	nethods	: interp	olation	, differe	entiatio	n, integ	ration,	systems	of linear	equation	18.			
	ID.															
UNIT II: CF		-	tola C	lution	of diff	anantia	Laguat	one hr		miaal int	anation	Introdu	ation to		12 Hrs	
Fluid Dynam Concept of F									nume		gration.	muouu			neepts.	
concept of 1	inite ui	liciciic	e metik		inne v	orume	memou	•								
UNIT III: P	otentia	l flow a	and the	ory											12 Hrs	
Potential flow	w and	its appl	lication	s, Pote	ntial flo	ow the	ory. Tw	o-Dim	ensiona	al Panel	Method	s, Nume	rical For	rm of the	e Two-	
Dimensional	Integra	l Equat	tion, Sit	uations	with th	ne Gene	eration	of Lift,	Compu	utation o	f Pressu	res and F	orces.			
LINUT IX. H	d.n.a.d.	mamia	famoog												10 II	
UNIT IV: H External forc				igid be	dv mot	tions S	trin the	orv and	numer	rical solu	tion				12 Hrs	
Enternar fore	es acui	-5 011 a	50 u y. I		<i>ay</i> 110		anp uie	ory and								
UNIT V: Vis	scous fl	ow mo	del and	l effect	s										12 Hrs	
Viscous flow							proach.	RANS	based	models.	Applica	ation of (CFD in 1	naritime	sector,	
Understandin	ng ship	resistar	ice sim	ulation	in CFD)							TOT	T (0	ourc	
													TOTA	AL: 60 H	OURS	

TEXT BOOKS

- 1. J. D. Anderson. CFD: The basics with applications, ed 6, 1995.
- 2. H. K. Versteeg and W Malalasekera: An introduction to CFD The Finite volume method.
- 3. P. Knupp and S. Steinberg. Fundamentals of grid generation, CRC press 1994.
- 4. Joseph Kartz & Allen Plotkin, Low-speed Aerodynamics, Edition 2nd, Cambridge University press, 2001

REFERENCE BOOKS:

- **1.** T. J. Chung, Computational Fluid Dynamics, Edition 2nd, Cambridge University, 2014
- 2. Volker Bertram, Practical Ship Hydrodynamics, Edition 2nd, Butterworth-Heinemann, 2012

Designed by "Department of Naval Architecture & Offshore Engineering"

PROGRA	M	BE-Naval Architecture & Offshore Engineering														
Course Co	de		UCTU			ESIGN				Т		Р		С		
UANA60)3	SHI	PS					3	3	0		0		3		
Year and	1		ш	Voor (somost	or VI)										
Semester		III Year (semester VI)							Contact hours per week							
Prerequisite		NIL							(3Hrs)							
course																
Course category		Humanities and				Management			Professional Core			Professional Elective				
		Social Sciences				courses										
		ļ							✓							
		Basic Science				Engineering		(Open Elective		Mandatory					
						Science		_	- F							
Course Objective		1. To know the principal layout of a hull structure and the function of the different														
					e eleme											
							ads a s	hip str	ucture	is subje	ected to	and ho	w these	loads a	re	
			pı	redicte	d in de	sign.										
		3. To understand the structural and loading system in ship														
		After completion of the course, the students will be able to:														
Course Outcome		1. Do the design of a ship according to class rules based on rule requirements and direct														
		calculations														
		2. To value the estimation of the hull structure weight,														
		3. To examine the challenges in design of ships and other complex structures.														
		4. To execute the scantling calculations5. To explain the load calculations in cargo handling system														
			-					-		ing sys	tem					
		6. To define the material and structure of ship														
POS/CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO	PSO	PS	PS	
S	1	2	3	4	5	6	7	8	9	10	1	12	1	O2	03	
CO1	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2	
CO2	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2	
CO3	2	2	3	-	1	-	-	1	2	2	2	1	1	2	2	
CO4	3	3	3	2	2	-	1	1	2	2	2	1	1	2	2	
CO5	2	2	2	1	2	2	1	2	2	3	3	2	2	3	3	
CO6	3	3	2	1	2	2	2	2	2	3	3	2	2	3	3	
AVERA	2.3	2.3	2.3	1.3	1.5	2.0	1.3	1.33	1.67	2.33	2.33	1.33	1.33	2.33	2.33	
GE	3	3	3	3	1.3	2.0	3	1.33	1.07	2.33	2.33	1.33	1.33	2.33	2.33	
CORREL LEVI	N	1. SLIGHT(LOW) 2. MO						DERATE(MEDIUM)				3. SUBSTANTIAL(HIGH)				
												9 Hrs				

UNIT I: Ship building material and Joining techniques

Shipbuilding materials - transition from wood to steel, ship building quality steels (Properties grades), joining techniques - riveting, welding, different type of joints - butt joint, fillet joint, lap joint, welding symbols, weld strength

UNIT II: Ship Design Concepts and Rules

Ship structural design concepts - specialisation of the structure, general considerations, external loads (review), and structural analysis models, design criteria steps in structural design procedure, design from first principles, and design according to classification rules

UNIT III: Ship Structural Systems

Ship structural systems, Ship as stiffened plate structure - framing systems, common stiffeners sections corrugated constructions, design of strakes (butt & seams), welding sequence, shell expansion

Structural subsystems - bottom structure, side shell structure, deck structure, bulkhead structure, super structure etc.

General structural arrangements of different type of ships (historical review), sub- assembly, stiffened panels

9 Hrs

and volume sections.

UNIT I V: Structural Scantling

Type, functions, framing systems, components & scantlings, structural connections of components: -

Bottom structure (Double & single bottom, openings, bilge keel), side structure, deck structure (hatchways, pillars, bulwarks, guardrails, fenders) bulkhead structure fore & aft end structure, panting & pounding arrangement, compatibility of bottom and side, side and deck, deck and bulkhead, side and bottom, engine room (engine foundation, casing, structural design) super structure, deck house (effectiveness, structural design, openings, expansion joints etc.

UNIT V: Cargo handling system

9 Hrs

Cargo handling equipment – different systems, mast derrick system, loads calculations on mast derrick system, design of mast derrick system, deck cranes.

Base Twistlock, Semi Automatic Twistlock, Midlocks, Hanging staker, Lashing rods, Turnbuckle and Bottle Screw

Hatch covers – functions, load, statutory requirements, types, cleating and sealing arrangements, pontoon covers design.

Construction of lifeboats, submarine structure, chain locker hawse pipe, rudder types and their construction.Nozzles, stern tube and bossing.

Total: 45 Hours

TEXT BOOKS:

- 1. Taggart: Ship Design and construction SNAME
- 2. Okumoto, Y., Takeda, Y., Mano, M., Okada, T.: Design of Ship Hull Structures, A Practical Guide for Engineers, (2009)
- **3**. S.C Mishra: Design principles of Ships and marine structures, CRC Press, 2015

REFERENCES BOOKS

- 1. Rosén, A., Hull structure design, KTH Centre for Naval Architecture, 2007.
- 2. D 'Arcangelo: Ship Design and construction, SNAME.

Designed by "Department of Naval Architecture & Offshore Engineering"

PROGRA	AM	BE-N	Vaval .	Archit	ecture	& Off	shore	Engine	ering						
Course C	ode		UCTU			SIGN	0	F L	,	Т		Р		С	
UANA6	04	OFF	SHOR	E STI	RUCTI	JRES		3		0		0		3	
X 7															
Year ar Semest			III	Year (semest	er VI)				C	ontoot h	oure no	r wool		
Prerequis	-									C	ontact h	Burs pe BHrs)	rweek		
course]	NIL						(-	51113)			
		Hun	nanitie	s and	Ν	lanage	ment	Dev	facio	nal Car		Ducto	anional.	Flaatin	
Course	_	Soci	al Sci	ences		cours	ses	PI		nal Cor	e	Prote	ssional	Electivo	
categor									~	/					
8	5	Bas	sic Sci	ence	E	ngine		(Dpen E	lective			Mandate	ory	
						Scier	ice		-						
		1 1 1 1 1 1	· :			£ . ££.1					41		1		
Course	e			-	-				-	-	ith stanc	larus ai	nd regula	ations.	
Objectiv	ve		-	-		eams	and I	ubular	membe	ers.					
					lesign.	cours	e the	student	s will 1	be able	to				
			-					structu			.0.				
~								nber de							
Course		3. To	o analy	ze the	design	ı base	d on c	ombine	d load	S					
Outcom	ie			-	-				-	-	-		lone by	student	S
								-			are deri	vate.			
						1					latform	1	1	r	
POS/CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO 12	PSO	PS O2	PS
S CO1	1 2	2	3	4	5	6	7	8	<u>9</u> 1	10 2	1 2	12	1	O2 2	O3 2
CO1 CO2	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO2 CO3	2	2	2	_	1	- 1	-	1	2	2	2	1	1	2	2
CO4	2	2	2	2	1	2	2	2	2	3	2	1	1	2	2
CO5	3	3	2	1	1	2	1	2	3	3	3	2	2	3	3
CO6	3	3	1	1	1	1	2	1	3	2	3	2	2	3	3
AVERA GE	2.3 3	2.3 3	1.8 3	1.3 3	1	1.5	1.6 7	1.33	1.7	2.33	2.33	1.33	1.33	2.33	2.33
CORRE		NC	1.5	SLIGH	IT(LO	W)	2.1	MODE	RATE	(MEDI	UM)	au	3		
UNIT 1: F	ELS	na 67									,	SUB	STANT		
							on crit	eria an	d proc	edures	– WSD	and L	RFD, D		9 Hrs
dead loads														-5-5-1 10	
	Dest	n cf -4	0.01 P. 7	mak -											0 TT
UNIT II:						on ma	mhere	, plates	and b	eame					9 Hrs
	Sign	or tell	sion a		1010331	on nic	110013	, plates		cums.					
UNIT III:															9 Hrs
	-	of cyli	ndrica	al men	bers –	axial	compr	ression,	biaxia	l bendi	ng and c	combin	ed loads	; Hydro	ostatic
implosion.															
UNIT IV:	Decid	ո օք ٦	արու	nr ioir	nts										9 Hrs
						hing sl	hear m	nethod	and ca	lculatio	n of allo	owable	joint ca		
concentrat														,	
UNIT V:	Pile F	ounda	tion a	nd D	esign										9 Hrs
L	oad ca	arrying	g capac	city of	piles, 1								nt of pile	es	
										kial pull	l out loa	ids; Soi	il reactio	on for a	xially
loaded pile	es and	lateral	lly loa	ded pi	les; Sti	ructura	al Desi	ign of p	oiles			m	0741		C . 45
TEXT BC	OKE											Т	OTAL	HUUR	5 : 45
			Coffee	ore E	nginoo	ring	SV	habral	arti D	leavior	Publica	tions	005		
I. F.	ianu D	UUK UI	UISI		igniee	ing –	5.K. (Inakial	Jaiu, E	196 viel	ruonca	uons 2	005.		

2. Offshore Structural Engineering – Dawson T.H. Printice Hall, 1983.

REFERENCE BOOKS:

- **1**. API RP 2A WSD 1993
- 2. API RP 2A LRFD 2000
- **3.** DNV Offshore standards and Regulations

Designed by "Department of Naval Architecture & Offshore Engineering"

PROGR	AM	BE-N	aval A	rchitec	ture &	Offsho	re Eng	ineerin	g						
Course C	Code	See V	in	and C	omtmoll	hilitry.	of China	L	<i>i</i>	Т		Р		С	
UANA	605	Sea K	ceeping	g and C	ontrolla	adinity	or Snips	3		0		0		3	
Year a	nd		ш	Year (s	amasta	or VI)									
Semest			111	i cai (a	semest	JI V I)				Cor		ours per	r week		
Prerequi cours				١	NIL						(3	Hrs)			
		Hun	nanitie	s and	Ν	lanage	ment	Dre	fassio	nal Cor	0	Drofe	ssional	Flactiv	10
Cours		Soc	ial Scie	ences		cours	es	rit			e	FIOLES	ssionai	Lieuw	'e
catego									\checkmark						
catego	чy	Bas	sic Scie	ence	E	Enginee Scien		C	Dpen El	lective		1	Mandat	ory	
Cours Objecti		2.	 To understand the wave motion and hydrodynamics To understand the dynamics of ship motion To understand the sea keeping performance After completion of the course, the students will be able to: 												
		After								ble to:					
		1.		nvestig											
Cours		2.	. To v	veigh tl	he diffe	erent sh	ip mot	ion in v	vaves						
Outcor		3.	. То с	compare	e the us	se of di	fferent	stabiliz	zing un	it					
Outcol	ne	4		nterpre											
		5.		explain					cs						
		6		lefine t						n	1	n	1	n	
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 CO2	2	2	2	-	1 1	-	-	1	1 1	2	2	1	1	2	2
CO2 CO3	2	2	2	- 1	1	-	- 2	1	2	2	2	1	1	2	2
CO3	2	3	3	1	2	2	1	1	3	2	3	2	1	2	∠ 3
CO4 CO5	3	3	3	2	2	1	1	2	3	3	3	2	2	3	3
CO6	3	3	2	2	2	1	1	2	2	3	2	2	2	3	3
AVERAGE	2.33	2.50	2.33	1.50	1.50	1.33	1.25	1.33	2.00	2.33	2.33	1.50	1.33	2.33	2.50
CORRI	CORRELATION LEVELS			SLIGH						MEDIU			BSTAN		

Unit I: INTRODUCTION

Ship in Regular Waves - Co-ordinate Systems, Equations and Motion (uncoupled Heave, Pitch and Roll; Coupled Heave and Pitch) Hydrodynamic Forces, Radiation Forces, Strip Theory.

Unit II: SHIP IN A SEAWAY

Ship in Seaway and Dynamic effects - Linear Superposition, Response Amplitudes Operator, Pitch and Roll in irregular Waves, Local and Relative Motions shipping of green water, Slamming, Yawing and Broading, Added Resistance, Powering in Waves, Wave Loads.

Unit III: SHIP MOTIONS

Ship Motion Control - Control of Roll - Passive Stabilizers (Bilge keel, Sails, Free Surface Tanks, Utanks, moving weight) Controlled - Passive Stabilizers, Active Stabilizers (fin, gyro, active-tank) Rudder stabilization, Control of Pitch.

Unit IV: SEAKEEPING DESINGN CONCEPTS

Sea keeping Performance and Design Aspects - Sea - keeping performance criteria and ship seaways responses, factors affecting pitching, heaving and rolling, guidelines for design.

UNIT V: MANEUVERING CHARACTERISTICS OF SURFACE SHIP

9 Hrs

9 Hrs

9 Hrs

9 Hrs

Introduction to maneuverability, Types of directional stability, linear equations of motions in horizontal plane, hydrodynamic and control derivatives, stability index, standard maneuvers; turning circle, zigzag, pull-out and spiral maneuvers, heel during turn

Total: 45 Hours

TEXT BOOKS

1. Bhattacharya.R; "Dynamics of Marine Vehicles" 1978, Wiley Inter Science, Newyark.

REFERENCE BOOKS

3. Lewis E.U; "Principles of Naval Architecture" (2nd Rev) Vol. III, 1989, SNAME Newyark.

Designed by "Department of Naval Architecture & Offshore Engineering"
--

PROGRA	М	BE-N	aval Aı	chitect	ure & (Offshor	e Engine	eering							
Course Co	ode	ADV	ANCEI)		OFF	SHORE	E L	,	Т		Р		С	
UANA60)6	ENGI	NEERI	NG				3		0		0		3	
Year and Sen	nester		III	Year (s		er VI)				(Contact l	nours per	week		
Prerequisite c	course				۸IL							(3Hrs)			
			nanities		Ν	Aanage	ment	P	ofessio	onal Core		Prof	essional	Elective	
		Soc	ial Scie	ences		cours	es		oressie			1101	costonar	Licetive	
Course cate	gory												\checkmark		
		Ba	sic Scie	ence	I	Enginee Scien			Open E	Elective			Mandate	ory	
							/produc								
Course Obje	ective					•	Marine		•						
										AUV and	d its wor	king			
			1			,	e studen								
		1. To	investi	igate th	e deep-	water c	halleng	es to b	e face a	and to fir	nd its ren	nedies.			
		2. To	judge	the dyn	amic b	ehavior	of riser	syster	n						
		3. To	compa	re basi	c Moor	ing and	Riser re	equire	nents a	nd analy	sis.				
Course Outc	come	4. To	solve t	the vibr	ation a	nd fatig	ue beha	vior of	f offsho	ore struct	ures				
						-				ated veh					
				•	U		0		• •	lenges o		o structu	roc		
		0.10	uenne	the dyl			i and uc	cp-wa		ienges o	1 01131101	e siruetu	lics		
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO2	2	2	2	-	2	-	-	1	1	2	2	1	1	2	3
CO3	2	2	3	-	1	-	-	1	2	2	2	1	1	2	2
CO4	2	2	3	-	1	1	1	1	2	2	2	1	2	3	2
CO5	3	3	2	1	2	1	2	2	2	2	2	1	2	3	3
CO6	2	2	1	1	1	1	2	1	2	2	2	1	1	2	2
AVERAGE	2.17	2.17	2.17	1.00	1.33	1.00	1.67	1.17	1.67	2.00	2.00	1.00	1.33	2.33	2.33
CORREI LEV		N	1.	SLIGH	IT(LOV	W)	2.]	MODE	ERATE	(MEDIU	J M)	3. SL	JBSTAN	TIAL(H	IGH)
UNIT 1: OII	L AND	GAS I	FIELD	DEVE	LOPM	ENT									9 Hrs

Oil and gas field development Options: Platform types, current design trends and deep- water challenges.

UNIT II: RISER SYSTEMS

Riser systems: Marine riser systems, typical configurations, top tensioned vertical risers, hybrid risers, flexible pipe structure and material. Riser analysis: governing equations, boundary conditions, natural frequency

UNIT III: MOORING LINES

Mooring lines: typical mooring configuration, material and construction, anchors and ancillary equipment, static mooring analysis.

UNIT IV: FLOW ASSURANCE AND VORTEX INDUCED VIBRATION

Flow assurance: multi-phase flow, deposition of solids, thermal management, corrosion. Vortex induced vibration: drag, vortex shedding, surface roughness, lift, Strouhal number, VIV assessment, fatigue life calculation.

UNIT V: UNDERWATER VEHICLES

Remotely operated vehicles (ROVs): Applications and various design concept, ROV handling systems, construction and materials, navigation and control.

Autonomous underwater vehicle: Applications and design concept, material selection, construction, various sensors and control system. Case study: design of anyone underwater vehicle.

TOTAL: 45 HOURS

9 Hrs

9 Hrs

9 Hrs

TEXT BOOKS

1. N Barltrop, Floating structures: A Guide for design and analysis, OPL, 1998.

2.BC Grewick, Jr. Construction of marine and offshore structure, CRC Press, 2000.

3.RD Blevins, Flow induced vibrations, Van Nostrand Reinhold, 1990.

4.EE Allimendinger, Submersible vehicle systems design. SNAME, 1990.

5.HO Bordeaux, Buoy engineering, John Wiley, 1975.

REFERENCE BOOKS:

1. ABS, DNV codes.

Designed by

"Department of Naval Architecture & Offshore Engineering"

PROGRA	М	BE-N	aval Aı	chitect	ure & (Offshore	e Engine	eering							
Course Co			NDATI		OF	OFF	SHORE	EL	r	Т		Р		С	
UANA60)7	STRU	JCTUR	ES				3		0		0		3	
		r						1							
Year and Ser			III	Year (s		er VI)				(nours per	week		
Prerequisite of	course				VIL						((3Hrs)			
			nanities ial Scie		N	Aanager course		Pı	ofessio	onal Core	;	Prof	essional	Elective	
Course cate	egory													\checkmark	
		Ba	sic Scie	ence	I	Engineer Scienc			Open E	lective			Mandate	ory	
Course Obje	ective	2. 7 3. 7	Го unde Го unde	erstand erstand	the fou the inst	tic soil n ndation tallation urse, the	s of offa and loa	shore s ading c	of Pile						
Course Outo	Course Outcome		o formu ofiles. o judge o organi alysis o interpi o identif	late app necessa ze labo ret the c y the d	propria ry labo ratory lesign a esign a	te drillin pratory to and field	ng, san ests to u d data t lysis of ysis of	npling underst to select Shallo Deep H	and fie and the ct appro ow Four Foundat	ld prope e site-spe opriate sl ndations	ecific bel hear stre	navior of	t tools fo foundat ues to us	ions	
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	1	-	-	1	1	2	2	1	1	2	2
CO2	2	2	2	1	1	-	-	1	1	2	2	1	1	2	2
CO3	2	2	2	1	1	2	-	1	3	2	2	1	1	2	2
CO4	3	2	3	-	1	1	2	1	2	3	2	1	2	3	2
CO5	3	3	1	2	1	1	2	3	3	3	2	2	3	3	
CO6	CO6 2 3				2	1	1	2	2	2	3	2	1	3	3
AVERAGE	AVERAGE 2.50 2.33			1.00	1.33	1.25	1.33	1.33	2.00	2.33	2.33	1.33	1.33	2.50	2.33
	CORRELATION LEVELS		1.	SLIGH	T(LOV	W)	2.]	MODE	RATE	(MEDIU	JM)	3. SU	JBSTAN	TIAL(H	IGH)

UNIT I: Basic Soil Mechanics

Basic Soil Mechanics: soil classification, three-phase system, fundamental definitions, relationship and interrelationships, permeability & seepage, effective stress principle, consolidation, compaction, shear strength. Basic soil properties, correlation between engineering parameters, bore log. Site investigation objective. Sea bottom surveys, soil investigation and techniques

UNIT II: Types of foundations and Pile design

Foundation types-foundation design requirements. Shallow foundations, Deep foundations– pile types. Pile foundation: Jacket main piles, skirt piles, driven piles, drilled and grouted piles, steel and concrete piles. Pile design: axial capacity, point bearing and skin friction, factor of safety, Axial load transfer(t-z) curves, Tip load –Displacement(Q-z)curve .Lateral load on piles, Load-deflection (p-y) curves, and q-z curves, pile group effect, Pile group stiffness and structure dynamics , scour around piles, seabed subsidence and design of piles against seabed movement, negative skin friction, cyclic degradation, main pile to jacket connections, skirt pile to jacket connections.

UNIT III: Pile Installation

Pile Installation: Pile wall thickness, Allowable pile stress, Design pile stresses, Stresses during pile driving stresses, static and dynamic stresses, pile stickup, stresses during stickup, wave and current loads, hammer selection, pile driving stresses, wave equation analysis, Fatigue damage calculation n while pile driving, API RP 2A guidelines.

UNIT IV: Pile load testing

Pile Testing: Working load test, ultimate load test, pile monitoring during driving, pile integrity testing, high strain dynamic testing, rebound method.

9Hrs

9 Hrs

9 Hrs

UNIT V: Special Foundations

Footing subjected to moments, tension, introduction to Piled Raft foundation Mud-mats: bearing capacity, sliding stability, overturning stability, short term and long-term settlements, factor of safety; Bucket foundation; Suction anchors; Gravity foundation.

TEXT BOOKS

- 1. Handbook of Offshore Engineering by S.K. Chakrabarti, Elseviers, 2005.
- 2. Tomlinson, M. J., Pile Design and Construction, E and F Spon, 1994
- 3. Pile Design and Construction by M. J. Tomlinson, E & FN Spon, 1994.
- 4. Foundation analysis and design by J. E. Bowles, McGraw-Hill, 1988

REFERENCE BOOKS:

- 1. Construction of Marine and Offshore Structures by Ben C. Gerwick, CRC Press 1999
- 2. Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms API RP 2A

Designed by "Department of Naval Architecture & Offshore Engineering"

9 Hrs

Total: 45 Hours

PROGRA	М	BE-N	aval Aı	chitect	ure & (Offshor	e Engin	eering							
Course Co	ode	PIF	PING E	NGINE	ERINO	3		L	,	Т		Р		С	
UANA6()8							3		0		0		3	
		•						•	•						
Year and Ser	nester		III	Year (s	semeste	er VI)				(Contact I	nours per	week		
Prerequisite of	course			1	١IL						((3Hrs)			
			nanities ial Scie		Ν	lanage cours		Pı	ofessio	nal Core	;	Profe	essional	Elective	
Course cate	gory												\checkmark		
		Ba	sic Scie	ence	F	Enginee Scien	-		Open E	lective			Mandato	ory	
		1. Ba	sic und	erstand	ing of l	Piping 1	lay out,	prepar	ation a	nd install	lation me	ethods.			
Course Obje	ective			erstand	-		•								
		1.0													
			-	etion of											
1							-			tric draw	-				
		2. To	judge	process	es and	issues i	involve	d with o	designi	ng and c	onstructi	on			
Course Outo	come	3. To	exami	ne pipii	ng desig	gn inde	penden	tly							
course out	onic	4. To	execut	e subm	arine p	iping p	lan								
		5. То	o identif	y subse	a pipin	ig syste	m								
		6. To	define	the put	nping a	and pip	ing syst	tem onb	oard						
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	_	1	-	-	1	1	2	2	1	1	2	2
CO2	2	2 2 - 1 - 1 1 2 2								2	1	1	2	2	
CO3	2	2	2	2	1	-	-	1	2	2	2	1	1	2	2
CO4	3	3	2	2	1	2	2	1	2	2	2	1	1	2	2
CO5	3	3	3	1	2	1	2	2	2	3	3	2	2	3	3
CO6	3	2	1	1	2	1	2	1	3	3	3	2	1	2	2
AVERAGE	2.50	2.33	2.00	1.50	1.33	1.33	2.00	1.17	1.83	2.33	2.33	1.33	1.17	2.17	2.17
	CORRELATION LEVELS			SLIGH	T(LOV	V)	2.	MODE	ERATE	(MEDIU	JM)	3. SU	JBSTAN	TIAL(H	IGH)

UNIT – I Introduction to Piping.

Introduction –Pipe, classification of pipelines, Piping basic, Piping shape, Piping materials, Selection of thickness and Diameter, Piping flexibility, Piping components & types, Selection of code & standards.

Pipeline design codes (API, ASME, ASTM, etc). Plans to be submitted for piping arrangements for classification society approval.

UNIT – II Piping Design

LEVELS

P&ID, PFD, Commonly used Graphical symbols in representing pipelines and piping diagrams, Color Coding for piping systems for intended services. Isometric preparation, Pipeline thickness calculation, stress analysis valve selection, Instruments, MTO preparation, Quality assurance and quality control plan, Station piping, Cross country piping. Installation – welding, NDT methods. Coating methods, insulation, leak tests on piping systems, pipe standards / Repair standards. Types of valves, Steam piping, temperature of pipes in hazardous areas and other specialized operations

UNIT – III Piping and Pumping arrangements in ships:

General Pumping arrangements and associated pipe fittings of piping arrangements with respect to carrying contents, pump capacity and location. Bilge suction, Tank suction, Filling,

Air pipes, sounding and overflow, Bilge system, water ballast systems, oil fuel systems, feed systems, Scupper arrangements for draining, Closing arrangements for air pipes and ventilation pipes.

UNIT – IV Submarine pipeline

Submarine pipeline- Design, stability analysis, Pipe routing plan, Pipe passing through watertight penetrations, gas tight glands,

9 Hrs

9 Hrs

9 Hrs

corrosion and methods to resist corrosion in pipeline. Different type of offshore pipe lying methods.

UNIT – V Riser and subsea systems

Drilling risers, production risers: flexible, steel catenary; flexible riser configurations: steep/lazy S and wave, free-hanging; flexible riser components; rigid riser components, Riser – Design, Pipes and piping arrangements for offshore services-Fixed drilling / production platforms, Gas and oil production systems, Submersible units and systems, Oil and gas fired unit's locations
Total: 45 Hours

TEXT BOOKS

- 1. George A. Antaki Piping and Pipeline Engineering: Design, Construction, Maintenance, Integrity, and Repair
- 2. M L Nayyar, Piping handbook
- **3**. Boyun Guo, Shanhong Song, Jacob Chacko, Ali Ghalambor, Offshore Pipelines
- 4. Eric Murdoch, A Master 's guide to ship piping
- 5. Shashi Menon, Piping Calculations Manual (McGraw-Hill Calculations)– December 10, 2004

REFERENCE BOOKS:

- 1. Peter Smith, The Fundamentals of Piping Design (Process Piping Design) (v.1) Hardcover April 15, 2007
- 2. M. W. Kellogg, -Design of Piping Systems Paperback July 6, 2011
- Subrata K. Chakrabarti Hand book of Offshore engineering –. Offhore structural analysis, Inc. volume II ELSEVIER (2005)

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRA	M	BE-N	aval Aı	rchitect	ure & (Offshore	e Engine	ering							
Course Co	ode				GEO -	TECH	NICAL	L	,	Т		Р		С	
UANA6		ENG	NEER	ING				3		0		0		3	
Year and Ser	nester		III	Year (semeste	er VI)				(Contact 1	nours pei	r week		
Prerequisite					VIL	/						(3Hrs)			
			nanities ial Scie		Ν	Aanagen course		P	ofessio	onal Core	•	Prof	essional	Elective	
Course cate	egory	Ba	sic Scie	ence	I	Engineer Scienc			Open E	Elective			Mandate	ory	
		1 To	know k	ahavio	r of ma	rine soil	1		•						
Course Obj	ective					e soils fo		lation	design						
Course Obje			•						-	lan a1'	100-1				
						urse, the				ler cyclic	cioading	5			
											neasuren	ent tool	s for diff	erent soi	1
				-		-	-	-	-				f foundat		1.
Course Out	20720	3 To	-		•	•				-				n foundat	ion
Course Out	come		-	nent th	e canac	ity of fo	undatic	ne							
									found	ation loa	d				
						f offsho			Tound		u.				
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO2	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO3	2	2	2	1	1	-	-	1	2	2	2	1	1	2	2
CO4	2	2	2	1	1	1	1	2	2	3	2	1	1	3	3
CO5	3	3	2	1	1	1	1	1	3	3	2	2	1	3	2
CO6	3	1	2	1	2	1	1	2	3	3	2	2	1	3	3
AVERAGE	2.33	2.00	2.00	1.00	1.17	1.00	1.00	1.33	2.00	2.50	2.00	1.33	1.00	2.50	2.33
CORRE LEV		N	1.	SLIGH	IT(LOV	W)	2.1	MODE	RATE	(MEDIU	JM)	3. SL	JBSTAN	TIAL(H	IGH)
UNIT 1: Bas	sic of M	larine	soil												9 Hrs

UNIT 1: Basic of Marine soil

Introduction to Marine Geotechnical Engineering: Scope of marine geotechnical engineering - Marine and submarine soils -Classification of marine soils - Relative distribution of marine soils in the different marine regions - General characteristics of marine deposits in some specific locations and in the Indian sub-continent.

Sediment logical characteristics of marine soils: Structure of marine soils - Cementation bonding - Morphology and genesis of marine and submarine sediments - Post-depositional changes - Effect of calcium carbonate in marine deposits.

UNIT II : Engineering Properties of soil

Engineering behaviour of marine soils: Fine and coarse-grained deposits - Strength and deformation behaviour of fine - and coarse-grained marine deposits - Effect of cementation - Strength and deformation behaviour under static and cyclic loading.

UNIT III : Offshore soil investigation techniques

Offshore Soil Investigation: General characteristics of offshore soil exploration - Sampling using free corer, gravity corer, tethered systems and manned submersibles - Deep penetration sampling using wire line techniques - In-situ determination of strength of submarine soils - Penetrometer, piezocone, vane and pressure meter techniques - General reconnaissance procedure for installation of fixed structures (gravity and piled type), floating structures, sea bed anchors and submarine pipelines.

UNIT IV : Foundation of offshore structures

Hrs

Q

9 Hrs

Foundations for Gravity Structures: Types of gravity structures - Installation techniques - Movement of gravity structures - Settlement of soil beneath gravity structures - Stress distribution beneath gravity structures - Stability of gravity structures under static and cyclic loads

Foundations for jacket type structures: Types - Installation techniques - Design considerations - Axial and lateral load capacity of piles - Lateral load deformation behaviour of piles - Calculation of bearing capacity of piles - Design of piles subjected to lateral loads Reese-Matlock method & p-y curves method.

UNIT V : Foundation of advanced offshore structures

Foundation modeling, structural modeling.

Piles and mat supported - Spud cans - Different types - Techniques for installation and removal of jack up - Stability of jack up platforms - Determination of penetration of supports - Stability under lateral loads - Stability under static and cyclic load effects. Sea bed anchors.

TEXT BOOKS

- 1. Gopal Ranjan, A S R R a o Basic and Applied Soil Mechanics New Age International, 1 Jan 2007
- 2. Chaney, F. Marine geotechnology and nearshore/offshore structures, ASTM, STP-, 1986.
- 3. Chaney, R. C & Demars, K. R., Strength Testing of Marine Sediments Laboratory and In-situ
- 4. Measurements, ASTM, STP -883, 1985.
- 5. George, P & Wood, D., Offshore Soil Mechanics, Cambridge University Press.

REFERENCE BOOKS

- 1. Le Tirant, Sea Bed Reconnaissance and Offshore Soil Mechanics for the Installation of Petroleum tructures, Gulf Publ. Co., 1979.
- 2. Poulos, H. G & Davis, E. H., Pile Foundation Analysis and Design, John Wiley, 1980.
- **3**. Numerical Methods in offshore Piling, Proc. Conf. Inst. of Civil Engineers, London, 1980.

Designed by "Department of Naval Architecture & Offshore Engineering"

9 Hrs

Total: 45 Hours

PROGRA	M	BE-N	aval Aı	rchitect	ure & (Offshor	e Engine	ering							
Course Co	ode						Y AND		,	Т		Р		С	
UANA61	10	ENV	RONM	IENTA	L MAN	NAGEN	MENT	3		0		0		3	
Year and Ser	nester		III	Year (s	semeste	er VI)				(Contact l	nours per	week		
Prerequisite of	course			1	۸IL							(3Hrs)			
			nanities		Ν	/Ianage	ment	P	ofessio	nal Core		Prof	essional	Flective	
		Soc	ial Scie	ences		cours	es	11	0103510		,	1101		Licetive	
Course cate	egory														
		Ba	sic Scie	ence	I	Enginee	-		Open F	lective			Mandate	orv	
						Scien	ce		- r)	
					<u> </u>					~					
		1.						-	•	surance of	-				
Course Obje	ective	2.				•				t manage					
		3.					Ŭ			peration	S				
							e studen			to:					
		1					awaren								
		2					ance and								
Course Outo	come	-							of decoi	nmissior	1				
		45					s modell n safety :		amant						
		6					epts in p	0		amont					
		0	. 101	lepeat t	lie sale	ly cone	epts in p	nocess	шапар	ement					
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO2	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO3	2	2	2	1	1	-	1	1	2	2	2	1	1	2	2
CO4	2	2	2	1	2	1	1	2	2	3	3	3	2	2	3
CO5	2	3	3	2	2	1	2	2	3	3	3	2	2	3	3
CO6	2	3	2	2	2	1	2	2	3	3	2	2	2	3	3
AVERAGE	2.33	2.17	1.50	1.50	1.00	1.50	1.50	2.00	2.50	2.33	1.67	1.50	2.33	2.50	
	CORRELATION			SLIGH	T(LOV	V)	2.1	MODE	ERATE	(MEDIU	M)	3. SU	JBSTAN	TIAL(H	IGH)
	LEVELS						I								

Unit I: Introduction

Introduction to Quality concepts, Definitions of Quality, Quality control, Quality Assurance, Quality Management, Quality Management system, Total Quality Management (TQM). Four principles of TQM, Quality costs, Quality statements- Vision, Mission, Quality policy, Quality Objectives and Targets. Application of QA & QC in ship building Industry: Identification of customer requirements, QA/QC Documentation requirements, Quality Planning, skilled Labour, Competency/Training and Awareness; Design and Development; control on vendors and purchased products, operational control including control on welding processes; monitoring and measurement of processes, inspection and testing on Raw material, in-process and final product; Pre-delivery inspection including Dry surveys I & II, Different methods of NDT Testing; Dock trials and sea Trials.

Unit II: Safety, Health and Environmental Management

Introduction to safety, health and environmental management. Basic terms and their definitions. Importance of safety in petroleum and offshore industry. Safety assurance and assessment. Safety in design and operation. Organizing for safety. Hazard classification and assessment. Hazard evaluation and hazard control

Unit III: Environmental issues and Management

Atmospheric pollution. Flaring and fugitive release. Water pollution- drilling waste, produced water, oil spills, cooling water, processed water- soil water ock cutting, oil sludge, drilling solid waste, production waste. Environmental monitoring. Environmental impact and decommissioning.

Unit IV: Environmental management

Accidents modelling- release modelling. Fire and explosion modelling. Toxic release and dispersion modeling. Accident investigation and reporting. Concepts of HAZOP and PHA. Risk assessment and management. Risk picture- definition and characteristics. Risk acceptance criteria. Quantified risk assessment. Hazard assessment. Fatality risk assessment. Marine systems risk modeling. Risk management.

9 Hrs

9 Hrs

9 Hrs

Unit V: Safety Measures

Safety management concept in ships and ports and ISO certifications.

Safety measures in design and process operations- inerting, explosion, fire prevention, sprinkler systems. Principles and methods and concept optimization for offshore petroleum industry. Analysis of case studies from offshore and petroleum industry

TOTAL: 45 HOURS

REFERENCES:

- 1. Skelton, B. (1997). Process safety analysis, Gulf Publishing Company, Houston, 210pp.
- 2. Jan Erik Vinnem (2007). *Offshore Risk Assessment: Principles, Modeling and Applications of QRA studies.* Springer, 577pp.
- 3. Terje Aven and Jan Erik Vinnem. (2007). *Risk Management with applications from Offshore Petroleum Industry*. Springer, 200pp.
- 4. Jorg Schneider. (1997). *Introduction to Safety and Reliability of Structures*. Structural Engineering Documents Vol. 5, International Association for Bridge and Structural Engineering (IABSE), 138pp.
- 5. Lees, F.P. (1996). Loss Prevention in Process Industries: Hazard identification, Assessment and Control, Vol. 1-3, Butterwort-Heinemann, Oxford, 1245pp.
- 6. Patin, Stanislav. (1999). *Environmental Impact of the Offshore Oil and Gas Industry*. Eco Monitor Publishing, USA, 425pp.

William J. Cairns (Ed), 1992. North Sea Oil and the Environment: Development Oil and Gas Resources, Environmental Impacts and Responses, International Council of Oil and the Environment

Designed by "Department of Naval Architecture & Offshore Engineering"

CO32221111112211122CO423211211122211122CO5332222211223322233CO633222222223332233AVERAGE2.332.502.001.501.501.501.251.502.002.502.331.331.332.332.32.3CORRELATION LEVELS1. SLIGHT(LOW)2. MODERATE(MEDIUM)3. SUBSTANTIAL(HIGH)Unit I Defining a Work force Unit Role of Supervisors9 HUnit I Role of Supervisors9 HUnit I Managers and Middle level Managers in Work Force Management Essential Managerial Qualities and Traits. Evaluati and Assessment of Work force Performance management; Performance Appraisal9 HUnit I Muman Psychology Perceptions in different level of Work force Rectallent; Learning management and/or training management.9 HUnit IV Motivating Work force Force Management9 HHere constrains9 HReducing socio-environmental costs and risks: managing the downside, Social and environmental risk/liability management Forcasing and scheduling Labour budgeting. Workforce tracking and emvironmental risk/liability management Foreasing and schedu	PROGRA	M	BE-N	aval A	rchitect	ure & (Offshor	e Engin	eering							
CARNADIT Image: Construct of the second	Course Co	ode	Work	Foras	Manag	monti	n Induct	.	L	,	Т		Р		С	
Prerequisite course NIL (3Hrs) Course category Humanities and Social Sciences Professional Core Professional Elective Course category Basic Science Engineering Science Open Elective Management Course Objective 1 Understand the industrial organization structure ////////////////////////////////////	UANA6	11	W OFK	ronce	wianage	ment 1	11 IIICUSU	y	3		0		0		3	
Prerequisite course NIL (3Hrs) Course category Humanities and Social Science Management courses Professional Core Professional Elective Course category Basic Science Engineering Science Open Elective Mandatory Course Objective 1. Understand the industrial organization structure 2. Mandatory Course Objective 1. Understand the workforce management After completion of the course, the students will be able to: 1. Course Outcome 3. Understand the theory of monagement in industry 3. To onpute the perceptions of workforce relationship management Course Outcome 5. To define the workforce management in industry 5. To define the workforce management in industry POSCOS PO1 PO2 PO3 PO10 PO11 PO12 PS01 PS02 PS02 CO1 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2			T													
Course category Humanities and Social Sciences Management courses Professional Core Professional Elective Basic Science Engineering Science Open Elective Mandatory Course Objective 1 Understand the industrial organization structure Course Objective 1 Understand the workforce management After completion of the course, the students will be able to: 1. To investigate the organizational structure 1 Course Outcome 3. To compare the preceptions of workforce relationship management 4. To implement the theory of motivation 5. To discuss Iabor budgeting 6. To define the workforce management in industry 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 2 1 1 2 2 1 1 2				III			er VI)				(-	week		
Social Science courses Professional Core Professional Elective Basic Science Engineering Science Open Elective Mandatory Course Objective 1. Understand the industrial organization structure . Course Objective 2. Understand the organization structure . . Course Objective 3. Understand the organization structure . . Course Outcome After completion of the course, the students will be able to: . . After completion of the course, the students will be able to: . . . Course Outcome 7. To outpare the organization workforce relationship management . . POS/COS PO1 PO2 PO3 PO4 PO5 PO7 PO8 PO10 PO11 PO12 PS01 PS02 PS02 CO1 2 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 </td <td>Prerequisite</td> <td>course</td> <td></td> <td>(3Hrs)</td> <td></td> <td></td> <td></td>	Prerequisite	course											(3Hrs)			
Course category Basic Science Engineering Science Open Elective Mandatory Course Objective 1 Understand the industrial organization structure . . . Course Objective 3. Understand the industrial organization structure . . . Course Objective 3. Understand the workforce management . . . Atter completion of the course, the students will be able to: 1. Course Outcome Atter completion of the ole of managers and supervisors 7. to compare the perceptions of workforce relationship management . <						N	-		P	ofessio	nal Core	;	Profe	essional	Elective	
Basic Science Engineering Science Open Elective Mandatory Course Objective 1. Understand the industrial organization structure 1. 1. Course Objective 2. Understand the human psychology 3. Understand the workforce management After completion of the course, the students will be able to: 1. 1. To investigate the organizational structure Course Outcome 3. To inplement the theory of motivation 5. To stude the role of managers and supervisors 3. To compare the perceptions of workforce relationship management 4. To implement the theory of motivation 5. To define the workforce management in industry 6. To define the workforce management in industry POSCOS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS0 CO3 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 3 </td <td>Course cate</td> <td>aory</td> <td>300</td> <td></td> <td>ences</td> <td></td> <td>cours</td> <td>68</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Course cate	aory	300		ences		cours	68								
Dask Schee Science Open Dick Mandadory Course Objective 1. Understand the industrial organization structure 2. 1. Understand the human psychology 3. Understand the workforce management After completion of the course, the students will be able to: 1. 1. Course Objective 3. Understand the workforce management the able to: 1. 1. To wate the role of managers and supervisors Course Outcome 3. To compare the perceptions of workforce relationship management 4. To implement the theory of motivation 5. To discuss labor budgeting 6. To define the workforce management in industry 2 POS/COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS02 CO1 2 2 1 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2	course eat	5501y					Enginee	ring								
Course Objective 1. Understand the human psychology 3. Understand the human psychology 3. Understand the workforce management After completion of the course, the students will be able to: 1. 10 investigate the organizational structure 2. To value the role of managers and supervisors 3. 1. To investigate the organizational structure 2. To value the role of managers and supervisors 3. To compare the perceptions of workforce relationship management 4. To implement the theory of motivation 5. To discuss labor budgeting 6. To define the workforce management in industry POS/COS POI PO2 PO3 POA POS POO PO0 PO1 PO11 PO12 PSO2 PSO2 CO3 2 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3			Ba	sic Scie	ence					Open E	lective			Mandate	ory	
Course Objective 2. Understand the human psychology 3. Understand the workforce management After completion of the course, the students will be able to: 1. To investigate the organizational structure 2. To value the role of managers and supervisors 3. To compare the perceptions of workforce relationship management. 4. To implement the theory of motivation 5. To define the workforce management in industry POS/COS POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO11 PO12 PS01 PS02 PS02 CO2 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 3 3 2<										V	(
Course Objective 2. Understand the human psychology 3. Understand the workforce management After completion of the course, the students will be able to: 1. To investigate the organizational structure 2. To value the role of managers and supervisors 3. To compare the perceptions of workforce relationship management 4. To implement the theory of motivation 5. To define the workforce management in industry POS/COS POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO11 PO12 PS01 PS02 PS02 CO1 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 </td <td></td> <td></td> <td>1</td> <td>. Unc</td> <td>lerstand</td> <td>the in</td> <td>dustrial</td> <td>organi</td> <td>zation s</td> <td>tructur</td> <td>e</td> <td>·</td> <td></td> <td></td> <td></td> <td></td>			1	. Unc	lerstand	the in	dustrial	organi	zation s	tructur	e	·				
3. Understand the workforce management After completion of the course, the students will be able to: 1. To investigate the organizational structure 2. To value the role of managers and supervisors 3. To compare the perceptions of workforce relationship management 4. To implement the theory of motivatio 5. To discuss labor budgeting 6. To define the workforce management in industry POS/COS POI POS 2 2 1 1 1 2 1 1 2 2 CO1 2 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 3 3	Course Obj	ective														
After completion of the course, the students will be able to: To investigate the organizational structure To value the role of managers and supervisors To compare the perceptions of workforce relationship management To discuss labor budgeting To discuss labor budgeting To define the workforce management in industry POS/COS POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS0 CO1 2 2 2 2 - 1 - 1 - 1 1 2 2 1 1 2 2 CO3 2 2 2 2 2 - 1 - 1 - 1 1 2 2 3 3 2 CO4 2 3 2 1 2 1 2 1 1 2 1 1 2 2 3 3 3 CO5 3 3 2 2 2 2 2 1 2 3 2 3 3 CO6 3 3 3 2 2 2 2 2 1 2 3 3 3 2 2 3 3 CO6 3 3 3 2 2 2 2 2 1 2 3 3 3 3 2 2 3 3 CO6 3 3 3 2 2 2 3 2 3 3 3 3 2 2 9 3 3 CO7 CO5 2 0 0 1.50 1.50 1.50 1.25 1.50 2.00 2.50 2.33 1.33 1.33 2.33 2.3 CO7 CO5 2 0 2.00 1.50 1.50 1.50 1.25 1.50 2.00 2.50 2.33 1.33 1.33 2.33 2.3 CO7 CO5 C 7 C06 7 SO 7 S							-	-								
Image: Course Outcome 1. To investigate the organizational structure 2. To value the role of managers and supervisors 3. To compare the perceptions of workforce relationship management 4. To implement the theory of motivation 5. To discuss labor budgeting 6. To discuss labor budgeting 6. To discuss labor budgeting 7.002 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 3 3 2 2 3 3 3 2 2 3 3 3 2									-	he ahle	to:					
Course Outcome 2. To value the role of managers and supervisors 3. To compare the perceptions of workforce relationship management. 4. To implement the theory of motivation 5. To discuss labor budgeting 6. To define the workforce management in industry POS/COS PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS02 CO1 2 2 2 - 1 - - 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2 2 3 3 3 2																
Course Outcome 3. To compare the perceptions of workforce relationship management 4. To implement the theory of motivation 5. To discuss labor budgeting 6. To discuss labor budgeting 6. To discuss labor budgeting 6. To discuss labor budgeting 7. To discuss labor budgeting 7. Old 2 2 2 1 1 2 2 1 1 2 2 CO2 2 2 2 1 1 1 2 2 1 1 2 2 CO3 2 2 2 1 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 3 2 2 3 </td <td></td>																
4. To implement the theory of motivation 5. To discuss labor budgeting 6. To define the workforce management in industry POS/COS POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS02 CO1 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 1 1 2 2 3 3 2 2	0										ionship r	nanagen	nent			
6. To define the workforce management in industry POS/COS POI PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS02 CO1 2 2 2 1 1 - - 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 1 2 2 <t< td=""><td>Course Out</td><td>come</td><td>4</td><td>. To i</td><td>implem</td><td>ent the</td><td>theory</td><td>of moti</td><td>vation</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Course Out	come	4	. To i	implem	ent the	theory	of moti	vation							
POS/COSPO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PS01PS02PS02CO1222211-11221122CO2222211-11221122CO3222211111221122CO4232122112221122CO533222211223332233CO63322221151.501.501.501.331.331.331.332.332.32.3CORRELATION LEVELS1. SLIGHT(LOW)2. MODERATE(MEDIUM)3. SUBSTANTIAL(HIGH, Work Force9 HTypical Industrial Organisation structure; function and responsibilities of each department/sections. Role of HRM department work Force Administration - Payroll and benefits; Time and attendance; Discipline; Work Force Welfare9 HLine Managers and Middle level Managers in Work Force Management Essential Managerial Qualities and Traits. Evaluati and Assessment of Work force Relationship Management; People skills. Talent management -Developing the wo force talent; Learning management and/or training management.<			5													
CO1222-111221122CO22222111112211122CO322221111112211122CO42321221112221122CO53322222223332233CO63322222223332233AVERAGE2.332.502.001.501.501.501.502.002.502.331.331.332.332.3CORRELATION1. SLIGHT(LOW)2. MODERATE(MEDIUM)3. SUBSTANTIAL(HIGH)3. SUBSTANTIAL(HIGH)1. </td <td></td> <td></td> <td>6</td> <td>. To (</td> <td>define t</td> <td>he wor</td> <td>kforce 1</td> <td>nanage</td> <td>ment ir</td> <td>indust</td> <td>ry</td> <td></td> <td></td> <td></td> <td></td> <td></td>			6	. To (define t	he wor	kforce 1	nanage	ment ir	indust	ry					
CO1222-111221122CO22222111112211122CO322221111112211122CO42321221112221122CO53322222223332233CO63322222223332233AVERAGE2.332.502.001.501.501.501.251.502.002.502.331.331.332.332.32.3CORELATION LEVELS1. SLIGHT(LOW)2. MODERATE(MEDIUM)3. SUBSTANTIAL(HIGH)3. SUBSTANTIAL(HIGH)9.Unit I Defining a Work force Ver Administration - Payroll and benefits; Time and attendance; Discipline; Work Force Welfare Unit I Role of Supervisors9.Unit II Role of Supervisors9.9.Unit II Human Psychology9.9.Perceptions in different level of Work force Relationship Management; People skills. Talent management -Developing the work force ManagementUnit IV Motivating Work force9.9.Theory of	DOG/COG	DO1	DO2	DO2	DO4	DO5	DOC	DO7	DO9	DOO	DO10	DO11	DO12	DCO1	DEO2	DCO2
CO22221111112211122CO32222111111222111122211122211112111111111111222111111111111111111111111<																
CO3222111 <t< td=""><td></td><td></td><td></td><td colspan="12"></td></t<>																
CO4232121122321122CO5332222123332233CO63322222233322233AVERAGE2.332.502.001.501.501.501.251.502.002.502.331.331.332.332.3CORRELATION1.SLIGHT(LOW)2.MODERATE(MEDIUM)3.SUBSTANTIAL(HIGH)Unit I Defining a Work force9 HTypical Industrial Organisation structure; function and responsibilities of each department/sections. Role of HRM departmentWork Force Administration - Payroll and benefits; Time and attendance; Discipline; Work Force Welfare9 HUnit II Role of Supervisors9 HLine Managers and Middle level Managers in Work Force Management Essential Managerial Qualities and Traits. Evaluatiand Assessment of Work force Performance management; Performance Appraisal9 HUnit II Human Psychology9 HPerceptions in different level of Work force Relationship Management; People skills. Talent management -Developing the work force ManagementUnit IV Motivating Work force9 HUnit V Workforce Management9 HVerkforce Management9 HVorkforce Management9 HCore Conformance to schedule9 HTotal: 45 Hou <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td></th<>																2
CO53322221233322233CO633222222233322233AVERAGE2.332.502.001.501.501.501.251.502.002.502.331.331.332.332.3CORRELATION1.SLIGHT(LOW)2.MODERATE(MEDIUM)3.SUBSTANTIAL(HIGH)Unit I Defining a Work force9 HTypical Industrial Organisation structure; function and responsibilities of each department/sections. Role of HRM departmentWork Force Administration - Payroll and benefits; Time and attendance; Discipline; Work Force Welfare9 HUnit II Role of Supervisors9 HLine Managers and Middle level Managers in Work Force Management Essential Managerial Qualities and Traits. Evaluatiand Assessment of Work force Performance management; Performance Appraisal9 HUnit II Human Psychology9 HPerceptions in different level of Work force9 HUnit IV Motivation; Case Studies Career and succession planning / talent acquisition Management of Contractors and Force Studies and risks: managing the downside, Social and environmental risk/liability managementUnit IV Workforce Management9 HReducing socio-environmental costs and risks: managing the downside, Social and environmental risk/liability managementAdherence / conformance to schedule1.Total: 45 HouTotal:																2
CO6332222223332233AVERAGE2.332.502.001.501.501.501.251.502.002.502.331.331.332.332.332.33CORRELATION LEVELS1. SLIGHT(LOW)2. MODERATE(MEDIUM)3. SUBSTANTIAL(HIGH)Unit I Defining a Work force Work Force Administration - Payroll and benefits; Time and attendance; Discipline; Work Force Welfare Unit I Role of Supervisors Line Managers and Middle level Managers in Work Force Management Essential Managerial Qualities and Traits. Evaluati and Assessment of Work force Performance management; Performance Appraisal Unit II Human Psychology Perceptions in different level of Work force Relationship Management; People skills. Talent management -Developing the wor force talent; Learning management and/or training management. Unit IV Motivation; Case Studies Career and succession planning / talent acquisition Management of Contractors and I work force Management Pure Vorkforce Management Adherence / conformance to schedule9 H 																3
CORRELATION LEVELS 1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH) Unit I Defining a Work force 9 H Typical Industrial Organisation structure; function and responsibilities of each department/sections. Role of HRM departmen Work Force Administration - Payroll and benefits; Time and attendance; Discipline; Work Force Welfare 9 H Unit II Role of Supervisors 9 H Line Managers and Middle level Managers in Work Force Management Essential Managerial Qualities and Traits. Evaluatie and Assessment of Work force Performance management; Performance Appraisal 9 H Perceptions in different level of Work force Relationship Management; People skills. Talent management -Developing the work force talent; Learning management and/or training management. 9 H Unit IV Motivating Work force 9 H Theory of Motivation; Case Studies Career and succession planning / talent acquisition Management of Contractors and F work force Management 9 H Reducing socio-environmental costs and risks: managing the downside, Social and environmental risk/liability management Forecasting and scheduling Labour budgeting. Workforce tracking and emergency assist Absence and leave management edherence / conformance to schedule 9 H TEXT BOOKS 1. Layman's Guide to Workforce Management: A Guide to Workforce Optimization and Life-cycle REFERENCE BOOKS 1. Workforce Asset Management Book of Knowledge		3	3	2	2	2	2	2	2	3	3	3	2	2	3	3
LEVELS 1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH, Unit I Defining a Work force 9 H Typical Industrial Organisation structure; function and responsibilities of each department/sections. Role of HRM departmen Work Force Administration - Payroll and benefits; Time and attendance; Discipline; Work Force Welfare 9 H Unit II Role of Supervisors 9 H Line Managers and Middle level Managers in Work Force Management Essential Managerial Qualities and Traits. Evaluatia and Assessment of Work force Performance management; Performance Appraisal 9 H Unit III Human Psychology 9 H Perceptions in different level of Work force Relationship Management; People skills. Talent management -Developing the wor force talent; Learning management and/or training management. 9 H Unit IV Motivating Work force 9 H Refere Management 9 H New K force Management 9 H Preceptions in different level of Work force Relationship Management; People skills. Talent management -Developing the wor force datent; Learning management and/or training management. 9 H Unit IV Motivating Work force 9 H Refere Management 9 H Reducing socio-environmental costs and risks: managing the downside, Social and environmental risk/liability management Forecasting and scheduling Labour budgeting. Workforce tracking and emergency assist Absence	AVERAGE	2.33	2.50	2.00	1.50	1.50	1.50	1.25	1.50	2.00	2.50	2.33	1.33	1.33	2.33	2.33
LEVELS 9 H Unit I Defining a Work force 9 H Typical Industrial Organisation structure; function and responsibilities of each department/sections. Role of HRM departmen Work Force Administration - Payroll and benefits; Time and attendance; Discipline; Work Force Welfare 9 H Unit II Role of Supervisors 9 H Line Managers and Middle level Managers in Work Force Management Essential Managerial Qualities and Traits. Evaluatie and Assessment of Work force Performance management; Performance Appraisal 9 H Unit III Human Psychology 9 H Perceptions in different level of Work force Relationship Management; People skills. Talent management -Developing the work force talent; Learning management and/or training management. 9 H Unit IV Motivating Work force 9 H Theory of Motivation; Case Studies Career and succession planning / talent acquisition Management of Contractors and twork force Management 9 H Reducing socio-environmental costs and risks: managing the downside, Social and environmental risk/liability management Adherence / conformance to schedule 9 H Texts BOOKS 1. Layman's Guide to Workforce Management: A Guide to Workforce Optimization and Life-cycle REFERENCE BOOKS 1. Workforce Asset Management Book of Knowledge			N	1	SLIGH	TUO	V)	2	MODE	RATE	(MEDII	(M)	3 SI	IBSTAN	TIAL (H	IGH)
Typical Industrial Organisation structure; function and responsibilities of each department/sections. Role of HRM department Work Force Administration - Payroll and benefits; Time and attendance; Discipline; Work Force Welfare Unit II Role of Supervisors 9H Line Managers and Middle level Managers in Work Force Management Essential Managerial Qualities and Traits. Evaluatie and Assessment of Work force Performance management; Performance Appraisal Unit III Human Psychology 9H Perceptions in different level of Work force Relationship Management; People skills. Talent management -Developing the work force talent; Learning management and/or training management. Unit IV Motivating Work force 9 9H Theory of Motivation; Case Studies Career and succession planning / talent acquisition Management of Contractors and F work force Management Unit V Workforce Management 9 9H Reducing socio-environmental costs and risks: managing the downside, Social and environmental risk/liability management Forecasting and scheduling Labour budgeting. Workforce tracking and emergency assist Absence and leave management Adherence / conformance to schedule Total: 45 Hou TEXT BOOKS 1. Layman's Guide to Workforce Management: A Guide to Workforce Optimization and Life-cycle REFERENCE BOOKS 1. Workforce Asset Management Book of Knowledge					SLIGH		()	2.	WIODI		(MLDIC	(111)	5.50	DSTAN		
Work Force Administration - Payroll and benefits; Time and attendance; Discipline; Work Force Welfare 9 H Unit II Role of Supervisors 9 H Line Managers and Middle level Managers in Work Force Management Essential Managerial Qualities and Traits. Evaluaties and Assessment of Work force Performance management; Performance Appraisal 9 H Unit III Human Psychology 9 H Perceptions in different level of Work force Relationship Management; People skills. Talent management -Developing the work force talent; Learning management and/or training management. 9 H Unit IV Motivating Work force 9 H Theory of Motivation; Case Studies Career and succession planning / talent acquisition Management of Contractors and H work force Management 9 H Reducing socio-environmental costs and risks: managing the downside, Social and environmental risk/liability management Adherence / conformance to schedule 9 H Text BOOKS 1. Layman's Guide to Workforce Management: A Guide to Workforce Optimization and Life-cycle REFERENCE BOOKS 1. Workforce Asset Management Book of Knowledge						c	1			C 1		. /				9 Hrs
Unit II Role of Supervisors 9 H Line Managers and Middle level Managers in Work Force Management Essential Managerial Qualities and Traits. Evaluatie and Assessment of Work force Performance management; Performance Appraisal 9 H Unit III Human Psychology 9 H Perceptions in different level of Work force Relationship Management; People skills. Talent management -Developing the work force talent; Learning management and/or training management. 9 H Unit IV Motivating Work force 9 H Theory of Motivation; Case Studies Career and succession planning / talent acquisition Management of Contractors and F 9 H Reducing socio-environmental costs and risks: managing the downside, Social and environmental risk/liability management 9 H Text BOOKS 1. Layman's Guide to Workforce Management: A Guide to Workforce Optimization and Life-cycle REFERENCE BOOKS 1. Workforce Asset Management Book of Knowledge															M depar	tment –
Line Managers and Middle level Managers in Work Force Management Essential Managerial Qualities and Traits. Evaluatie and Assessment of Work force Performance management; Performance Appraisal Unit III Human Psychology 9 H Perceptions in different level of Work force Relationship Management; People skills. Talent management -Developing the work force talent; Learning management and/or training management. Unit IV Motivating Work force 9 H Theory of Motivation; Case Studies Career and succession planning / talent acquisition Management of Contractors and F work force Management Unit V Workforce Management 9 H Reducing socio-environmental costs and risks: managing the downside, Social and environmental risk/liability management Forecasting and scheduling Labour budgeting. Workforce tracking and emergency assist Absence and leave management Adherence / conformance to schedule TeXT BOOKS 1. Layman's Guide to Workforce Management: A Guide to Workforce Optimization and Life-cycle REFERENCE BOOKS 1. Workforce Asset Management Book of Knowledge				•	on and	benefit	s; 11me	e and at	tendand	e; Disc	sipline; v	VOIK FOI	ce went	are		9 Hrs
and Assessment of Work force Performance management; Performance Appraisal Unit III Human Psychology Perceptions in different level of Work force Relationship Management; People skills. Talent management -Developing the work force talent; Learning management and/or training management. Unit IV Motivating Work force 9 H Theory of Motivation; Case Studies Career and succession planning / talent acquisition Management of Contractors and F work force Management 9 H Reducing socio-environmental costs and risks: managing the downside, Social and environmental risk/liability management Forecasting and scheduling Labour budgeting. Workforce tracking and emergency assist Absence and leave management Adherence / conformance to schedule Text BOOKS 1. Layman's Guide to Workforce Management: A Guide to Workforce Optimization and Life-cycle REFERENCE BOOKS 1. Workforce Asset Management Book of Knowledge		-			Aanagei	·s in W	ork Fo	rce Mai	nageme	nt Esse	ntial Ma	nagerial	Qualitie	es and Tr	aits Eva	
Unit III Human Psychology 9 H Perceptions in different level of Work force Relationship Management; People skills. Talent management -Developing the work force talent; Learning management and/or training management. 9 H Unit IV Motivating Work force 9 H Theory of Motivation; Case Studies Career and succession planning / talent acquisition Management of Contractors and H work force Management 9 H Unit V Workforce Management 9 H Reducing socio-environmental costs and risks: managing the downside, Social and environmental risk/liability management 9 H Forecasting and scheduling Labour budgeting. Workforce tracking and emergency assist Absence and leave management Adherence / conformance to schedule TEXT BOOKS 1. Layman's Guide to Workforce Management: A Guide to Workforce Optimization and Life-cycle REFERENCE BOOKS 1. Workforce Asset Management Book of Knowledge												inagerrai	Quantite	b und 11	uno. Dvu	indution
Perceptions in different level of Work force Relationship Management; People skills. Talent management -Developing the work force talent; Learning management and/or training management. Unit IV Motivating Work force 9 H Theory of Motivation; Case Studies Career and succession planning / talent acquisition Management of Contractors and H work force Management 9 H Reducing socio-environmental costs and risks: managing the downside, Social and environmental risk/liability management Forecasting and scheduling Labour budgeting. Workforce tracking and emergency assist Absence and leave management Adherence / conformance to schedule Total: 45 Hou TEXT BOOKS 1. Layman's Guide to Workforce Management: A Guide to Workforce Optimization and Life-cycle REFERENCE BOOKS 1. Workforce Asset Management Book of Knowledge							0	- , -		· · · ·						9 Hrs
Unit IV Motivating Work force 9 H Theory of Motivation; Case Studies Career and succession planning / talent acquisition Management of Contractors and H work force Management 9 H Unit V Workforce Management 9 H Reducing socio-environmental costs and risks: managing the downside, Social and environmental risk/liability management 9 H Forecasting and scheduling Labour budgeting. Workforce tracking and emergency assist Absence and leave management Adherence / conformance to schedule Total: 45 Hou TEXT BOOKS 1. Layman's Guide to Workforce Management: A Guide to Workforce Optimization and Life-cycle REFERENCE BOOKS 1. Workforce Asset Management Book of Knowledge					ork forc	e Relat	ionship	Manag	gement	People	e skills. T	alent m	anageme	nt -Deve	loping th	ne work
Theory of Motivation; Case Studies Career and succession planning / talent acquisition Management of Contractors and H work force Management 9 H Reducing socio-environmental costs and risks: managing the downside, Social and environmental risk/liability management Forecasting and scheduling Labour budgeting. Workforce tracking and emergency assist Absence and leave management Adherence / conformance to schedule Total: 45 Hou TEXT BOOKS 1. Layman's Guide to Workforce Management: A Guide to Workforce Optimization and Life-cycle REFERENCE BOOKS 1. Workforce Asset Management Book of Knowledge	force talent;	Learnin	ig mana	igemen	t and/or	trainir	ig mana	igemen	t.							
work force Management Unit V Workforce Management Reducing socio-environmental costs and risks: managing the downside, Social and environmental risk/liability management Forecasting and scheduling Labour budgeting. Workforce tracking and emergency assist Absence and leave management Adherence / conformance to schedule Total: 45 Hou TEXT BOOKS 1. Layman's Guide to Workforce Management: A Guide to Workforce Optimization and Life-cycle REFERENCE BOOKS 1. Workforce Asset Management Book of Knowledge																9 Hrs
Unit V Workforce Management 9 H Reducing socio-environmental costs and risks: managing the downside, Social and environmental risk/liability management Forecasting and scheduling Labour budgeting. Workforce tracking and emergency assist Absence and leave management Adherence / conformance to schedule Total: 45 Hou TEXT BOOKS 1. Layman's Guide to Workforce Management: A Guide to Workforce Optimization and Life-cycle REFERENCE BOOKS 1. Workforce Asset Management Book of Knowledge				e Studi	es Care	er and	succes	sion pla	anning	/ talent	acquisit	ion Mar	nagemen	t of Con	tractors	and his
Reducing socio-environmental costs and risks: managing the downside, Social and environmental risk/liability management Forecasting and scheduling Labour budgeting. Workforce tracking and emergency assist Absence and leave management Adherence / conformance to schedule Total: 45 Hour TEXT BOOKS 1. Layman's Guide to Workforce Management: A Guide to Workforce Optimization and Life-cycle REFERENCE BOOKS 1. Workforce Asset Management Book of Knowledge		0														
Forecasting and scheduling Labour budgeting. Workforce tracking and emergency assist Absence and leave manageme Adherence / conformance to schedule Total: 45 Hou TEXT BOOKS 1. Layman's Guide to Workforce Management: A Guide to Workforce Optimization and Life-cycle REFERENCE BOOKS 1. Workforce Asset Management Book of Knowledge									4	1. C	: . 1 I .			1- /1: -1- :1:		9 Hrs
Adherence / conformance to schedule Total: 45 Hou TEXT BOOKS 1. Layman's Guide to Workforce Management: A Guide to Workforce Optimization and Life-cycle REFERENCE BOOKS 1. Workforce Asset Management Book of Knowledge																
Total: 45 Hou TEXT BOOKS 1. Layman's Guide to Workforce Management: A Guide to Workforce Optimization and Life-cycle REFERENCE BOOKS 1. Workforce Asset Management Book of Knowledge	0		•			getting.	WORKI	sice tra	icking	and en	lergency	assist A	Absence	and leav	ve mana	gement
 TEXT BOOKS Layman's Guide to Workforce Management: A Guide to Workforce Optimization and Life-cycle REFERENCE BOOKS Workforce Asset Management Book of Knowledge 	Adherence /	comor		0 serieu	uic									Г	Fotal: 45	Hours
 Layman's Guide to Workforce Management: A Guide to Workforce Optimization and Life-cycle REFERENCE BOOKS Workforce Asset Management Book of Knowledge 	TEXT BOO	KS													101411-10	Hours
1. Workforce Asset Management Book of Knowledge			Guide to	o Work	force M	anager	nent: A	Guide	to Wor	kforce	Optimiza	ation and	l Life-cy	cle		
1. Workforce Asset Management Book of Knowledge						0					-		5			
						-										
	1. Wo	rkforce	Asset M	Manage	ment B	ook of	Knowl	edge								
Designed by "Department of Naval Architecture & Offshore Engineering"	Designed by			" D		() T		1 4	0.0	CC 1	F :	• • •				

Designed by	"Department of Naval Architecture & Offshore Engineering"

PROGRA	M	BE-N	aval A	rchitect	ure & (Offshore	e Engin	eering							
		SHIP		ESIGN			ATION		,	Т		Р		С	
Course Co UANA6F		DRA	WING	&	DRAF	TING	– IV	/ 0		0		4		2	
UANAOI	Л	SDCA	ADD-IV	V				0		0		4		2	
Year and Ser	nastar		III	Year (amaata	w VI)		-			T erret e e t 1				
Prerequisite of			111	,	NIL	er v I)						nours per (4Hrs)	week		
Trerequisite	Jourse	Hui	nanitie		1	Aanage	ment	_				, ,			
			ial Scie		_	cours		P	ofessio	onal Core	•	Profe	essional	Elective	
Course cate	gory									\checkmark					
		Ba	sic Scie	ence	1	Enginee			Open F	lective			Mandate	orv	
						Scien	ce		-1					- J	
		1 =													
Course Ohio			-	-	-	-	mic cal			-	1.				
Course Obje	ective	2. 10	study	various	types of	of outfit	ting equ	upmer	it's & t	he corres	sponding	arrange	ments		
		Aftor	aomnl	tion of	the eet	urea the	e studen	to 11	ha ahla	to					
			-							. 10.					
							lations r action	-							
						ig calcu									
Course Outo	come					on prot									
						-	culatior	ı							
					-	-	sses ope								
			1	1	1	1				n	n	1		1	•
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 CO2	2	2	2 2 - 1 - 1 1 2 2 1 1 2 2 2 2 - 1 - 1 1 2 2												2
CO2 CO3	2	2	2	- 1	1	- 1	- 2	1	1 2	2	2	1	1	2	2
CO4	2	3	3	1	2	1	2	2	3	3	2	2	1	2	3
CO5	3	3	3	2	2	1	1	2	3	2	1	2	2	3	3
CO6	3	2	3	2	2	1	1	2	2	1	1	2	2	3	3
AVERAGE	2.33	2.33	2.50	1.50	1.50	1.00	1.50	1.50	2.00	2.00	1.67	1.50	1.33	2.33	2.50
CORREL		N	1.	SLIGH	IT(LOV	V)	2.	MODE	ERATE	(MEDIU	JM)	3. SU	BSTAN	TIAL(H	IGH)
LEV		DIMEN				<i>,</i>					,				
1. Types				ional	nolveie	rociet	nco on	d nou	or our		ulation	of ship	rosistor	a k no	wor
estimation						, 105150	ance an	u pow	ci cui	ves, care	ulation	or sinp	resistan	c a po	wei
2. Methods					-	a. relatio	on of hu	ıll forn	to resi	istance.					
	· · · r · ·	6				.,									
3. Powerin	g of sh	ips, the	ory of p	oropelle	er action	n, desig	n of pro	pellers	and pi	opeller o	drawings	, shaft li	ne drawi	ng,	
4. Dimensi	ional ar	alysis,	interac	tion bet	tween h	ull & p	ropeller	, propi	ulsion to	ests, obta	aining re	sults from	n tests.		
5. Sea keej	ping cal	lculatio	n, type	s of rud	ders, de	esign of	rudder	& drav	wings, I	hull vibr	ations.				
6. Arrange	ment o	f cargo	holds,	engine	room, t	anks, a	ccommo	odatior	area, a	and out f	ittings, I	Door plai	ı, Desigi	n & draw	ving
of various	types o	f doors	and ha	tches.											
													TOTA	AL: 60 H	OURS
TEXT BOO															
							, reed E	Elsevier	India	pvt 1mt,2	010				
2. Prin	ciple of	f naval	archite	cture, v	ol I II &	& Ш.									
REFERENC															
		rd, ship										e enginee	ers,1980		
Designed by	1. Robert Taggard, ship design & construction, The society of naval architecture & marine engineers, 1980Designed by"Department of Naval Architecture & Offshore Engineering"														

	M	BE-Na	aval Ar	chitect	ure & C	Offshore	e Engine	ering							
Course Co	ode		WARE		BORAT					Т		Р		С	
UANA6P	PB	SESA	М					C)	0		2		1	
Year and Sen			III	,	semeste	r VI)				(nours per	week		
Prerequisite c	course				NIL	-		_				(2Hrs)			
			nanities		Ν	lanager		P	rofessio	onal Core	;	Profe	essional	Elective	
Course este		5001	al Scie	ences		course	es	_	~	/					
Course cate	egory				F	Enginee	ring		•						
		Bas	sic Scie	ence	L	Science			Open E	Elective			Mandate	ory	
						Berein									
		1.Und	erstand	l the de	sign sof	ftware	SESAM	1							
Course Obje	ective				-		e structi		sing sof	tware					
j-		2.0114	er starre		51811 01	01101101	0 501 0000			e i i ui e					
		After of	comple	tion of	the cou	rse, the	student	ts will	be able	e to:					
			-				re using								
				-			rials in s								
					ket leg s			,011 w a							
Course Outc	come			-	-										
			-		e load c		•								
							odelling	-							
		6. To	state th	he use of	of softw	are wit	hout the	help	of instru	uctors					
POS/COS	PO1	PO2	To state the use of software without the help of instructorsO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PSO1PSO2PSO3												
CO1	2	2	2	-	105	-	-	1	1	2	2	1	1	2	2
CO2	2	2	2	-	1	-	-	1	1	2	2	1	1	2	2
CO3	2	2	2	1	1	-	1	1	2	2	2	1	1	2	2
CO4	3	3	3	1	1	1	1	2	2	3	3	2	2	3	3
CO5	3	3	3	2	2	1	2	2	3	3	3	2	2	3	3
CO6	2	2	1	2	2	2	2	2	3	3	2	2	3	2	2
AVERAGE	2.33	2.33	2.17	1.50	1.33	1.33	1.50	1.50	2.00	2.50	2.33	1.50	1.67	2.33	2.33
CORREI LEV		N	1.	SLIGH	IT(LOV	V)	2.1	MODE	ERATE	(MEDIU	JM)	3. SU	BSTAN	TIAL(H	IGH)
LIST OF EX		MENTS													
				ket Str	ucture n	nodelliı	าด								
		ctions a					-0								
	-														
	-	-		-	pside st	ructure									
		eling Lo		-	sis										
5. Envi	ironme	ntal moo	deling	Soil											
(D'1	modeli	ng Pile	soil int	eractio	n										
6. Pile													ΤΟΤΑ	L HOU	RS: 30
6. Pile															
TEXT BOO															
		IANUA	LS												
TEXT BOOI 1. DNV SES	SAM M		LS												
TEXT BOO	SAM M CE BOO	OKS:		ANUAI	LS										

Designed by

"Department of Naval Architecture & Offshore Engineering"

Course Code		DLI	avai 71	rennee		Olisii	ore Eng	L	<u>т</u> Т			Р		С			
UANA6PC	2	MINO	OR PR	OJECI			-	0	0			3		2			
UANADIC								0	0			5		2			
Year and Seme	ster		III Y	ear (se	mester	VI)				Conta	act hou	irs per	week				
Prerequisite cou	ırse			N	L						(3H	Hrs)					
		Hun	nanities	s and	Ma	inagen	nent	Pro	fession	al		Profess	ional E	llootive			
		Soci	ial Scie	ences		course	s		Core			FIOLESS			-		
Course catego	ory								\checkmark								
		Bas	Basic Science Engineering Science Open Elective Mandatory											ry			
Course Object	·	Τ				4 :	1	al architecture and offshore engineering									
Course Object	ive						the stuc					gineeri	ng				
Course Outcor	ne	3	. Ske . Pre . Per	etch lin dict the form tl	es plan e sea ro he basio	and goute of the design	ensions general a coperati gn rameter	arrange ion	ement f	or the	given	vessel					
POS/COS	PO1	PO 2	PO3	PO 4	PO5	PO 6	PO7	PO 8	PO9	PO 10	PO1 1	PO 12	PS O1	PS O2	F C		
CO1	3	3	3	2	1	1	1	1	1	2	2	1	2	3			
CO2	3	3	3	2	1	1	1	1	1	2	2	1	3	3			
CO3	3	3	3	2	1	1	1	1	2	2	2	1	3	3			
CO4	3	3	3	2	1	1	1	1	2	2	2	1	3	3			
CO5	2	2	2	1	1	1	1	1	2	2	2	1	2	2			
CO6	2	2	1	1	1	1	1	1	2	2	2	1	2	2			
Average	2.7	2.7	2.5	1.7	1	1	1	1	1.7	2	2	1	2.5	2.7	2		
	CORRELATION LEVELS 1. SLIGHT					T(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL											

The students will be allotted anyone-ship/offshore engineering project for the design work and they will complete the Project in Semester-VII by doing design calculations and drawings and submit the Project Report for evaluation.

REFERENCES

- 1. Practical Ship Hydrodynamics. Volker Bertram, Butterworth-Heinemann, 2000
- 2. Dynamics of Marine Vehicles, R Bhattacharya, 1978

Designed by	"Department of Naval Architecture & Offshore Engineering"
-------------	---

SEMESTER VII

PROGRA	AM	BE-N	Vaval .	Archit	ecture	& Off	shore	Engine	eering						
Course Co	ode				shore S			I		Т		Р		С	
UANA7	02								3	1		0		4	
													•		
Year an Semeste			IV	Year (s	semest	er VII)			C	ontact h	ours po	r wook		
Prerequis										C		4Hrs)	I WEEK		
course				l	NIL						(41113)			
				es and		Manag	ement		Profes	sional		Profe	ssional	Flectiv	a
Course		Soc	cial Sc	iences		coui	ses		Co			11010	SSIOIIdi	Licetiv	0
categor					_				v	/					
	5	Ba	sic Sc	ience		Engine Scie	-	(Open E	lective			Mandat	ory	
		1.	. To	expla	ain the	e basi	c prir	nciples	in h	ydrody	namics,	dynar	nics, a	nd stru	ctural
Course	•										uctures				
Objectiv	/e	2	. To	apply	structu	ıral dy	namic	princi	ples in	the ana	alysis o	f offsho	re struct	tures.	
		3.			ss abo										
		After	comp	oletion	of the	cours	e, the s	studen	ts will	be able	to:				
		1	 Explain the basic steps in structural dynamics. Formulate a structural model and natural forces imposed by the ocean environment. 												
		2											ocean	environ	ment.
Course	•	3									structur				
Outcom	e	4									structu				
		5	. Pra	ctice	dynam	ic ana	alysis	metho	dology	on of	fshore	structu	e on e	xtreme	wave
				ndition											
		6							1	ructure		1	1	1	1
POS/COS	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
CO1	1 3	22	3	4	5	6	7	8	9	0	1	2	1 3	2	3
CO1 CO2	2	3	3		3	- 3	-	-	-	-	-	-	1	2	- 3
CO2 CO3	2	3	3	2	3	2	_	_	-	_	_	_	1	3	3
CO4	2	3	3	2	3	3	-	-	-	-	-	-	2	3	3
CO5	2	3	3	1	2	3	-	-	-	-	-	-	1	3	3
CO6	3	1	2	3	3	3	-	-	-	-	-	-	1	3	3
AVERA GE	2.4	2.5	2.8	2	2.8	2.3	-	-	-	-	-	-	1.5	2.7	2.3
CORREI		N	1.	SLIGH	HT(LOV	W)	2.	MODI	ERATE	(MEDIU	JM)	3. SU	BSTAN	TIAL(H	IIGH)
UNIT 1: F		AME	NTAL	S OF	STRU	CTU	RALI	OYNA	MICS			1		1	2 Hrs

UNIT 1: FUNDAMENTALS OF STRUCTURAL DYNAMICS

Fundamental of structural dynamics. Introduction to different types of ocean structures - Development of structural forms for deep and ultra-deep waters - Environmental forces - Structural action of ocean structures -Introduction to structural dynamics - Characteristics of single degree-of-freedom model - Methods of writing equation of motion: comparison of methods - Free and forced vibration of single degree-of-freedom systems -Undamped and damped systems

UNIT I1: EQUATION OF MOTION

Formulation of equation of motion - Examples - Coulomb damping - Comparison of damped and undamped forced vibration - response build up.Estimate of damping: Classical damping, Rayleigh and Caughey -Damping by mode superposition - Numerical problems in single degree-of-freedom systems - Two degreesof- freedom systems - Formulation of equation of motion

UNIT III: MULTI DEGREE OF FREEDOM SYSTEM

Eigenvalues and eigenvectors - Orthogonality of modes - Study of multi degrees-of-freedom systems -Equations of motion - Natural frequencies and mode shapes - Stodola, Rayleigh- Ritz and influence coefficient methods, Dunkerley - Matrix methods for dynamic analysis - Modal response method - Modal mass contribution - Missing mass correction, Example problems - Duhamel's integrals

12 Hrs

UNIT IV : APPLICATION OF STRUCTURAL DYNAMICS TO OFFSHORE STRUCTURES 12 Hrs

Application of structural dynamics to offshore structures. Fluid-structure interaction - Dynamic analysis of offshore jacket platforms - Dynamic analysis of articulated towers - Iterative frequency domain - Multi-legged articulated towers (MLAT) - Response control of multi-legged articulated towers using tuned mass dampers - Development of Tension Leg Platforms and geometric optimization - Dynamic analyses of TLPs - Development of Mass, stiffness and damping matrices of TLP from first principles

UNIT V: DYNAMIC ANALYSIS METHODOLOGY

12 Hrs

Motion analysis in random waves - Low frequency oscillation - High frequency oscillation - Wave drift forces - Springing forces - Non-linear sum forces - Damping at low and high frequencies - Dynamic positioning.

Total: 60 Hours

TEXT BOOKS

1. Anil K. Chopra. 2003. Dynamics of structures: Theory and applications to earthquake Engineering: Pearson Education, Singapore.

2. Arvid Naess and Torgeir MOan. 2013. Stochastic dynamics of marine structures, Cambridge University Press, New York, USA.

REFERENCE BOOKS

1. Chakrabarti, S. K. 1987. Hydrodynamics of Offshore Structures: Computational Mechanics.

2. Chakrabarti, S. K. 1990. Non-linear method in offshore engineering, Elsevier Science Publisher, The Netherlands.

3. Chakrabarti, S. K. 1994.Offshore Structure Modeling: World Scientific.

4. Clauss, G. T. et al. 1992. Offshore Structures, Vol 1 - Conceptual Design and Hydromechanics: Springer, London.

Designed by "Department of Naval Architecture & Offshore Engineering"

PROGRA	AM	BE-1	Naval	Archit	ecture	& Off	shore	Engine	ering						
Course C	ode	Cons	structa	bility (of Offs	shore		Ι		Т		Р		С	
UANA7	'03	Struc	ctures	•					3	0		0		3	
											•				
Year ar Semest			IV	Year (semest	er VII)			C	ontact h	ours pe	r week		
Prerequis course					NIL						(3Hrs)			
		Hu	maniti	es and	. 1	Manag	ement		Profes	sional		Drofo	ssional	Floativ	•
Course	•	Soc	cial Sc	iences		cou	rses		Co	ore		FIOIe	ssionar	Liecuv	C
									v						
categor	. y	Ba	asic Sc	ience		Engine Scie		(Open E	Elective		-	Mandate	ory	
Course Objecti		syste 3. T struc After 1.	 a. To identify the design concepts of various deep water offshore structures and subsea ystems b. To identify the Complications and methods involved in construction of Arctic marine tructure. b. After completion of the course, the students will be able to: Apply the conceptual design of deep water structures. Identify the facilities and methods for fabrication of offshore structure. Coutline the various phenomena in construction of deep sea structures. 												
Course	e	3.													
Outcom	ne	4.											re struct	ures.	
		5. 6.	List t	he rep	ort reg	garding	g desig	n of St	ructur	es in Ai		arine Er	nvironm		
POS/COS	РО	РО	PO PO PO PO PO PO PO PO POI POI POI PSO									PSO	PSO		
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	1	3	-	2	3	1	-	-	-	-	-	1	3	3
CO2	2	1	2	3	3	2	1	-	-	-	-	-	3	1	-
CO3	2	1	3	2	2	3	2	-	-	-	-	-	3	1	1
CO4	-	1	3	2	23	3	3	-	-	-	-	-	2	1	-
CO5 CO6	- 1	1	<u> </u>	2	3	3	3 2	-	-	-	-	-	23	3	2
AVERA GE	1.5	1	2.5	1.7	2.5	2.8	2	-	-	-	-	-	2.3	1.8	- 1
CORRE	LATIC /ELS					W)	2.	2. MODERATE(MEDIUM) 3. SUBSTANTIA					NTIAL(HIGH)		

UNIT 1:INTRODUCTION TO CONSTRUCTABILITY

Construction stages for offshore structure. Principle of constructability, Facilities and methods for fabrication, Launching, Assembly and Jointing Afloat, Material Selection and procedures, Access, Tolerances, Survey control, Quality control and assurance, safety, Control of construction: Feedback and Modification, Contingency Planning, Manuals, On- site Instruction Sheets, Risk and reliability Evaluation.

UNIT II: DEEP WATER OFFSHORE STRUCTURES AND SUBSEA SYSTEM

Construction in deep sea, Considerations and Phenomena for Deep-Sea Operations, Properties of Materials for the Deep Sea, Platforms in the Deep Sea: Compliant Structures: Guyed Towers, Compliant (Flexible) Tower,

Articulated Towers, Tension-Leg Platforms (TLP's), SPARS, Ship-Shaped FPSOs, Deep-Water Moorings, Construction Operations on the Deep Seafloor, Deep-Water Pipe Laying, Seafloor Well Completions, Deep-Water Bridge Piers.

UNIT III: REMOVAL OF OFFSHORE PLATFORMS

Removal of Offshore Platforms, Removal of Piled Structures (Terminals, Trestles, Shallow- Water Platforms), Removal of Pile-Supported Steel Platforms, Removal of Concrete Gravity: Base Offshore Platforms, New Developments in Salvage Techniques, Removal of Harbour Structures

9 Hrs

9 Hrs

UNIT IV: ARCTIC MARINE STRUCTURES 9 Hrs
Steel and Concrete Structures for the Arctic: Steel Tower Platforms, Caisson-Retained Islands, Shallow-Water
Gravity-Base Caissons, Jack-Up Structures, Bottom-Founded Deep-Water Structures, Floating Structures,
Well Protectors and Seafloor Templates, Deployment of Structures in the Arctic, Installation at Site, Ice
Condition Surveys and Ice Management, Durability, Constructability, Pipeline Installation, Current Arctic
Developments
1
UNIT V: ARCTIC MARINE ENVIRONMENT AND GEOTECHNICS 9 Hrs
Arctic Marine Structures, Atmospheric Conditions, Darcy's law and its validity, Factors affecting
permeability, Laboratory permeability tests, Permeability of stratified soil masses, Seepage pressure, Quick
condition, Flow nets.
Total: 45 Hours
TEXT BOOKS Total: 45 Hours
TEXT BOOKS 1. Libros Y Manuels de Ignertia, Construction of Marine and Offshore Structures third Edition.
 TEXT BOOKS 1. Libros Y Manuels de Ignertia, Construction of Marine and Offshore Structures third Edition. 2. API recommended practice 2A-WSD, Recommended practice for Planning, Designing and
TEXT BOOKS 1. Libros Y Manuels de Ignertia, Construction of Marine and Offshore Structures third Edition.
 TEXT BOOKS 1. Libros Y Manuels de Ignertia, Construction of Marine and Offshore Structures third Edition. 2. API recommended practice 2A-WSD, Recommended practice for Planning, Designing and
 TEXT BOOKS Libros Y Manuels de Ignertia, Construction of Marine and Offshore Structures third Edition. API recommended practice 2A-WSD, Recommended practice for Planning, Designing and construction fixed offshore platform working stress design method REFERENCE BOOKS:
 TEXT BOOKS Libros Y Manuels de Ignertia, Construction of Marine and Offshore Structures third Edition. API recommended practice 2A-WSD, Recommended practice for Planning, Designing and construction fixed offshore platform working stress design method

Designed l	by "Dep	artment of Naval Ar	chitecture & Offsho	ore Engineering"	

		DEI	Novol	Archit	octuro	& Off	chora	Engine	oring								
PROGRA	AM	DL-1	Navai .	Aleint	ceture	a on	shore		Ling								
Course C		Fin	ite Ele	ment	Analys	is of				Т		Р		С			
UANA7	04	Off	shore	Struct	ures			3	3	1		0		4			
Year ar			IV	Year (s	semest	er VII)										
Semest			1,	i cui (i	semest		/			C	ontact h		er week				
Prerequis	site			ו	NIL						(4Hrs)					
course	e			_													
				es and		Manag	ement		Profes			Profe	ssional	Electiv	e		
Course	e	Soc	cial Sc	iences		cour	ses		Co			11010	obronia				
categor									v								
8		Ba	asic Sc	ience		Engine		(Open E	lective			Mandate	orv			
		-				Scie	nce		- I -								
					1 0 1												
Course	e												al analy	S1S .			
Objectiv	ve										analysis						
-										be able	sioning	needs.					
Course	<u>a</u>								s eleme		z, uuss		1.				
Outcom	-										various	elemen	ts				
Outcom										elemen		cicilicii	13.				
											it analy	sis ann	oach				
			0. 11	uetiee	comp	atutioi	iui sitii	i using	, mine	elemer	it unury	sis uppi	ouen.				
DOG/COC	PO	PO	РО	PO	РО	PO	РО	РО	PO	PO1	PO1	PO1	PSO	PSO	PSO		
POS/COS	1	2							9	0	1	2	1	2	3		
CO1	3						1	-	-	-	-	-	3	2	-		
CO2	1		3 3 1 3 2 2					-	-	-	-	-	1	2	3		
CO3	1	3	3	-	3	2	2	-	-	-	-	-	1	2	3		
CO4 CO5	1	3	3	- 1	3	2	2	-	-	-	-	-	-	3	3		
CO5	-	2	3	1 2	3	2	2	-	-	-	-	-	- 1	3	3		
AVERA	-	_				-	_	-	-	-	-	-	-		-		
GE	1	2.7	3	1	3	2	2	2 1 2.3						2.5			
CORRE	LATIC	N	1	SLICI	IT(LOV	N)	2										
LEV	/ELS		1.	SLIUF	II(LU)	(v	Ζ.	. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH)									

UNIT I: APPROXIMATION METHODS

FEA intro, approximate solution of boundary value problems-Methods of weighted residuals, approximate solution using variational method, Modified Galerkin method, Boundary conditions and general comments

UNIT II: SPRING, TRUSS, BEAM ELEMENT

Basic finite element concepts-Basic ideas in a finite element solution, General finite element solution procedure, Finite element equations using modified Galerkin method, Application: Axial deformation of bars, Axial spring element. Analysis of trusses-Two dimensional truss element, Three dimensional space truss element, Beam bending-Governing differential equation for beam bending, Two node beam element, Exact solution for uniform beams subjected to distributed loads using superposition, Calculation of stresses in beams.

UNIT III: PLANE & SPACE FRAME ELEMENT

Analysis of structural frames-Plane frame element. Three dimensional space frame element Column buckling. Higher order elements for one dimensional problems-Shape functions for second order problems, Isoparametric mapping concept, Quadratic Iso-parametric element for general one dimensional boundary value problem, One dimensional numerical integration.

UNIT IV: SHAPE FUNCTION, TYPES OF ELEMENT

Two dimensional boundary value problems using triangular elements, Equivalent functional for general 2D BVP, A triangular element for general 2D BVP, Numerical examples. Iso- parametric quadrilateral elements-Shape functions for rectangular elements, Iso-parametric mapping for quadrilateral elements, Numerical

12 Hrs

12 Hrs

12 Hrs

integration for quadrilateral elements, Four node quadrilateral element for 2D BVP, Eight node serendipity element for 2D BVP. Iso- parametric triangular elements-Natural (or Area) coordinates for triangles, Shape functions for triangular elements, Natural coordinate mapping for triangles, Numerical integration for triangles, Six node triangular element for general 2D BVP.

UNIT V: NUMERICAL INTEGRATION

12 Hrs

Introduction to Nonlinear Problems: Nonlinear problems and some solution methods, geometric and material nonlinearity, problems of gaps and contacts, geometric nonlinearity, modelling considerations. Gauss-Leguerre rule, Multiple integrals, Numerical integration for quadrilateral elements

TEXTBOOKS:

TOTAL: 60 HOURS

- 1. Bhatti, M.A., Fundamental Finite Element Analysis and Applications: with Mathematica and Matlab Computations, Wiley, 2005.
- 2. Reddy, J. N., An Introduction to the Finite Element Method, 3rd Edition, McGraw-Hill Science/Engineering/Math, 2005.
- 3. Logan D. L., A First Course in the Finite Element Method, Thomson- Engineering, 3rd edition, 2001. **REFERENCES:**
 - 1. Chandrupatla T. R., and Belegundu, A. D., Introduction to Finite Elements in Engineering, Prentice Hall, 2003.

Designed by "Department of Naval Architecture & Offshore Engineering"

PROGRA	AM	BE-N	Naval .	Archit	ecture	& Off	shore	Engine	ering								
Course C	ode	Qua	ality H	lealth S	Safety	and		Ι		Т		Р		С			
UANA6	10	Env	vironm	ental]	Manag	ement		2	,	0		0		2			
											•		•				
Year an Semeste			IV	Year (s	semest	er VII)			C	ontact h	ours pe	r week				
Prerequis course					NIL						(2Hrs)					
			maniti		I	Manag	ement		Profes	sional		Profe	ssional	Elective	_		
Course	<u>د</u>	Soc	cial Sc	iences		coui	ses		Co	ore		11010	boronar	Licetiv	<u> </u>		
categor	-								v								
cutogor	9	Ba	sic Sc	ience]	Engine Scie		(Open E	Elective Mandatory							
Course Objectiv	-	2. 3.	To into To cho	erpret bose th	the var	ious c espond	oncep ling in	ts in qu ternati	ality c onal st	ontrol. andards							
Course Outcom	-	 After completion of the course, the students will be able to: Apply the various quality control concepts. Identify appropriate quality control tools to various problems. Practice ISO 9000 management system. Practice health & safety system in shipping building industry. Practice ISM code in ship building industry. Practice the various QA&QC concepts in shipping industry. 															
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO		
POS/COS	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3		
CO1	-	1	2	3	3	3	-	-	-	-	-	-	3	-	3		
CO2	-	3	3	3	3	3	3	-	-	-	-	-	1	3	2		
CO3	-	-	3	2	3	3	3	-	-	-	-	-	3	-	2		
CO4	-	2	3 2 3 3 2						-	-	-	-	-	1	3		
CO5	-	3	2	3	2	2	3	-	-	-	-	-	1	1	1		
CO6	-	3	2	3	3	2	3	-	-	-	-	-	3	-	2		
AVERA GE		2	2.5	2.7	2.8	2.7	2.3	-	-	-	-	-	1.8	0.8	2.2		
CORRE LEV	LATIC 'ELS	DN	1.	SLIGH	IT(LOV	W)	2.	2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH)									

UNIT I: OUALITY CONCEPTS

Introduction to Quality concepts, Definitions of Quality, Quality control, Quality Assurance, Quality Management, Quality Management system, Total Quality Management (TQM). Four principles of TQM, Quality costs, Quality statements- Vision, Mission, Quality policy, Quality Objectives and Targets.

UNIT II: APPLICATION IN SHIPPING INDUSTRY

Application of QA & QC in ship building Industry: Identification of customer requirements, QA/QC Documentation requirements, Quality Planning, skilled Labour, Competency/Training and Awareness; Design and Development; control on vendors and purchased products, operational control including control on welding processes; monitoring and measurement of processes, inspection and testing on Raw material, in-process and final product; Pre-delivery inspection including Dry surveys I & II, Different methods of NDT Testing; Dock trials and sea Trials.

UNIT III: QUALITY MANAGEMENT SYSTEM

Need for ISO 9000 Quality Management system and Description of its elements. Major steps in achieving ISO 9000 certification – Awareness / Training, Documentation, Implementation Internal Audit, Audit methodology and auditor qualities External certification audit, Certification and annual verification audits. Quality awards international quality awards and National quality awards.

UNIT IV: OCCUPATIONAL HEALTH AND SAFETY

Introduction to Basic Concepts of Environmental management system (ISO 14001:2004 EMS), Occupational Health and safety series system (OHSAS 18001:2007). Environmental aspects and impact assessment in and

6 Hrs

6 Hrs

6 Hrs

determining controls in EMS Hazard identification and risk assessment and determining controls in OHSAS Operational control and Emergency Preparedness and Response (common to both EMS and OHSAS), Performance measurement including audit and management review and external certification. (Common to both EMS and OHSAS)

UNIT V: ISM CODES

6 Hrs

Introduction to ISM code -Background and purpose. Documentation, planning for shipboard operations and Response.Certification of Both DOC (Document of compliance for company) and SMC (Safety Management certificate for ship).

Total 30 Hours

TEXT BOOKS

Total Quality Management By Dale. H.Besterfield and Others – PEARSON Education Inc (Reprint – 2010)
 Total Quality Management By Dr. D.D.Sharma. Sultan chand and sons New Delhi, (Reprint 2005).
 Implementing ISO 9000 QMS By pradeepkumar. Mathur – Vikas publishing House, New Delhi

4.A Text Book of Total Quality Management, R.Ramakrishnan by Dhanam publications - Chennai - 600042

REFERENCES:

1.International standard ISO 9001 Quality Management system –Requirements ISO 9001:2008(E) –Bureau of Indian standards Publications-Chennai

2.IS/ISO 14001: 2004 – Environmental management system – Requirements with Guidance for use – Bureau of Indian standards – Chennai

3.Occupational health and safety managements- Requirements (OHSAS 18001:2007) – Bureau of Indian standards publications – Chennai

4.International standard ISO 19011: 2011 – Guide lines for Auditing Management systems – Bureau of Indian standards Publications, Chennai

5. ISM code - Amended up to 2010 (IMO Publication, London).

6. ISPS code 2003 Edition – sterling book house – Mumbai.

Designed by "Department of Naval Architecture & Offshore Engineering"

UANA705 Recommended Practices 2 0 0 2 Year and Semester IV Year (semester VII) Contact hours per week (2Hrs) Contact hours per week (2Hrs) Precequisite course category Humanities and Social Science Management course Professional Course Professional Science Professional Course Professional Science Professional Course Professional Science Professional Course Professional Science Professional Course Professional Science Professional Course Professional Science Professional Science Professional Science Professional Science Professional Course Professional Science Professional Science Professional Science Professional Science Professional Science Professional Science Professional Science Objective 1. To list the classification Society rules governing local structural design and global hull girder longitudinal strength. After completion of the course, the students will be able to: 1. Apply API code to design offshore structure. 2. Practice the various standards in analysis of offshore structure. 3. Apply API code to design driller & risers 4. Apply API & ISO 13628 Design to subsea system 5. Recognize NACE, AWS standards in analysis of offshore structure. 6. Practice the various standards in analysis of offshore structure. 7. To 1 a 1 a 2 2 7 7 7 8 9 9 0	PROGRA	AM	BE-N	Naval .	Archit	ecture	& Off	fshore	Engine	eering						
Year and Semester IV Year (semester VII) Contact hours per weck (2Hrs) Prerequisite course NIL Contact hours per weck (2Hrs) Course category Mumanifies and Social Sciences Management courses Professional Core Professional Professional Course category Science Engineering Science Open Elective Mandatory Image: Course Objective Image: Course and global hull girder longitudinal strength. Alter completion of the course, the students will be able to: I. To list the Classification Society rules governing local structural design and global hull girder longitudinal strength. Alter completion of the course, the students will be able to: I. Apply API code to design offshore structure. Practice Kerngth analysis of various offshore structure. Postcost PO <											Т					
Semester IV Year (semester VII) Contact hours per weck (2Hrs) Prerequisite course NL Contact hours per weck (2Hrs) Course category Social Sciences Courses Professional Course Professional Course Professional Course Professional Elective Basic Science Engineering Science Open Elective Mandatory I To identify the various codal provisions related to deep water offshore structures Andatory Course Objective I To identify the various codal provisions related to deep water offshore structures Anton open course Course Objective After completion of the course, the students will be able to: I Apply API code to design offshore structures based upon DNV RP code & standards. Outcome 3. Apply API code to design offshore structures. Postice Structures in analyzing offshore structures. POSCOS PO PO <td>UANA7</td> <td>'05</td> <td>Reco</td> <td>mmer</td> <td>nded P</td> <td>ractice</td> <td>s</td> <td></td> <td>2</td> <td>2</td> <td>0</td> <td></td> <td>0</td> <td></td> <td>2</td> <td></td>	UANA7	'05	Reco	mmer	nded P	ractice	s		2	2	0		0		2	
course category Humanities and Social Sciences Management courses Professional Core Professional Elective Basic Science Engineering Science Open Elective Mandatory Course Objective I To identify the various codal provisions related to deep water offshore structures 2. To identify the role of Classification Societies and Registration Authorities 3. 3. To list the Classification Society rules governing local structural design and global hull girder longitudinal strength. After completion of the course, the students will be able to: 1. Apply API code to design offshore structure. Course 3. Apply API code to design offshore structure. 2. Practice Strength analysis of various offshore structures. 5. Recognize NACE, AWS standards in analyzing offshore structures. Outcome 5. Recognize NACE, AWS standards in analyzing offshore structures. 2 1 POSCOS PO	Semest	er		IV			er VII)			C		_	er week		
Social Sciences courses Core Professional Elective Basic Science Engineering Science Open Elective Mandatory Image: Science Image: Scien																
Category Basic Science Engineering Science Open Elective Mandatory Image: Course Objective 1. To identify the various codal provisions related to deep water offshore structures Image: Course 1. To identify the role of Classification Societies and Registration Authorities Course Objective 3. To list the Classification Society rules governing local structural design and global hull girder longitudinal strength. Image: Course Image: Course Course Outcome After completion of the course, the students will be able to: 1. Apply API code to design offshore structure. Image: Course Image: Course Outcome 3. Apply API code to design offshore structure. Image: Course Image: Course Image: Course Outcome 3. Apply API code to design offshore structure. Image: Course Image: Course Image: Course Image: Course Obscore 3. Apply API code to design offshore structure. Image: Course Image: Cours	Course	e					-			Co	ore		Profe	ssional	Electiv	e
Course Objective 2. To identify the role of Classification Societies and Registration Authorities 3. To list the Classification Society rules governing local structural design and global hull girder longitudinal strength. After completion of the course, the students will be able to: 1. Apply API code to design offshore structure. Portice Structures 2. To completion of the course, the students will be able to: 1. Apply API code to design offshore structures based upon DNV RP code & standards. Outcome 3. Apply API code to design driller & risers 4. Apply API code to design driller & risers 5. Recognize NACE, AWS standards in analysis of offshore structures. POS/COS PO P	categor	ry	Ba	isic Sc	ience				•					Mandat	ory	
 Apply API code to design offshore structure.			,	2. Т 3. То	`o iden o list tl	tify th	e role ssifica	of Cla tion So	ssifica ociety 1	tion So rules g	ocieties overnin	and Re	gistratio	on Auth	orities	ures
POSCOS 1 2 3 4 5 6 7 8 9 0 1 2 1 2 3 CO1 1 2 3 3 2 3 2 - - - - - - 1 2 3 3 2 3 2 - - - - - - 1 3 2 2 - - - - 1 3 3 2 2 - - - - 1 3 3 2 2 - - - - 1 3 3 2 2 - - - - 1 3 3 2 2 - - - 1 3 3 2 2 - - - 1 1 3 3 3 - - - - 1 3 3 3 - - - - 1 3 3 3 - -				1. A 2. Pr & 3. A 4. A 5. Re	pply A cactice stand pply A pply A ecogni	API coo Streng ards. API coo API & ize NA	de to d gth ana de to d ISO 13 CE, A	lesign alysis o lesign 3628 E AWS st	offshor of vario driller Design candaro	re struc ous off & riser to subs ls in ar	cture. shore st rs sea syst nalysis (ructures em of offsh	ore stru	icture.	NV RP	codes
COI I 2 3 3 2 3 2 - - - - I 2 CO2 I 2 3 3 1 1 - - - - I 3 2 CO3 I 3 3 1 3 2 2 - - - - I 3 2 CO3 I 3 3 1 3 2 2 - - - - I 1 3 2 CO4 I 3 3 1 3 2 2 - - - - - I 1 3 2 CO5 1 2 1 1 3 3 3 3 - - - - - 1 3 3 CO6 1 2.3 2.7 1.8 2.8 2.2 2.2 2.7 - - - - 0.5 2.2 2.2 2.7	POS/COS	-		-	-	-	-	-	-	-	-		-			PSO
CO2 1 2 3 3 1 1 - - - - 1 3 2 CO3 1 3 3 1 3 2 2 - - - 1 3 2 CO4 1 3 3 1 3 2 2 - - - - 1 3 2 CO4 1 3 3 1 3 2 2 - - - - 1 3 2 CO5 1 2 3 2 3 - - - - 1 3 3 CO6 1 2.3 2.7 1.8 2.8 2.2 2.2 - - - - 0.5 2.2 2.2 2.2 CORRELATION LEVELS 1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH UNIT I: API CODE 4 4	CO1					-	-		-	-	-					
CO4 1 3 3 1 3 2 2 - - - 1 3 2 2 CO5 1 2 1 1 3 3 3 3 - - - - - 1 3 2 3 CO6 1 2 3 2 3 2 3 - - - - - 1 3 3 CO6 1 2.3 2.7 1.8 2.8 2.2 2.2 - - - - 0.5 2.2 2.2 2.2 CORRELATION LEVELS 1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH UNIT I: API CODE 6 Hi MODU RULES API CODE 6 Hi DNV RP CODES AND RECOMMENDED PRACTICES NORSKE STANDARDS 6 Hi UNIT II: API OFFSHORE 6 Hi API 16Q for drilling riser 6 Hi API 17 A Design and operation of subsea production system API 17 B for Flexible pipes, API			2	3					-	-	-	-	-	1		
CO5 1 2 1 1 3 3 3 - - - - 2 3 3 CO6 1 2 3 2 3 2 3 - - - - 1 3 3 AVERA GE 1 2.3 2.7 1.8 2.8 2.2 2.2 - - - - 1 3 3 3 AVERA GE 1 2.3 2.7 1.8 2.8 2.2 2.2 - - - 0.5 2.2 2.2 2.3 CORRELATION LEVELS 1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH 3. SUBSTANTIAL(HIGH UNIT I: API CODE I. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH 6 Hi UNIT II: DNV RP CODES API CODE Image: Context and the context a										-	-			-		
CO6 1 2 3 2 3 - - - - 1 3 3 AVERA GE 1 2.3 2.7 1.8 2.8 2.2 2.2 - - - - 0.5 2.2 2.2 CORRELATION LEVELS 1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH UNIT I: API CODE MODU RULES API CODE 6 Hi UNIT II: DNV RP CODES DNV RP CODES AND RECOMMENDED PRACTICES NORSKE STANDARDS 6 Hi UNIT II: API OFFSHORE API 16Q for drilling riser API 2RD for production Riser 6 Hi UNIT IV: DESIGN AND OPERATION CODES API 17 A Design and operation of subsea production system API 17 B for Flexible pipes, API 17 C to K 6 Hi UNIT V: INO AWS NACE IMO 6 Hi 6 Hi			-	-		-					-				-	
GE 1 2.3 2.7 1.8 2.8 2.2 2.2 - - - 0.5 2.2 2.3 CORRELATION LEVELS 1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH UNIT I: API CODE MODU RULES API CODE 6 Hi UNIT II: DNV RP CODES 6 Hi DNV RP CODES AND RECOMMENDED PRACTICES NORSKE STANDARDS 6 Hi VINIT III: API OFFSHORE API 16Q for drilling riser API 2RD for production Riser 6 Hi UNIT IV: DESIGN AND OPERATION CODES 6 Hi API 17 A Design and operation of subsea production system API 17 B for Flexible pipes, API 17 C to K ISO 13628 Design and operation of subsea system. UNIT V: IMO AWS NACE IMO 6 Hi		1						-		-	-	-	-			3
UNIT I: API CODE 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH UNIT I: API CODE 6 Hi MODU RULES API CODE 6 Hi UNIT II: DNV RP CODES 6 Hi DNV RP CODES AND RECOMMENDED PRACTICES NORSKE STANDARDS 6 Hi UNIT II: API OFFSHORE 6 Hi API 16Q for drilling riser 6 Hi API 2RD for production Riser 6 Hi UNIT IV: DESIGN AND OPERATION CODES 6 Hi API 17 A Design and operation of subsea production system API 17 B for Flexible pipes, API 17 C to K 6 Hi UNIT V: IMO 6 Hi AWS NACE IMO 6 Hi	GE			2.7	1.8	2.8	2.2	2.2	-	-	-	-	-	0.5	2.2	2.3
MODU RULES API CODE 6 HI UNIT II: DNV RP CODES 6 HI DNV RP CODES AND RECOMMENDED PRACTICES NORSKE STANDARDS 6 HI API 16Q for drilling riser API 2RD for production Riser 6 HI API 17 A Design and operation of subsea production system API 17 B for Flexible pipes, API 17 C to K ISO 13628 Design and operation of subsea system. 6 HI AWS NACE IMO	cond	2	DN	1.	SLIGH	HT(LO	W)	2.	MODE	ERATE	(MEDIU	JM)	3. SU	JBSTAN	TIAL(H	IIGH)
DNV RP CODES AND RECOMMENDED PRACTICES NORSKE STANDARDS UNIT III: API OFFSHORE 6 Hi API 16Q for drilling riser API 2RD for production Riser UNIT IV: DESIGN AND OPERATION CODES 6 Hi API 17 A Design and operation of subsea production system API 17 B for Flexible pipes, API 17 C to K ISO 13628 Design and operation of subsea system. UNIT V: IMO AWS NACE IMO				ODE												6 Hrs
API 16Q for drilling riser API 2RD for production Riser UNIT IV: DESIGN AND OPERATION CODES 6 Ha API 17 A Design and operation of subsea production system API 17 B for Flexible pipes, API 17 C to K ISO 13628 Design and operation of subsea system. UNIT V: IMO 6 Ha AWS NACE IMO						IENDI	ED PR	ACTI	CES N	ORSK	E STA	NDARI	OS			6 Hrs
API 17 A Design and operation of subsea production system API 17 B for Flexible pipes, API 17 C to K ISO 13628 Design and operation of subsea system. UNIT V: IMO AWS NACE IMO	API 16Q f	or dril	ling ris	ser												6 Hrs
AWS NACE IMO	API 17 A	Desigr	n and c	perati	on of s	subsea	produ	iction a	system	API 1	7 B for	Flexibl	e pipes	, API 17		6 Hrs
TOTAL: 30 HOUR			0													6 Hrs
TEXT BOOKS: 1.Dawson, T.H., Offshore Structural Engineering Prentice Hall, 1983				ore St.	notur	al Engi	neerir	ng Pror	ntice U	all 10	83		Т	<u>'OTAL</u>	: 30 H(OURS

2.API RP 2A., Planning Designing and Constructing Fixed Offshore Platforms, API
3.McClelland, B &Reifel, M.D., Planning & Design of fixed Offshore Platforms, VanNostrand, 1986
4.Graff, W.J., Introduction to Offshore Structures, Gulf Publ. Co. 1981.
5.Reddy, D.V &Arockiasamy, M., Offshore Structure Vol.1 & 2, Kreiger Publ. Co 1991

REFERENCE BOOKS:

Morgan, N., Marine Technology Reference Book, Butterworths, 1990.
 B.C Gerwick, Jr. Construction of Marine and Offshore Structures, CRC Press, Florida, 2000.
 Subrata K Ckakrabarti., Handbook of Offshore Engineering Vol 1
 Subrata K Ckakrabarti., Handbook of Offshore Engineering Vol 2

Designed by "Department of Naval Architecture & Offshore Engineering"

PROGRA	AM	BE-1	E-Naval Architecture & Offshore Engineering arship Design & Construction L T P C 3 0 0 3															
Course C UANA7		Wars	ship D	esign	& Con	structi	on			T 0		Р 0		C 3				
UANA/	00								,	0		0		3				
Year an Semeste	er		IV	Year (s	semest	er VII)			Co		ours pe	r week					
Prerequis course					NIL						(3Hrs)						
Course	-			es and iences		Manag cou			Profes Co	sional ore		Profe	ssional	Electiv	e			
categor		Ва	isic Sc	ience		Engine Scie	-	(Open E	Elective		-	√ Mandat	ory				
									s of warships.									
Course Objectiv		2. 3.	To dis To rec	cuss al ognize	bout th e the su	e adva ibmari	nced ne des	techno ign an	logies d contr	used in rol syste	em.	ps						
Course Outcom	-	1. 2. 3. 4. 5.	 Identify the various technologies in warship s Recognize the designing of warships. Discuss about submarine design and control system. List the role &purpose of Frigates & Destroyers. 															
POS/COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3			
CO1	3	-	3	2	3	3	1	-	-	-	-	-	3	1	1			
CO1 CO2	3	-	2	3	2	3	2	-	-	-	-	-	-	2	2			
CO3	2	-	2	2	3	3	2	-	-	-	-	-	3	1	-			
CO4	2	-	2	3	3	2	3	-	-	-	-	-	3	1	1			
CO5	3	-	3	2	2	3	3	-	-	-	-	-	3	1	-			
CO6	3	1	3	2	3	3	2	-	-	-	-	-	3	1	-			
AVERA GE	2.7	0.2	2.5	2.3	2.5	2.8	2.2						2.5	1.2	0.7			
CORRE LEV	LATIC 'ELS	0N	1.	SLIGH	IT(LOV	W)	2.	2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH)										

UNIT 1:INTRODUCTION TO WARSHIPS

Utility Concept of warships, Type of Warships, Classification of warships and their functions, Systems and Subsystems of warships, Design stages, Boundaries, Cost effectiveness, Phases of warship Design, NBCD warfare, Definition, Precautions, NBCD effects, counteracting measures.

UNIT II: ADVANCED WARSHIP TECHNOLOGIES

Tracking, recognition and counteracting, precautions in warships, Acoustic, resonance, magnetic and wave track, Type of propulsion, Accommodation, space estimates, Ship fitting influences on weapon systems.

UNIT III: DESIGN AND CONSTRUCTION OF WARSHIPS

Design and Construction of warships, Design spiral, rules for classification , Warship specifications and standards, ships form and dimensions and ratios and effect of Block coefficient, Prismatic coefficient, Manoeuvring characteristics, Capacity, Shock, Subdivision, damage, Electronical Interactions, human factors.

UNIT IV: SUBMARINE DESIGN AND CONTROL SYSTEMS

Submarine Design, features, General Arrangements, Features of Naval Submarines, Functions of Naval Submarines, Capabilities of Naval submarines, Dual propulsion systems, Major difference between a surface ship and Submarine, Submarine Design aspects- Hydrostatics, Stability and special tests in Submarines, Strength including hull buckling, Dynamic Stability, Powering, Control of internal atmosphere in submarines, Commercial Submarines- Features and functions, AIP Systems, Electrical generation.

9 Hrs

9 Hrs

9 Hrs

UNIT V: FRIGATES AND DESTROYERS

Role of these Ships, Lines plan of Frigates and Destroyers, General Purpose Ship, Weapon Systems Selection, Communication Systems, Typical Weapon Systems, Integration of Ship, Sensors and weapon systems, Fighting Capabilities, Propulsion Machinery.

TEXT BOOKS

1.Ramson & Tupper, Basic Ship Theory2.EE Allimendinger, Submersible vehicle systems design. SNAME, 1990.

REFERENCE BOOKS:

Naval Forces, Jane's Fighting Ships
 Naval Forces, Naval Weapon Systems
 Naval Forces, Navy International
 Journal of Naval Engineers.

Designed by "Department of Naval Architecture & Offshore Engineering"	Designed by	"Department of Naval Architecture & Offshore Engineering"
---	-------------	---

9 Hrs

Total: 45 Hours

Course C	AM	BE-Na	aval A1	cnitect	ure &	Offsho	re Eng	_	g	-		<u> </u>	1	~	
UANA		Marin	e Robo	otics			┝	L 3		T 0		P 0		<u>C</u> 3	
UANA	/0/							3		0		0		3	
Year a	nd		11 / 17	1											
Semes			IV Ye	ear (ser	nester	VII)				Conta	ct hou	rs per v	week		
Prerequi				NI	Ĺ						(3H	lrs)			
cours	e	Hun	nanities	s and	Ma	nagem	nent	D 0		~		D 0			
Cours			ial Scie			course		Profe	ssional	Core		Profes	sional l	Electiv	e
catego	-												\checkmark		
eutego	19	Bas	sic Scie	ence		igineer	-	Ope	en Elec	tive		Ν	Iandato	ory	
						Science	e	1						5	
		1. To	o exnla	in the b	asics (of unde	rwater	vehicle	e ¢						
Cours	-			AUV						ol					
Objecti	lve			se the							V				
		After	comple	etion of	the co	urse, tl	he stude	ents wi	ll be at						
				ze the l											
Cours	e			the des											
Outcor	ne			various e advan					water v	enicles	•				
				the pat				ui U v.							
				AUVs		0		ner rec	quireme	ents					
POS/CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PS	PS	P
S CO1	3	_	-	-	2	2	2	_	-	0	-	2	01 3	- O2	C
CO1	3	2	1	-	2	2	2	-	_		_	-	3	1	-
CO3	3	-	1	2	2	2	-	-	-	-	-	-	3	1	
CO4	3	1	2	2	2	3	-	-	-	-	-	-	3	1	
CO5 CO6	3	- 2	23	23	23	2	- 2	-	-	-	-	-	3	3	
AVERA								-	-	-	-	-		-	
GE	3	0.8	1.5	1.5	2.2	2.2	1	-	-	-	-	-	2.7	1.5	0
CORRE		ON	1. S	LIGHT	(LOW)		2. MC	DDERA	TE(ME	DIUM)		3. SUB	STANT	IAL(HI	GH
LE	VELS														
UNIT 1:	HIST	ORY C	OF UVS	S.										9) H
	Evoluti	ion of U	Jnderw	ater ve	hicles	(UV), I	UV typ	es, UV	object	ive/fur	ction				
History, I							51		5						
History, I				TO A	UVS									ļ) H
	INTF	RODUC				1	lation .			1 .	tion -	Contro	1 and s	ystem s	tud
UNIT II:				ology -	Desig	n calcu	nation	- Perfor	rmance	evalua					
UNIT II:	ion - D	esign n	nethod		Desig	n calcu	ilation	- Perfor	rmance	evalua					
UNIT II:	ion - D	esign n	nethod		Desig	n calcu	nation	- Perfo	rmance	evalua					
UNIT II: Introduct Concept o	ion - D of desi	esign n gn optii	nethode mizatio	on	-		nation	- Perfoi	rmance	evalua				9) Н
UNIT II: Introduct Concept (UNIT III Sensors, 1	ion - D of desi I : INH Propula	Design n gn optin T EREN sion sys	nethodo mizatio T SYS stem - C	on TEM (Control	DF UV loop st	, tudy (i.	.e. how					ts), Mis	sion or		
UNIT II: Introduct Concept (UNIT III Sensors, 1	ion - D of desi I : INH Propula	Design n gn optin T EREN sion sys	nethodo mizatio T SYS stem - C	on TEM (Control	DF UV loop st	, tudy (i.	.e. how					ts), Mis	sion or		
UNIT II: Introduct Concept o UNIT III Sensors, I of UV - E	ion - D of desi I : INH Propula Existing	Design n gn optin EREN sion sys g UV st	nethodo mizatio T SYS stem - C cudy e.g	TEM (Control g. SLO	DF UV loop st CUM,	, tudy (i.	.e. how					ts), Mis	sion or	iented	stu
UNIT II: Introduct Concept (UNIT III Sensors, 1 of UV - E UNIT IV	ion - D of desi I: INH Propul Existing	Design n gn optin EREN sion sys g UV st NCEPT	nethodo mizatio T SYS stem - C sudy e.g	TEM (Control g. SLO DESIG	DF UV loop st CUM, N	, tudy (i. Autosi	e. how ıb.	UV res	spond t	o senso	or input			iented	stu H
UNIT II: Introduct Concept (UNIT III Sensors, I of UV - E UNIT IV Internal s	ion - D of desi I: INH Propula Existing C: CON	Design n gn optin EREN sion sys g UV st NCEPT	nethodo mizatio T SYS stem - C sudy e.g	TEM (Control g. SLO DESIG	DF UV loop st CUM, N	, tudy (i. Autosi	e. how ıb.	UV res	spond t	o senso	or input			iented	stu H
UNIT II: Introduct Concept (UNIT III Sensors, I of UV - E UNIT IV Internal s	ion - D of desi I: INH Propula Existing C: CON	Design n gn optin EREN sion sys g UV st NCEPT	nethodo mizatio T SYS stem - C sudy e.g	TEM (Control g. SLO DESIG	DF UV loop st CUM, N	, tudy (i. Autosi	e. how ıb.	UV res	spond t	o senso	or input			iented	stu H
UNIT II: Introduct Concept o UNIT III Sensors, I of UV - E UNIT IV Internal s submarin	ion - D of desi I: INH Propul: Existing Y: COP system e	Design n gn optin EREN sion sys g UV st NCEPT and de	nethodo mizatio T SYS stem - C cudy e.g WAL I esign st	n TEM (Control g. SLO DESIG udy - S	DF UV loop si CUM, N Safety	, tudy (i. Autosi	e. how ıb.	UV res	spond t	o senso	or input			iented 9 ept of	stuo P H mir
History, I UNIT II: Introduct Concept o UNIT III Sensors, I of UV - E UNIT IV Internal s submarin	ion - D of desi I: INH Propul: Existing C: COP System e PATI	Design n gn optif EREN sion sys g UV st NCEPT and de H PLA	nethodo mizatio T SYS stem - C cudy e.g 'UAL I essign st	on TEM (Control g. SLO DESIG udy - S G OF U	DF UV loop st CUM, N Safety JV	, Autosı in desi	e. how ıb. ign - C	UV res Convent	spond t	o senso hape o	r input	narine	- Conc	iented ept of) H mir) H
UNIT II: Introduct Concept o UNIT III Sensors, I of UV - E UNIT IV Internal s submarin	ion - D of desi I: INH Propul: Existing C: COP System e PATI	Design n gn optif EREN sion sys g UV st NCEPT and de H PLA	nethodo mizatio T SYS stem - C cudy e.g 'UAL I essign st	on TEM (Control g. SLO DESIG udy - S G OF U	DF UV loop st CUM, N Safety JV	, Autosı in desi	e. how ıb. ign - C	UV res Convent	spond t	o senso hape o	r input	narine	- Conc	iented ept of	stud H min H rve

TEXT BOOKS

E. Eugene Allmendinger, Submersible vehicle systems design
 Nuno A. Cruz, Autonomous underwater vehicles
 Robert D. Christ, The ROV Manual.

REFERENCE BOOKS:

1. Tadahiro Hyakudome, Design of Autonomous Underwater Vehicled by"Department of Naval Architecture & Offshore Engineering" Designed by

PROGRA	M	BE-1	Naval A	Archite	cture &	& Offs	hore Ei	nginee	ring							
Course Co UANA7		Desi	gn of F	Floating	g Offsl	nore St	ructure	es —	L 3	T 0		Р 0		C 3		
Year an Semeste Prerequis	er		IV	Year	(semes	ster VII	[)			Co		ours p (3Hrs)	er wee	k		
course																
Course cate	egory		umaniti ocial Sc				igemen urses	it		ssional ore		Profe	ssional	l Electi	ve	
	-81	В	asic So	cience			neering ience	g	Open]	Electiv	e]	Manda	tory		
Course Objectiv			 To design different floating offshore structures. To explain the functions and corresponding design configurations for floating offshore structures. To discuss on size, weight and buoyancy estimation, construction and installation of different floating offshore platforms. After completion of the course, the students will be able to:													
Course Out	come		1. Pr 2. Pr 3. Pr 4. Pr 5. Pr	actice actice actice actice actice	design design design design design	ing of a ing of a ing of a ing of a ing of a	semi-su tension SPAR FPSO. Drill sł	ubmers leg p platfor nips	sible pl latform	atform 1.						
POS/COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O 1	PS O 2	PS O 3	
CO1	3	2	3	1	3	2	1	-	-	-	-	-	3	2	1	
CO2	3	2	3	1	3	2	1	-	-	-	-	-	3	2	1	
CO3 CO4	3	2	3	1	3	2	1	-	-	-	-	-	3	2	1	
C04 C05	3	2	3	1	3	2	1	-	-	-	-	-	3	2	1	
CO6	3	1	2	2	3	2	1	-	-	-	-	-	3	2	1	
AVERAGE	3	1.8	2.8	1.2	3	2	1	-	-	-	-	-	3	2	1	
CORRELAT	ION LE	EVELS 1. SLIGHT(LOW) 2. MODERATE(MEDIUM) 3. SUBSTANTIAL(HIGH)										IGH)				
UNIT 1: SE Design of submersible UNIT II: T Design of T	semi-s s, Initi Hull S ENSIC	submer al Des tructur DN LE	rsible: sign Pr re, Des G PL A	Funct rocess, ign Ex ATFO	ions a Heav ample RMS	and Co e RAC Stabili	Calc ty term	ulation 1s;	n, Wei	ght an	d Buc	oyancy	Estim	g of S ates, S	Semi 9 Hr :	
TLPs, Desig		-	FORM	IS							~	~ · ·) Hr:	

Design of Spar platform: Spar Description, Spar Riser Systems, Spar Mooring, Spar Sizing, Drilling from a Spar, Spar Construction and Installation, Design Example.

UNIT IV: FPSOs

Design and conversion of FPSO, FPS: FPSO Hull Design, Hull Structure, Deck Structure, Turret Design and Selection, Design Example

UNIT V: DRILL SHIPS

Design considerations, hydrostatic calculations, total strength assessment, topside and hull interface, material selection.

Total: 45 Hours

9 Hrs

TEXT BOOKS

- 1. Jeo Kee Paik and Anil kumar Thayampalli, Ship shape offshore installation, design, building and operation.
- 2. Subrata Chakrabarthi, Hand book of offshore engineering.
- 3. Hiroshi Iwasaki, Preliminary design study of Tension leg Platform.

REFERENCE BOOKS:

1. API, ABS, DNV codes.

Designed by "Department of Naval Architecture & Offshore Engineering"

Course	BRAM e Code			Architec Calcul				L		Т		Р		С	
UAN	A7PA			/ SDCA				0		0		6		3	
Year Seme			IV Y	ear (sen	nester	VII)				Conta	ct hou	s per v	veek		
Prerec	-			NI	Ĺ						(6H	-			
Cou	irse		imanitie cial Sci			unagem courses		Profe	ssional	Core		Profes	ssional	Electiv	e
categ		В	asic Sci	ience		igineeri Science		Ope	√ en Elec	tive		1	Mandat	ory	
Cou Obje		2.	To prac	ess vari tice doc trate va	king &	k launc	hing ca	lculatio		ng alon	g with	HVAC	systen	1.	
Cou Outc		1. 1 2. 3. 4. 5.	Identify Explair Explair Show & Identify	etion o the van about the str c practi the de s the va	rious p the HV uctural ce the livery	iping s AC sy arrang launchi prepara	ystems stem. gement ing plan ition &	of ship a & cal trials.	s. culatio	ns					
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSC 3
CO1 CO2	3	-	2	2	3	3	2	-	-	-	-	-	3	2	-
CO2 CO3	3	-	2	22	3	3	3	-	-	-	-	-	3	-	1
CO4	3	2	3	-	3	-	3	-	-	-	-	-	3	3	3
CO5	1	2	3	3	2	3	2	-	-	-	-	-	3	-	3
CO6 AVE	1	2	3	3	2	2	3	-	-	-	-	-	3	1	2
RAG E	2.3	0.8	2.2	2	2.7	2.3	2.5	-	-	-	-	-	3	1.3	1.7
LE	RELATIO EVELS			LIGHT(I	LOW)		2. M	ODERA	ATE(ME	EDIUM)		3. SU	BSTAN	TIAL(F	IIGH)
LIST (1.	OF AS			5 diagran	Dina	Desig	Dinir	a diam	rom for	fluid	vetome	ofor	in (S	nitory	
1.			ischarge	-	ii,ripe	Desigi	i- ripii	ig ulagi	ann 101	nuia s	ystems	s of a si	np. (58	anntai y	
2.		•	-	be oil s	vstem	Sea wa	nter coo	ling an	d fresh	water	cooling	o comr	pressed	air syst	em
				ystem, o				-			-			<i>j</i>	,
3.	-			ection p	-	-						•		lan,	
	Arra	ngeme	nt of ex	its				·	-	•			• •		
4.	Anch	or arra	angeme	nt, moo	ring ar	rangen	nent, A	ntenna	arrange	ement,	soundi	ng pipe	e arrang	ement.	
5.		-		s, calcu							-	and star	ting		
6.	Stabi	lity tes	sts, dry	docking	g, dock	ting cal	culatio	ns, sea	trials &	z delive	ery.	т	OTAL:	90 HC	MIRS
	BOOK 1.Ro ers,198	bert T	aggard	, ship	design	& co	onstruct	ion, T	he soc	iety of	naval			& n	
-	2. Er	ic c.tuj inciple	of nav	troducti al archi					ed Else	vier Ind	lia pvt	lmt,20	10		
				architec	ture v	ol I II d	6- III								
	1 THIC	ipic of	inavai	arennee	ture, v	01111	x 111.								

PROGRA	AM	BE-N	aval A	rchitec	ture &	Offsh	ore Eng	gineeri	ng						
Course C	ode		are La					L	Ī			Р		С	
UANA7	PB	& PE	DMS				ľ	0	0)		2		1	
Year an Semeste			IV Ye	ear (sei	nester	VII)				Conta	act hou	irs per	week		
Prerequis course				NI	L						(2H	Hrs)			
C			nanities al Scie			inagen course		Pro	ofessior Core	nal	1	Profess	ional E	lective	•
Course									\checkmark						
categor	У	Bas	Basic Science Engineering Science Open Elective Mandatory												
Course Objectiv	2 1'o proctico the pipe line design using the software														
Course Outcom		1. E 2. P 3. P 4. P 5. S	xplain ractice ractice ractice chedul	the bas the so pipe v the or e pipel	tics abo ftware vork m ientatio ine con	out PD in crea odelin on of p mmissi	the stuc MS & ating & g & mo ipe line oning a commi	piping modif odificat e using and ope	module ying ec ion. the sole eration	e. Juipme Tware s. operati	nt.	ng softv	ware.		
POS/COS	PO 1	PO 2	PO3	РО 4	PO5	PO 6	PO7	PO 8	PO9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	3	-	1	2	3	2	1	-	-	-	-	-	3	2	3
CO2	3	-	3	2	3	3	2	-	-	-	-	-	1	2	3
CO3 3 - 2 3 2 3 2									-	-	-	-	1	2	3
CO4									-	-	-	-	1	3	3
CO5	2	1	2	2	3	3	1	-	-	-	-	-	2	2	1
CO6	3	1	2	3	2	3	1	-	-	-	-	-	1	2	3
AVERAG E	2.8	0.3	2.2	2.2	2.7	2.5	1.3	-	-	-	-	-	1.5	2.2	2.7
CORREI LEV		N	1. S	LIGHT	(LOW)		2. MC	DERA	TE(ME	DIUM)		3. SUB	STANT	TAL(H	IGH)

LIST OF EXPERIMENTS

- 1. Working with 3D view, using command window, Clash detection representative tools, working plane, construction lines.
- 2. Create Equipment: Creating Primitives, Creating Standard Equipment Utilities, Attributes, Attributes Global.
- 3. Modify Equipment, Equipment: Properties, Specification, Nozzle Specification, Positioning Equipment, Model editor, etc.,
- 4. Pipe Work Modeling: Pipe work Hierarchy, Pipe Work Orientation, Create branch, connecting pipe, placing pipe, branch replacing, Pipe create by model editor, pipe creation by command line, pipe insulation, material selection of pipe, create co ordinate piping.
- 5. Modify Pipe Routing: Modify branch, Modify specification, Modify orientation, Reselect of branch, branch explicit, modify connection type, modify BOP/TOP, Dragging pipe ,route splitting , change co ordinate.
- 6. Pipe sloping, auto sloping, component orientation, sloping and falling of pipe, line stub.

Total: 30 Hours

TEXT BOOKS

1. PDMS MANUALS

REFERENCE BOOKS:

1. PDMS TRAINING MANUALS

PROGRA	M	BE-N	aval A	rchitec	ture &	Offsho	ore Eng	gineerii	ng							
Course Co		Shiny	ard Tra	aining			Ĩ	L	T			Р		С		
UANA7I	PC	Shipy		uning				0	0)		2		1		
Year an Semeste Prerequis	er site		IV Ye	ear (sei NI	mester	VII)				Conta		irs per Irs)	week			
Course			nanities al Scie			inager course		Pro	fessior Core	nal]	Profess	ional E	lective	;	
categor	y	Bas	ic Scie	ence		gineer Scienco		Ope	n Elect	tive		М	andato	ry		
Course Objectiv		To un	To undergo training in the shipyard to understand the process in ship building													
	After completion of the course, the students will be able to:1.List various equipment available in a shipyard2.Define the shipyard process3.Observe various process happening in the shipyardOutcome4.4.Sketch the shipyard layout5.Practice possible work to help the personnel in the shipyard6.Practice various calculations need for shipyard															
POS/COS	PO 1	PO 2	PO3	PO 4	PO5	PO 6	PO7	PO 8	PO9	PO 10	PO1 1	PO 12	PS O1	PS O2	PS O3	
CO1	3	3	3	2	3	2	1	1	2	3						
CO2 CO3	3	3	32	2	3	3	2								3	
C03 C04	3	3	3	<u> </u>	3	<u> </u>	1	1	1	1	-	-	2	23	3	
CO ₄	2	2	2	2	3	3	1	1	1	1	-	_	2	2	2	
CO6	3	2	2	3	2	3	1	1	1	1	-	-	2	2	3	
AVERAG E	2.83	2.67	2.5	2.17	2.67	2.5	1.33	1.0	1.0	1.0	-	-	2.17	2.17	2.83	
CORREI LEV		N	1. S	LIGHT	(LOW)		2. MC	DERA	TE(ME	DIUM)		3. SUB	STANT	IAL(H	IGH)	
India and submit tl	The st	oroad fo	or a pe	riod of	f one to	o three	month	s, At t	he end	of the	trainir	ng the s n.	ng ship student DTAL:	s shoul	ld	
REFEREN	NCES 1.	Shipya	ard trai	ning n	nanuals							10				
Designed by "Department of Naval Architecture & Offshore Engineering"											ineerir	ıg"				

SEMESTER VIII

PROGRA	AM	BE-1	Naval	Archit	ecture	& Off	shore	Engine	ering								
Course C								I		Т		Р		С			
UANA8	01	Prod	uction	and P	roject	Manag	gemen	t 3		0		0		3			
	-									, , , , , , , , , , , , , , , , , , ,				-			
Year ar Semest			IV Y	lear (s	emeste	er VIII)			C	ontact h	ours pe	r week				
Prerequia				l	NIL							3Hrs)					
G				es and iences		Manag cour	ement ses		Profes Co			Profe	ssional	Electiv	e		
Course									v	/							
categor	су.	Basic Science Engineering Science Open Elective Mandatory															
Course Objecti	-		2. To 3. To	o ident o apply	tify van y the n	rious p ew pro	oroject	manag on tech	gement niques	tools. used in	n ship n		shipyaro turing ii				
Course Outcon	-		1. Li 2. Pr 3. In 4. A 5. Pr	ist the ractice terpre- pply p ractice	stages proces t capac roduct launcl	involv ss plan vity pla ion pla ning ca	ved in ming i anning anning alculat	produc n shipt in shij in shij ion & :	tion de ouildin o build obuildi Shipya	g. ing. ng. rd layo	applica ut.						
	DO									-	ilding p	1	DCO	DGO	DGO		
POS/COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3		
CO1	3		2	2	2	2	1	-	-	-	-	-	3	1	-		
CO1	2	2	2	2	3	3	1	_	_	_	_	_	2	2	1		
CO3	1	2	3	3	2	2	1	-	-	-	-	-	3	2	1		
CO4	1	2	3	2	3	3	2	-	-	-	-	-	1	3	2		
CO5	1	2	3	2	2	2	2	-	-	-	-	-	1	3	2		
CO6	2	2	3	2	3	3	2	-	-	-	-	-	1	3	3		
AVERA GE	1.7	2	2.7	2.2	2.5	2.5	1.5	-	-	-	-	-	1.8	2.3	1.8		
CORRE LEV	LATIC /ELS	N	1.	SLIGH	IT(LOV	W)	2.	MODE	RATE	(MEDIU	JM)	3. SU	BSTAN	TIAL(H	IGH)		

UNIT-1 : PRODUCTION DESIGN

Production design - application of the principles of design for production in shipbuilding - joining of parts; relations between structural design and prefabrication, simplifications in structural design (design for welding), quality control. Problems of accuracy - tolerances, standards, measuring techniques (theodolite, laser, etc) quality control.

UNIT-II: PROCESS PLANNING

Process planning in shipbuilding :-Planning for operations - interconnection between production design and process planning, production and process analysis, assembly charts, operation process charts, flow process charts; Process selection. Application of models for process planning, scheduling and control - Gantt charts, CPM & PERT, transportation models etc.; Special aspects of application of these in shipbuilding process. Procedure control and systems, control of production, time and motion study, material control and plant safety, industrial relations, personal management, training human relations, labour organization, dry docking and maintenance of ships.

UNIT-III: CAPACITY PLANNING

Capacity planning - estimation of future capacity of shipyard methods, strategies for modifying capacity, models for capacity planning under the special conditions of shipbuilding.

UNIT-IV: PRODUCTION STANDARDS

9 Hrs

9 Hrs

9 Hrs

Production standards - production standards in several parts of the ship production. process. Work measurement systems, methods of man - hour determination, use of computers, correlation between size of series and needed man – hours. Systems of maintenance and quality control.

UNIT-V: LAUNCHING CALCULATIONS

9 Hrs

Launching methods, calculation and curves, side launch cradle, releasing and starting, stability tests, dry docking, docking calculations, sea trials & delivery.

Total Hours : 45

TEXT BOOKS

- 1. Taggart; ship design and construction, SNAME chapter 15, 1980
- Storch R. Lee, Hammon C.P. & Bunch H.M.; Ship Production, Cornell Maritime Press, Maryland, USA, 1988
- 3. Heizer and Render. Production and Operations Management, 3rd or later Edition
- 4. J K Sharma, Operations Research Theory and Applications, Laxmi Publications

REFERENCE BOOKS

- 1. Dormidontov V. K. & et.al; Shipbuilding Technology, Mir publishers, Moscow.
- 2. Eyres D.J.; Ship Construction William Heinemann Ltd, London, 1982
- 3. Buffa, Modern production operations management, 6th edition, Wiley 1980
- 4. P Khanna , Industrial Engineering and Management , Dhanpat Rai 1980

Designed by	"Department of Naval Architecture & Offshore Engineering"
0 1	

PROGRA	AM	BE-N	aval A	rchitec	ture &	Offsho	ore Eng	gineeri	0									
Course C	ode	Ocear	ı Engin	eering	& Mar	ine		L	Т	•		Р		С				
UANA8	PA	Hydro	odynam	nics- M	lodel T	esting		0	0			4		2				
Year an	ıd		IV Vo	or (001	nester '													
Semest	er		IV Ie	ai (sei	nester	v III)		Contact hours per week (4Hrs)										
Prerequis course				NI	L						(4H	Irs)						
			nanities al Scie			inagem courses		Pro	fessior Core	al	Professional Elective							
Course		2001					-		<u>√</u>									
categor	у	Bas	sic Scie	nce		gineer Science		Ope	n Elect	ive		Μ	andato	ry				
Course Objectiv		1	1. To understand the techniques involved in model making and model testing for sl hydrodynamics															
Course Outcon			. Des . Cor . Per . Exp . Def	cribe v istruct form b lain va ine the	various a ship asic ex arious s rTTC	model model perime stages i standa	he stud makin ents rela in mode rds in 1 id prop	g tech ated to el prep nodel	niques ship hy aration testing	availat ydrody 1 for re:	ole for namica	s e tests	-					
POS/COS	PO	PO	PO3	РО	PO5	PO	PO7	PO	PO9	PO	PO1	PO	PS	PS	PS			
	1	2		4		6		8		10	1	12	01	02	03			
<u>CO1</u>	2	2	2 2	-	1	-	-	1	1	2	2	1	1	2	2			
CO2 CO3	2			-	1	-	-	1	1 2	2	2	1	1	2	2			
CO3 CO4									2	2	2	1	1	2	2			
C04									2	2	2	1	1	2	2			
	CO6 2 2 1 1 -							1	2	2	2	1	1	2	2			
AVERAG E	2	2	1.8	0.3	1	-	-	1	1.7	2	2	1	1	2	2			
CORRE	LATIO 'ELS	N	1. S	LIGHT	(LOW)		2. MC	DERA	TE(ME	DIUM)		3. SUB	STANT	TAL(H	IGH)			

LIST OF EXPERIMENTS

- 1. Learn the model making techniques to make a ship model
- 2. Using Scaling techniques creating a physical model of an actual ship
- 3. Model preparation for resistance and sea keeping tests
- 4. IITC standards of model tests and Method of IITC 1978 resistance prediction method
- 5. Carryout model testing in the wave tank and observing the data as output
- 6. Open water characteristics of model

Total Hours : 60

REFERENCES

- 1. Practical Ship Hydrodynamics. Volker Bertram, Butterworth-Heinemann, 2000
- 2. Dynamics of Marine Vehicles, R Bhattacharya, 1978

Designed by	"Department of Naval Architecture & Offshore Engineering"
-------------	---

PROGRA	M	BE-N	aval A	rchitec	ture &	Offsh	ore Eng	gineeri	ng							
Course Co		Major	Desig	n Proj	ect		-	L	T			P		<u>C</u>		
UANA8	'B	5		5				0	0			16		8		
Year an Semeste			IV Ye	ear (sei	nester	VIII)				Conta	act hou	rs per	week			
Prerequis course				N	L						(16)	Hrs)				
Course	,		nanities al Scie			nagen course		Pro	ofession Core	nal	ł	Profess	ional E	lective	;	
categor	у	Bas	sic Scie	ence		igineer Scienc		Ope	v n Elect	ive		М	andato	ry		
Course		To ca	To carry out a design project in naval architecture and offshore engineering After completion of the course, the students will be able to:													
Course Outcom		After 1 2 3 4 5 6	. Des . Est . Ske . Pre . Per	scribe to imate here here the the here dict the form the	the con hydrost es plan e resist he scan	nponen atic ca and g ance a ting ca	the stuc ats on a lculatic eneral a nd prop alculatic ormanc	ship d ons for arrange oulsive ons for	esign p the sel ement f charac the ve	roject ected v for the teristic ssel	vessel given v es of th	e vesse	el			
POS/COS	PO1	PO 2	PO3	РО 4	PO5	PO 6	PO7	PO 8	PO9	PO 10	PO1 1	PO 12	PS O1	PS O2	PS O3	
CO1	3	3	3	2	1	1	1	1	1	2	2	1	2	3	3	
CO2 CO3	3	3	3	2	1	1	1	1	1 2	2	22	1	3	3	3	
CO4	3	3	3	2	1	1	1	1	2	2	2	1	3	3	3	
CO5	2	2	2	1	1	1	1	1	2	2	2	1	2	2	2	
CO6	2	2	1	1	1	1	1	1	2	2	2	1	2	2	2	
Average	2.7	2.7	2.5	1.7	1	1	1	1	1.7	2	2	1	2.5	2.7	2.7	
CORREI LEV		DN	1. SI	LIGHT	C(LOW)	2. MO	DERA	TE(MI	EDIUN	1)	SUBS	3. FANTI	AL(HI	GH)	
and they design a	will ond sub	comple	te the	Projec	t in Se	mester		using t	oth ma	anual a				-		
	actica						ertram, narya, 1		worth-l	Heinen	nann, 2	2000				
Designed b	y		" Depa	artmen	t of Na	aval A	rchitect	ture &	Offsho	re Eng	ineerir	ıg"				