

PROGRAM		BI	E- Mining Engi	neering		
Course Code:			L	Т	Р	С
UCLEC01	Cours	e Name:	2	0	0	2
	TECHNICA	L ENGLISH-I				
Year and	I Year (I S	EMESTER)		Contact	t hours per week	•
Semester					(2Hrs)	
Prerequisite	N	IIL				
course						
Course category	Humanities and Social Sciences	Management courses	Profession	al Core	Professional	Elective
	\ <u>\</u>					
	Basic Science	Engineering Science	Open El	ective	Mandat	ory
Course Objective	 Identify th Use Voca Read and Learn to v Application 	e process of commun bulary & English Gra understand the langua write technical drafts. on of imperative passi	nication and fo mmar in comm age. ve.	ocus on lang munication	guage	
Course Outcome	The student will be 1. Outline th 2. Illustrate t 3. Distinguis 4. Infer the s 5. Develop g 6. Apply the	able to e importance of comr echnical and general h different tenses and kill for writing forma good listening and spe skills to speak and w	nunication ski vocabulary. l identificatior l and informa aking skills vrite English g	ill. n of commo l letters grammatica	n errors lly	

POS/ COS	PO1	PO2	PO3	PO4	PO 5	PO 6	PO 7	PO8	PO9	PO10	PO11	PO 12	PS O1	PSO2	PS O 3
CO1	-	-	-	-	2	3	2	-	3	3	-	3	-	-	-
CO2	-	-	-	-	-	3	2	-	2	2	-	3	-	-	-
CO3	-	-	-	-	2	2	2	-	2	2	-	2	-	-	-
CO4	-	-	-	-	2	2	2	-	3	3	-	3	-	-	-
CO5	-	-	-	-	2	2	2	$\frac{1}{2}$ - $\frac{3}{3}$				3	-	-	-
CO6	-	-	-	-	2	3	3	-	3	3	-	3	-	-	-
Average	-	-	-	-	2	2.5	2.2	-	2.7	2.7	-	3	-	-	-
Correlation	Levels		•	1.Slig	ht(Lo		2.Mc	derate	e(Mediu	^{1m} 3	.Substa	antial(High)		
KL-Knowledg	e Level:K	1-Remer	nber, K2—	-Understa	and ,K3	-Apply	, K4-A1	nalyse, F	K5-Eval	uate, K6-	Create ;				
PO-Programm	e Outcor	ne; CO-(Course Out	come ;PS	O-Prog	gramme	e Specif	ic Outco	ome						
UNIT I	CC)MMU	NICATIO)N & F	OCUS	5 ON I	LANG	UAGE	C					6Hrs	

Process of Communication -Language as a tool of Communication-Importance of Technical Communication

UNIT II VOCABULARY & ENGLISH GRAMMAR

General Vocabulary-Dictionary-Word Formation: Prefix and Suffix-Synonyms and antonyms-Idioms and Phrases-Homophones -Parts of Speech-Subject Verb Agreement-Tenses, Articles, Prepositions-Common errors in English

UNIT III READING SKILL

Intensive Reading-Skimming the text-Scanning-Topic sentence and Its Role-Reading and Interpretations-Critical Reading

UNIT IV WRITING SKILL

Descriptive Writing –Paragraph-Technical descriptions-Essays-Letter Writing – Formal and Informal-Business Letters-Job Application Letter-Types of reports-Instructions and Checklists

UNIT V LISTENING AND SPEAKING

Types of Listening -Listening and note taking-Pronunciations-Stress and Intonation-Conversation technique-Dialogue Writing -Professional Communication-Interview-Group Discussion –Power Point Presentation-Lab

> Total : 30 Hours

TEXT BOOKS:

1. Cambridge Advanced Learner's Dictionary (Latest Edition)

2. English and Communication Skill for Students of Science and Engineering by S.P.Dhanavel.(Orient Blackswan)

Designed by " Department of English"

6Hrs

6 Hrs

6Hrs

6Hrs

DEPT OF MINING ENGINEERING

PROG	RAM							BE- Mi	ning Eng	zineering	r						
1100			Cours	e Name	•				I.		•	Р			C		
Cours UBM	e Code TC01		ENGI – I	NEERII	NG MA	THEM	ATICS		3	1		0			4		
Year a	ind]	Year	(I SEM	IESTE	R)			Co	ntact h	ours pe	r week				
Semes	ter										(4	4Hrs)					
Prereq	uisite				NIL												
course	•																
Course	e categ	gory	Huma	nities an	d	Manag	ement	P	rofessio	nal Cor	e	Pro	fessiona	l Electiv	/e		
		-	Social	Science	S	cour	ses										
		-	Basic	Science		Engine Scie	ering nce		Open E	lective			Manda	atory			
Course	e Obje	ctive	1.	Identif	y the pr	ocess o	t mecha	anics									
			2.	Use the	e calcul	us richles											
			3. 4	Learn	to integ	rals											
				Applic	ation of	f integra	als.										
				rr ·		0											
			The stu	The student will be able to 1 Solve problems on Laplace Transform													
Course	e Outco	Dutcome 1. Solve problems on Laplace Transform															
			2.	Demor	istrate t	he use of	of Four	ier Trar	storms	in solvi	ing phy	sical pro	oblems				
			5. ⊿	Evalua Apply	nrobak	instorm	of phys	sical sys	stems	avetome							
			4. 5	Evalua	te Sam	nling d	istributi	ions of r	hysical	l system	s						
			5. 6.	Apply	the kno	wledge	of Lar	blace tra	nsform	. Fourie	er trans	form, p	robabili	tv and			
				sampli	ng distr	ibution	s in eng	ineering	g applic	ations		1		5			
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3		
CO1	3	2	3	2	2	-	-	-	-	-	-	2	2	2	2		
CO2	3	2	3	3	2	-	-	-	-	-	-	-	2	2	3		
CO3	2	3	2	2	2	-	-	-	-	-	-	2	2	-	2		
CO4	3	2	3	3	2	-	-	-	-	-	-	2	2	3	3		
CO5	3	3	3	2	2	-	-	-	-	-	-	2	3	3	3		
CO6	3	3	3	3	2	-	-	-	-	-	-	2	3	3	2		
Ave						-	-	-	-	-	-			2.40	2.17		
rage	2.83	2.50	2.83	2.50	1.67	Ļ		2.14			Ļ	2.00	2.33	1/11' 1			
Corre	elation I	Levels	1 Domon	I.Slig	ht(Lov	V)	2 Annler	2.Mo	derate(Mediui	$\frac{m}{K}$	3.Sut	ostantia	l(High))		
PO-Pr	ogramme	e Outcon	1-Kemen ne; CO-C	liver, K2-	itcome :l	Stanu ,K. PSO-Pro	gramme	Specific	outcome	Evaluate	, NU-Ure	ale;					
	_		,	_	- ,-			• ^									
UNIT	I	C 1		TRIC	GONON	1ETRY			0	1.01	0	0.11	1 1.	12 Hrs	5		
De M	ovier's 7	heorer	n and its	s applica	ations -	Expans	10n of S	$\sin n\theta$, c	osnθ, a	nd Sinn	θ, cosn	і ⊎. Нур	erbolic	function	18 -		
Separ	ation inf	to real p	oarts and	ı ımagır	ary Par	us - sim	pie pro	diems. S	summat	lion of s	eries us	sing C +	is meth	100.			
UNIT	II			DIFF	ERENT	TIAL CA	ALCUL	US I									

	12 Hrs
Successive Differentiation of Standard forms -Leibnitz's theorem (Statement only)- simple problems. Le tangent and Subnormal. tangent and normal in Cartesian and polar form. Curvature, radius and centre of Cartesian and polar form - Evolutes and Envelopes	ngth of Sub curvature in
UNIT III DIFFERENTIAL CALCULUS II Functions of two variables - Partial derivatives - Euler's theorem on homogeneous functions and its gene total differentials Jacobian- Taylor's series in the case of two variables - Maxima /Minima of Two variab Lagrange's method of undetermined multipliers.	12 Hrs eralization - bles -
UNIT IV INTEGRAL CALCULUS I Integration by trigonometric substitution, by parts, Bernoulli's rule. Reduction formulae - Properties of d integrals - beta and gamma Functions and problems.	12 Hrs lefinite
UNIT V INTEGRAL CALCULUS II Operations under the sign of integration - multiple integrals - change of order coordinates -Area, Volume and Surface area of solids using multiple integrals of integration - Transform	12 Hrs nation of
Text BOOKS:	60 Hours
1. Dr. B.S. Grewal, "Higher Engineering Mathematics", 40th edition, Khanna Publishers, New Del	lhi, 2007.
REFERENCES: 1. H.K.DASS "Advanced Engineering Mathematics", 15th Revised edition, S.Chand & Co. Ltd., N 2006.	Jew Delhi,

PROGRAM							BE-Mi	ining E	ngineerii	ng				
Course Code:		N						L		T	I			С
UBPHC01	Cot	irse N	ame:					3		1	()		4
	EN	GINE	ERIN	G PHY	YSICS	5 I								
Year and Semester	ΙY	ear (I	SEME	STER)				C	Contac	t hours p	er weel	K	
Prerequisite course]	NIL							(4Hrs)			
Course category	Hu So	manitie cial Sci	es and ences	Μ	lanage cours	ment es]	Profess	ional Co	ore	Pr	ofession	al Elect	ive
	Ba	asic Sci	ence	E	nginee Scien	ering ce		Open	Elective	е		Mand	latory	
		V												
Course Objective	At t	 De De To To To To 	monsti termin study estima enhan of the	the con the elas the the b the conc course f	actic line astic line basic here the stude	of fluic mit of it of di eat law f electr dent w	at rest different off	t and m ent mater t mater behavio etic inc ble to:	otion. erials ials or of lig duction	ht. and th	eir applica	ations		
Course Outcome		1. Su 2. Ex 3. Illu 4. De 5. Ou 6. Ap	mmariz plain tl ustrate monstr tline th ply the	ze the la he conc the prop rate the he basic fundai	aws an epts of perties basic princi mental	d prind f hydro of ma princip ples of s of ele	ciples of statics tter les of l celectr ectroma	of basic and hy neat an icity an agnetic	e mecha vdrodyn d light nd electr inducti	nics amics rical m	achines engineeri	ng appl	ications	
POS/ PO	РО	PO	PO	PO5	РО	PO	PO	PO	PO1	PO1	PO12	PSO	PSO	PSO
COS 1	2	3	4	105	6	7	8	9	0	1	1012	1	2	3
CO1 2	2	-	-	2	-	-	-	-	-	-	2	3	2	3
CO2 2	-	2	2	2	-	-	-	-	-	-	2	3	3	3
CO3 2	2	-	2	2	-	-	-	-	-	-	-	-	-	-
CO4 2	2	2	-	2	-	-	-	-	-	-	2	-	2	-
CO5 3	-	-	-	-	-	2	2	3	2					
CO6 3	3	3	2	3	-	-	-	-	-	3	2	3	2	
Average 2.3	2.4	2.3	2	2.3	-	-	-	-	2.2	2.5	2.6	2.5		
Correlation Levels	2.Mc	oderate	(Mediu	m) 3	Substant	ial(Hig	h)							

PO-Programme Outcome; CO-Course Outcome ;PSO-Programme Specific Outcome

Unit I: Mechanics

(9Hours)

Force-inertia-Newton's laws of motion- impulse and impact - Friction- cause of friction- types of frictionlaws of friction-coefficient of friction- angle of friction. Motion-types of motion- simple harmonic motionsimple pendulum- circular motion-centripetal and centrifugal force- *conical pendulum-working of a steam engine governor based on the principle of conical pendulam. Newton's law of universal gravitation-*Satellite-

principle of launching of satellite- orbital velocity-time period- escape velocity. Planetary motion and Kepler's Laws-Deduction of Kepler's third law-Law of gravitation from Kepler's third law.

Unit II: Hydrostatics and Hydrodynamics

(9Hours)

Fluid-Pascal's law-Archimedes principle-Laws of floatation- centre of buoyancy – stability of equilibrium of a floating body-metacentre - metacentric height of a ship – experiment*. Hydrostatic pressure, differential manometer - Centre of pressure- Centre of pressure of a rectangular lamina immersed in a homogenous liquid at rest - Centre of pressure of a triangular lamina with one side parallel to the surface-Surface tension- angle of contact-capillarity- derivation of surface tension. Viscosity-Viscous force-Stokes Law-coefficient of viscosity- experiment to find coefficient of viscosity. Bernoullis Theorem - Venturimeter - Plimsol lines (9 Hours)

Unit III: Properties of matter

Elasticity- stress and strain- -Hooke's law -modulus of elasticity* -different types - Poisson ratio Torsiontorque per unit twist – work done in twisting- Torsion pendulum- theory and experiment-bending of beams-bending moment- Cantilevers- depression of a cantilever- non uniform bending and uniform bending- theory and experiment.

Unit IV: Heat and Light

(9 Hours) Laws of thermodynamics-Specific heat capacity - Specific heat capacity of gases - CP and CV - Relation between them-Transmission of heat – conduction- coefficient of thermal conductivity – Lee,s disc experiment- cylindrical flow of heat-convection- radiation-Black body radiation - distribution of energy-Wien's displacement law-Rayleigh Jeans law. Interference*- Double slit experiment- Diffraction* due to single slit and circular aperture. Limit of resolution, Resolving power of optical instruments. (9 Hours)

UNIT V: Electricity

Heating effect of current-Joules law of heating-Applications-fuse- thermopile. Ampere's Law, Biot Savart law. Magnetic field at a point due to straight conductor carrying current-Kirchoff's current and voltage laws – Wheatstone's network -Electromagnetic induction - Faraday's laws of Electromagnetic induction - Lenz law -Self induction-Mutual induction . DC Generator* - principle, construction and working- AC Generator*principle, construction and working. Transformer- principle, construction and working -Losses in transformer- methods to reduce the losses.

TOTAL 45 HRS

TEXT BOOKS:

- 1. A Nelson, "Engineering Mechanics" Tata McGRaw Hill, 2009.
- 2. M. Narayanamurthi, M. Nagarathnam, "Statics, Hydrostatics and Hydrodynamics", The National Publishing Company, 8th Edition, 2008.
- 3. R. Murugeshan, Properties of matter and acoustics, S. Chand & Co, New Delhi 2012.
- 4. D.S. Mathur, Elements of properties of matter, S.Chand & Company Ltd., New Delhi 2010.
- 5. Brijlal, N. Subramanyam and P.S. Hemne "Heat and thermodynamics", S.Chand & Co,

6. N. Subramaniyam, Brijlal and M.N. Avadhanulu, A text book of Optics, S. Chand & Co, New Delhi, 2012. **REFERENCES:**

- R Feynmann, R Leighton, M Sands, "The Feynmann Lectures on Physics", Volume 1, Pearson 1. Education; 1st edition 2012.
- 2. D Halliday, R Resenic and J Walker "Fundamentals of Physics", Wiley India, 6th edition, 2006.
- 3. Brijlal and Subramaniyam, "Properties of matter", S. Chand & Co, New Delhi, Revised edition, 2008.
- R W. Fox, A T. McDonald, P J. Pritchard John, "Introduction to Fluid Mechanics", Wiley & Sons, 6th 4. edition, 2008.
- E M. Purcell and Morin, "Electricity and Magnetism", 3rd Edition, Cambridge University Press, 2011 5.
- A Ghatak, "Optics", McGraw-Hill Education; 1st Edition, 2009 6.

PROG	RAM		BE-Min	ing Engi	neering										
Ca		0.		2 0	~				L	Т		Р			С
		1	Course	e Name	:				2	0		0			2
	beneo	1	Engineer	ring Che	mistry				3	0		0			3
Year	and Sem	ester	I Year (I	Semeste	er)					C	ontact h	ours per	week		
Prerec	quisite co	ourse	NIL								(3	3Hrs)			
			Huma	nities an	d	Manag	gement	I	Professio	nal Core		Prof	essional	Elective	;
Cour	rea antar	0	Social	Science	S	cou	rses								
Cour	ise caleg	,or y	Basic	Science	E	ngineerii	ng Scien	ce	Open F	lective			Mandat	orv	
			2001	✓					open 2					.01)	
			1	L agent d		1	f	Tuesta	ant fan i		1				
Course	e Obiecti	ve	1. 2	Discuss		$rac{1000}{1000}$	n water	of crud	ent for i	ndustria	i purpos	se			
000000			2.	Discuss	ine the	technold	ogy of w	vater Tr	e on eatment	for indu	strial n	irnose			
			3. 4	To stud	v the C	oncept o	ogy of w	tical tecl	hnique a	and the i	mportai	nce of fr	iels		
			5.	To kno	w the pi	rinciple	involve	d in cor	rosion c	ontrol, t	he conc	ept of e	nergy st	orage de	evices.
					I	1				,		1	05	U	
	_		At the er	nd of the	course t	he studer	nt will be	e able to:							
Course	Outcom	le	1.	Illustra	te the fu	indamer	itals of p	phase ru	le and r	educed j	phase ru	ıle			
			2.	Outline	the cor	icepts of	t water t	reatmer	it techni	ques					
			3. 4	Identify	the typ	bes of fu	leis and	characte	erizatior	1 OI Vari	ous con	stituents	s	~	
			4. 5	Disting	uish the	asic prin	tion tecl	hnologi	ochemic as of me	al reacti	ons and	netallic	materia	5 1c	
			5. 6	Apply c	orrosion	Control	techniqu	linologic les in on-	- board s	hins	lu non-i	netanic	materia	15	
POS/	DO1	DOD			DO5	DOC	DO7		DOO	DO10	DO11	DO12	PSO	PSO	PSO
COS	POI	PO2	P05	P04	POS	POo	PO/	P08	PO9	P010	POIT	POIZ	1	2	3
CO1	2	-	-	-	-	-	2	-	-	-	-	2	2	2	2
CO2	2	2	-	-	-	-	3	-	-	-	-	-	-	-	-
CO3	2	2	-	-	-	-	3	-	-	-	-	-	-	-	-
CO4	2	2	-	-	-	-	3	-	-	-	-	-	-	-	-
CO5	3	2	-	-	2	-	-	-	-	-	-	-	2	2	2
CO6	3	2	3	-	2	-	3	-	-	-	-	-	2	2	3
Aver	22	2	2	_	2	-	28	-	-	-	-	2	2	2	2.3
Correla	1 2.5 ation Lev	vels 2	3	- 1.Sligh	t(Low)	l	2.0	2.Mod	erate(Me	dium)		3.Subs	tantial(H	igh)	
	2			8										0 /	

KL-Knowledge Level:K1-Remember,K2--Understand,K3-Apply,K4-Analyse,K5-Evaluate,K6-Create : PO-Programe Outcome: CO-Course Outcome :PSO-Programe Specific Outcome

UNIT I PHASE RULE

Terminology, Phase rule - one component system, reduced phase rule - application of rule - appli	bhase rule to binary alloy system.
Hazard of Inorganic, Organic cargos carried on board vessels with respect to flammability, toxic	ity, reactivity and solubility.
UNIT II WATER & IT TREATMENTS	9 Hrs
Sources of water, hard and soft water, determination of hardness, Softening of water- lime soda	process Ion exchange process. Boiler
feed water, removal of oil - blow down operation, Caustic embrittlement, internal conditioning.	Water for domestic purposes
screening, aeration, sedimentation, chlorination, break point chlorination. Disinfection with ozor	ne, desalination. Waste water
treatment-marine sediments.	
UNIT III FUEL & COMBUSTION	9Hrs

9Hrs

Conventional & non-conventional energy resources and energy conversion, classification and properties of fuel, calorific value determination using bomb calorimeter. - Solid fuels -Analysis-proximate and ultimate analysis, hydrogenation & carbonization of coal.

Liquid fuels- characterization of various constituents viz petrol diesel with regard to their application in IC engine (knocking)Gaseous fuels- coal gas, producer gas, biogas, water gas and flue gas analysis using Orsat apparatus. Toxic and other ill effects of cargoes on human and environment.

UNIT IV ELECTROCHEMISTRY

Electrodes, Standard & single electrode potential, Nernst equation, Cell terminology, cell reaction Galvanic cells, fuel cells, Lead acid battery, Nickel cadmium battery. Electrochemical Reaction: Electrolysis- electroplating – galvanizing

CORROSION CONTROL ON BOARD SHIP: Thermodynamics & Kinetics of corrosion, various forms of corrosion, corrosion prevention methods.

LUBRICANTS: Classification and properties of lubricating oils (Viscosity, flash, fire point & cloud and pour points) Effects of pressure on melting & boiling point. Relevance of gas laws to LPG carrier and reefer ships.

PHYSICAL AND CHEMICAL PROPERTIES OF FUELS AND LUBRICANTS: Production of Oils from Crude Oil, Properties and characteristics of fuels and lubricants, Shore side and shipboard sampling and testing, Interpretation of test results, Contaminants including microbiological infection, Treatments of fuels and lubricants including storage, centrifuging, blending, pretreatment and handling.

UNIT VSTEEL, CEMENT AND ORGANIC COMPOUNDS

Production of steel - Bessemer converter process. Open hearth process, Chemical addition to steels production of non-ferrous alloys, brass, bronze, aluminum alloys. Special reference to ship building (ship propellers etc) Cement – manufacturing of cement, setting & hardening of cement; concrete, reinforced concretes Basic Metallurgy, Metals and Processes, Properties and Uses, Non-Metallic Materials. Characteristics and limitations of process used for fabrication and repair - Process, Heat Treatment of Carbon Steel.

ORGANIC COMPOUNDS: Hydrocarbon- petroleum & its fractionated products, extraction of aromatic compounds from petroleum. Aromatic compounds - Benzene; polycyclic hydrocarbons- Naphthalene, anthracene, naphthacene. Fibre and Reinforced plastics

TEXT BOOK:

- 1. Engineering Chemistry. Dr. V. Balasubramanian et. al., CARS Publishers
- 2. Engineering Chemistry Laboratory Manual. Dr. V. Balasubramanian et.al., CARS Publishers

References

- 1. Engineering Chemistry. Rajesh. Saras Publication
- 2. Environmental Chemistry A K Dey

Designed by : " Department of Chemistry"

9Hrs

9Hrs

Total: 45 Hrs

Course Code:									L		T	Р			С
UBMCC03		Cours	se Nar	ne:					3		1	0			3
		ENGIN	JEERIN	IG ME	CHANIO	CS									
XZ 1			1.37	· (T	C					0		1	1		
Year and Semester			ΙΥ	ear (I	Semest	ter)				C	ontact	nours pe (4Hrs.)	r week		
Prerequisite course				N	IL							(1115)			
Course catego	ory	Hum Soci	anities al Sciei	and ices	Ma	anagen course	nent s	P	rofessio	onal Co	re	Pro	fessiona	l Electiv	ve
		Bas	ic Scier	nce	Eı	ngineer Scienc	ing e		Open I	Elective			Manda	atory	
Course Objective		1. 2. 3. 4. 5.	Unde To le Unde Unde Unde	erstand earn sta erstand erstand erstand	of force tic equi friction momen dynam	e and r libriur and it and it its in v ic equi	und rigi oodies rticles	d bodie and rig	es id body						
Course Outco	me	Studen 1. F 2. A 3. U 4. A 5. A 6. U	its will Resolve Analyze Jnderst Analyze Analyze Jnderst	be able of for static and Fr mom dyna and the	e to ces and equilib iction a ents in mic equ e conce	mome rium o nd its various ilibrius pt of m	ents f partic effects s solid m of pa echani	cle and bodies articles cs in ri	rigid b and ri gid bo	oodies. gid bod dy.	ly.				
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3
CO1		2	3	2									1	2	
CO2	2	2	3	2			2	3	2				2	1	
CO3	1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					2	3	2				3	3	1
<u> </u>	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						3	3				3	2	2
	1	1	2	2		1	1	5	5				5	2	<i>2</i>
CO5			2	2		1	1	2	1				2	2	
CO6	1	1	1	1									2	1	

Average	1.5	1.33	2.33	1.83									2.16	1.83	1.5
Correlation I	Levels	1	I	1.Sli	ght(Lo	w)	1	2.Mc m)	derat	e(Medi	u	3.Substa	ntial(Hi	gh)	1
KL-Knowledge	Level:K	K1-Rem	ember,	K2—U1	nderstan	d ,K3-A	Apply, K	4-Analy	se, K5-]	Evaluate,	, K6-C	reate ;			
PO-Programme	Outcon	ne; CO	-Course	Outcor	ne ;PSO	-Progra	amme Sp	ecific O	utcome	•					
UNIT – I	BAS	SICS &	STAT	ICS O	F PART	TICLE	S						12 Hour	s	
Introduction - Un forces – Polygon Equilibrium of p UNIT – II	hits and law of articles EQU	l Dimer forces – Mon ILIBR	nsions – – Resol nent and IUM O	Forces lution a l couple F RIG	– Syste nd comj e – Scal I D BOD	em of fo position ar comp DIES	orces – l n of forc ponents	Resultar es – Pri of morr	nt force inciples nent – V	s – Paral s of trans Varigon':	llelogr missit s Thec	ram law of oility. Sing orem	forces – ' le equiva 12 He	Triangul lent forc ours	ar law of e -
Equilibrium of forces – Law of mechanics - Lami's theorem Free body diagram – Requirement of Stable Equilibrium – Equilibrium of rigid bodies in 2D – Examples. Type of supports and their support reactions. UNIT – III FRICTION Static and Dynamic Friction – Laws of friction - Equilibrium of a body on a rough Horizontal plane, inclined Plane and inclined															
UNIT - III FKICHON Static and Dynamic Friction - Laws of friction - Equilibrium of a body on a rough Horizontal plane, inclined Plane and inclined plane subjected to a force acting along the inclined plane. Applications of friction - Simple contact friction (Ladder friction) - Screw friction - weight lifted by screw jack - Belt friction - Rolling Resistance. UNIT - IV PROPERTIES OF SURFACES AND SOLIDS															
Screw friction – weight lifted by screw jack - Belt friction – Rolling Resistance. UNIT – IV PROPERTIES OF SURFACES AND SOLIDS Determination of Areas and Volumes-First moments of area and the Centroid of sections-Rectangle, circle, triangle from integration-															
T section, I section	on, Ang	gle section	ion, Ho	llow se	ction y	using st	tandard	formula	- Secon	nd and p	roduct	t moments	of plane	area- Re	ctangle,
and perpendicula	axis t	heorem	- Mass	momei	nt of Ine	rtia.			section	by using	g stanc	101111			eorem
UNII - V	DYNA		OF PA	AKTIC	LES AI	ND KI	GIDBC	DIES				12	Hours		_
Dynamics of Par law – work-energ Types of collisio Bodies – Genera Plane motion.	ticles - gy equa n - Col l plane	Displac ation of lision o motion	cement, particle f Elasti – Velo	velocit es - Imp c Bodie city and	ty and a oulse and es – Nev d Accele	ccelera d Mom vton's l eration	tion, the entum – aw of co – Absol	ir relati Law of ollision ute and	onship f conse of bod relativ	- Relativ rvation c ies - co-e e motion	ve mot of mon efficien metho	tion-Curvil nentum – I nt of restit od – Equil	linear mo D'Alembo ution. Dy ibrium of	tion – No ert's Prin namics o Rigid b	ewton's nciple – of Rigid odies in
											ТО	TAL: 60	Hours		
TEXT BOOK: 1.K.V. Natara2.R.S Khurmi	jan, "Ei , "A Te	ngineer xtbook	ing Me of Eng	chanics ineering	". g Mecha	anics".									
REFERENCE : 1. S.S. Bhavik	atti, "E	ngineer	ing Me	chanics	,,,										
 Palanicham S. Rajasekar 	y & Na ran, G.	gan, "E Sankara	ngineer a Subra	ring Me mania,	chanics "Funda	Statics mentals	s & Dyn s of Eng	amics" ineering	g Mech	anics".					
4. Beer, F.P a McGraw-Hi	and Joh 11 Inter " Dep	nson Jr nationa artmen	. E.R, " <u>l Editio</u> t of Me	Vector n. chanica	Mechar	nics for	Engine	ers", Vo	ol. (1) S	Statics an	d Vol	. (2). Dyna	amics,		
2 congridu wj	2 . p				- Lingini	B									

PROGRA	М		В	BE-Mini	ng Eng	ineering	5									
Course C	ode		C	Course N	lame :							L]	[P	С
UBBTC0	1		E	nvironr	nental S	tudies						0	()	2	2
(Commor	n to BE	- Mech	nanical	, BE – F	EEEM, I	BE –PE,	, BE – 1	HE, BE	E - NA	A&OE)						
Year and	Semest	er	I	Year (]	[Semest	ter)			C	Contact	hours p	per week	C C			
Prerequis	ite cour	se	N	ΠL					(2 Hrs)						
Course	antag	~ *** *	T	Iumoni	tios and	Social		Ionog	mont	t D	rofossi	onal Ca	ro	Drofoss	ional E	loctivo
Course	catego	Jry	S	ciences	ues anu	Social	n C	ourses	emen		010551		10	1101055		
				<u>√</u>			-	ourses								
			B	asic Sc	ience		F	Ingine	ering	0	pen El	ective		Manda	tory	
							S	cience			•				·	
Course O	bjective	e	Т	he obje	ctive of	this cou	irse is t	o provi	ide kn	nowledg	ge on					
			1		Environ	montor	d rana	wohlo	POG 0117							
			2		Ecosyst	em and	their fi	inction	s	les						
			3		Biodive	rsity an	$\frac{d}{d}$ its im	portan	ce							
			4		Social i	mpact o	n envir	onmen	t							
			5		Human	populat	ion and	l adver	se eff	ects						
			A	t the en	d of the	course,	the stu	ıdent w	ill be	able to)					
				1.	Summa	rize Nat	ural Re	esource	es sucl	h as Fo	rest, wa	ater, mir	neral, E	Energy,	land an	d Natural
				2.	Identify	the inte	errelation	onship	betwe	en livi	ng orga	inism ar	id envi	ronmen	t	
Course O	utcome			3.	Illustrat	e the in	portan	ce of e	nviror	iment t	by asses	ssing its	impac	t on the	human	world
				4.	Demons	strate di	nerent	type of	r polit	ation at	formily	azards	0 pr 001	om ond	D olo o	f
				5.	Explain	tion Te	chnolog	ponun av in F	nviro	nment	, failing	y wellal	e progr lth	ann anu	Kole 0	1
				6.	Classify	the int	egrated	theme	s such	n as bio	diversi	tv natur	al reso	urces. p	ollutior	n control
					and was	ste mana	agemen	t						, F		
POS/	DO 1	DOD	DO2		DOS	DOC	D07	PO	PO	PO	PO	PO1	PS	PSO	DEO	2
COS	POI	PO2	POS	P04	POS	PU0	PU/	8	9	10	11	2	01	2	P50.	5
CO1	-	-	-	-	-	2	1	2	2	-	-	2	-	-	-	
CO2	-	-	-	-	-	2	1	2	2	-	-	2	-	-	-	
CO3	-	-	-	-	-	2	2	2	2	-	-	2	-	-	-	
CO4	_	-	_	-	-	2	3	1	2	-	-	2	-	-	-	
CO5	-	-	_	-	-	3	2	3	2	-	-	2	-	-	-	
C06	-	-	_	-	-	2	3	2	2	-	1_	2	-	-	-	
Avera							5			-	-	2	-		-	
ge	-	-	-	-	-	2.2	2	2	2		-	2		-		
Correlat	ion Lev	/els	1	1.Slig	ht (Low	/)	. –	2.Mo	derat	e (Med	ium)	3.Sub	stantial	(High)	1	
						,			-		/			<i>υ</i> /		
KL-Kno	wledge	Level:K	1-Reme	ember,K	2Unde	rstand,I	КЗ-Арр	ly,K4-A	Analys	se,K5-E	valuate	,K6-Cre	ate : P	O-Prog	rame O	utcome:
CO-Cou	rse Out	come :P	'SO-Pro	grame S	specific (Jutcome	9									

Unit1:NaturalResources

Environmental studies-terminologies, need for public awareness. Natural resources-Renewable and non-renewable resources; Characteristics, uses and conservation of natural resources-Forest resources, Water resources, Mineral resources, Food resources, Energy resources and Land resources. Role of an individual in conservation of natural resources; equitable use of resources for sustainable lifestyles.

Unit 2: Ecosystems

Concept of an ecosystem, Structure and function of an ecosystem, Producers, consumers and decomposers; Energy flow in the ecosystem; Ecological succession; Food chains, food webs and ecological pyramids; Introduction, types, characteristic features, structure and function of the different ecosystems- Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Unit 3 : Biodiversity and its conservation

Introduction – Definition : genetic, species and ecosystem diversity; Biogeographical classification of India; Value of biodiversity : consumptive use, productive use, social, ethical, aesthetic and option values; Biodiversity at global, National and local levels; Inida as a mega-diversity nation; Hot-sports of biodiversity; Threats to biodiversity; Endangered and endemic species of India; Conservation of biodiversity : In-situ and Ex-situ conservation of biodiversity.

Unit 4: Environment and Social Issues

Environmental Pollution; Cause, effects and control measures of different types of pollution; Solid waste Management; Role of an individual in prevention of pollution; Disaster management. Social Issues and the Environment, From Unsustainable to Sustainable development, Urban problems related to energy, Water conservation, Resettlement and rehabilitation of people; its problems and concerns. Environmental ethics. Climate change, global warming, nuclear hazards, ill-effects of fireworks. Wasteland reclamation. Laws and acts in India for environment protection, Public awareness.

Unit 5: Human Population and the Environment

Population growth, variation among nations. Population explosion – Family Welfare Programme. Environment and human health- Human Rights, Value Education, HIV/AIDS, Women and Child Welfare, Role of Information Technology in Environment and human health. Field work and Field Visit.

Total: 30 Hours

References

1. Agarwal, K.C. 2001 Environmental Biology, Nidi Publications Limited, Bikaner, India

2. Erach Bharucha. 2013. Textbook of Environmental Studies for Undergraduate Courses. University Grants Commission, New Delhi

3. N. Arumugam and V Kumaresan. 2014. Environmental Studies (UGC Syllabus), Saras Publications, Nagarkoil, India

4. D.K. Asthana and Meera Asthana. 2010. A Textbook of Environmental Studies. S. Chand Publishingm, New Delhi

5. B.S. Chauhan. 2015. Environmental Studies. Laxmi Publications, New Delhi.

Designed by "Department of Biotechnology"

6Hrs

6Hrs

6Hrs

6Hrs

6Hrs

PROG	RAM		BE-Min	ing Engi	neering										
Course	Code:		<u> </u>						L	Т		Р		(С
UBPH	ICPA		Enginee	Name: ring Phys	sics Lab				0	0		2			1
Year a	nd Seme	ster	I Year (I Semest	er)					C	ontact h	ours per	week	•	
Prerequ	uisite cou	ırse			NIL						(2	2Hrs)			
			Huma Socia	nities an	d es	Mana cou	gement Irses	1	Professio	nal Core		Prof	fessional	Elective	
Cour	se categ	gory	Basic	Science	E	ngineeri	ng Scien	ce	Open E	lective			Mandat	orv	
		•		✓		0	0		- 1 -						
Course	Objecti	ve	1. To 2. De 3. Co 4. Un 5. To 6.	underst termina nduct ez derstand create l	and the tion of toperime ting the cnowled	rties of t ters to re l sound. teroscop ng instru	material educe de es. ments.	s. eviation	from sta	andard v	values.				
Course	Outcom	e	At the er	nd of the 1. 2. 3. 4. 5. 6.	course t Explai Demon wavele Detern Infer elastic Illustra Explai coil	he stude n the canstrate ength nine the modulu ity of a ate how n the c	ent will be alibration the print sourface sof el bar to meas oncepts	e able to: n of Vol nciples e tension lasticity oure the behind	tmeter a of ligh and co- of tor thickness measur	efficient sion per sof the ement c	ntiomet gh conv t of visc endulum wire of magn	er vex lens cosity of a and `` etic fiel	s and o water Young's d along	calculati modu the axi	ng its lus of is of a
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
CO1	2	2	2	2	1	-	-	-	1	2	-	2	2	2	3
CO2	2	-	2	2	2	-	-	-	2	1	-	2	2	3	3
CO3	2	2	3	3	1	-	-	-	2	2	-	-	2	-	-
CO4	2	2	2	3	2	-	-	-	2	2	-	2	2	2	2
CO5	3	2	2	2	3	-	-	-	2	3	-	2	2	3	2
CO6	3	3	3	3	3	-	3	2	3	2					
Aver age	2.3	2.2	2.3	2.5	2	-	-	-	2	2	-	2.2	2	2.6	2.4
Correla	ation Lev	vels	·	1.Sligh	t(Low)		•	2.Mod	erate(Me	dium)	·	3.Subs	tantial(H	igh)	
KL-Kn CO-Co	owledge urse Out	Level:K come :P	1-Remem SO-Progr	ber,K2 ame Spec	Understa	nd,K3-A come	opply,K4-	Analyse,	K5-Evalu	ate,K6-C	Create : I	PO-Progr	ame Out	come:	

LIST OF EXPERIMENTS:

 $1. Calibration \ of \ low \ range \ voltmeter - potentiometer$

2. Torsion pendulum – Rigidity modulus of elasticity

3.Spectrometer- Grating - wavelength of mercury spectral lines

4. Newton's rings - Radius of curvature of a convex lens

5. Air wedge - Thickness of a wire

6. Surface tension of water -Capillary rise method

7. Uniform bending – Young's modulus of elasticity of a bar

8. Coefficient of viscosity of water - graduated burette

9. Non uniform bending - Young's modulus of elasticity of a bar

10. Field along the axis of a coil

erence

D Halliday, R Resenic and J Walker "Fundamentals of Physics", Wiley India, 6th edition, 2006 **DESIGNED BY** :Department of Physics

Course	e Code:								L	Т		Р			С
UBCH	ICPA		ENGIN LABOH	EERIN RATOF	IG CHI XY	EMIST	RY		0	0		2			1
										•					
Year a	ınd			I Yea	r (I Sen	nester)				Coi	ntact ho	ours per	week		
Semes	ster										(2	Hrs)			
Prereq	uisite				NIL										
course	;														
Course	e categ	ory	Human	nities an	d	Manag	gement	P	rofessio	nal Core		Prof	essional	Elective	e
		-	Social	Science	>	cou	1 505								
			Basic	Science		Engin Scie	eering ence		Open E	lective			Manda	tory	
				\bigvee											
						,	1. Determin	ne different	parameters o	of tachometry	, of fu	1			
Course	e					-	2. Dete 3 Dete	ermine t	he therr	mal prop	erties of	t f fuel			
Object	tive					-	 Den To s 	tudy the	e variou	s proper	tv of fu	el			
			5. To stu	idy the o	calorific	value o	of fuel			~ FF	.,				
			Students	will be	able to										
Course	e Outco	ome			1.	Illustra	ate how	to estim	ate Bica	arbonate	and Hy	droxide	Alkalir	nity	
					2.	Explai	n how t	o calcul	late Tota	al Hardn	ess and	Chlorid	le Conte	ent of wa	ater
					5.	BOD	Istrate II	$10 \times 10^{\circ}$	TSS of	v Tempo water	rary and	u Perma	пент п	aruness,	COD,
					4.	Compa	are the ti	tration	methods	s of acid	, base a	nd Ferro	ous ion		
					5.	Detern	nine Sir	ngle El	ectrode	potenti	al of C	Galvanic	cell a	and Mo	lecular
					_	weigh	nt and de	egree of	dissocia	ation of	a polym	ner		. ~	
					6.	Explai	n how	to deter	mine P	roximat	e analy	sis of f	uel and	its C	alorific
POS/	DOI	DOO	DOG	DOL	D0 #	Value	202	DOG	DOG	D010	DOII	DOID	PSO	PSO	PSO
COS	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POIO	POIT	PO12	1	2	3
CO1	2	-	-	2	-	-	-	-	2	3	-	2	1	2	2
CO2	2	2	-	1	-	-	2	-	3	2	-	-	-	-	-
CO3	2	1	-	2	2	-	2	-	2	3	-	-	-	-	-
CO4	2	1	-	3	2	-	3	-	3	2	-	-	-	-	-
CO5	3	2	-	2	2	-	-	-	2	3	-	-	2	2	2
CO6	3	2	3	2	2	-	3	-	3	2	-	-	2	2	3
Aver	2.3	16	3	2	2	-	2.5	-	25	25	-	-	1.7	2	2.3
Correla	ation Lev	els		1.Sligh	t(Low)		2.0	2.Mod	erate(Me	edium)		3.Subs	tantial(H	igh)	
													~		
KL-Kn CO-Co	owledge] urse Outo	Level:K come :P	A-Remem SO-Progra	ber,K2U ame Spec	Understa ific Outo	nd,K3-A come	pply,K4-	Analyse,I	K5-Evalu	ate,K6-C	reate : P	O-Progra	ame Out	come:	
LIST	OF EX	PERI	MENTS	pv											

- 1. Estimation of Bicarbonate Alkalinity
- 2. Estimation of Hydroxyl Alkalinity
- 3. Estimation of Chloride Content of water
- 4. Estimation of Total Hardness of water
- 5. Estimation of Temporary and permanent Hardness of water
- 6. Determination of salinity of water
- 7. Conductometric Titration of a Strong Acid and a Strong Base
- 8. pH Titration of a Strong Acid and a Strong Base
- 9. Potentiometric Estimation of Ferrous Ion
- 10. Determination of Total dissolved solid by TDS meter
- 11. Determination of Calorific value of a solid fuel
- 12. Determination of Cloud and pour point of oil
- 13. Determination of Flash and fire point of oil
- 14. Proximate Analysis of a solid Fuel / Liquid Fuel

TEXT BOOK:

- 1. Engineering Chemistry. Dr. V. Balasubramanian et.al., CARS Publishers
- 2. Engineering Chemistry Laboratory Manual. Dr. V. Balasubramanian et.al., CARS Publishers

References

1. Engineering Chemistry. Rajesh. Saras Publication

2. Environmental Chemistry A K Dey

Designed by "Department Chemistry"

30 hrs

Cours	e Code	:	Course	Name	:				L		Т		Р		C
UBWS	CPA		Enginee	ring Pra	acticeS I	Lab-1			0		0		4		2
Year a Seme	nd ster			l Yea	ar (I SE	MESTER	()				Contac	t hours p (4Hrs)	oer wee	k	
Prerec	quisite				NI	L						\ - <i>)</i>			
Cours	e cate	gory	Huma Social	nities a Scienc	ind ces	Mana co	igemer urses	nt	Profe	essional (Core	Р	rofessior	nal Electivo	е
			Basic	Scienc	e	Engineer	ing Sci	ence	Оре	en Electi	ve		Mano	latory	
Cours	e		To provi	de stud	lents wit	th knowle	dge of	basic ski	lls						
Cours	e Outco	ome	At the er	ıd of th	e course 1. (2. (3. (4. I 5. H 6. (e the stude Dutline th Construct Create sin Develop Plan asse Construct	ent will ne oper t the st mple c the Pro mbling t simpl	be able ration of ructures ompone ocess of g and dis le lap, b	to unde f lathes using nts usi chippi smantli utt and	erstand: and dri weldin ng lathe ng, fillin ing of co tee join	lling ma g equip and dri ng, hack ompone ts using	achines. ments Iling mac sawing, nts arc welc	chine drilling ling equi	and tappi	ng
POS/ COS	PO1	PO2	PO3	PO 4	PO5	PO6	PO 7	PO8	PO 9	PO10	PO11	PO12	PSO 1	PSO2	PSO3
201	2	-	2	-	2	-	-	-	2	2	-	_	-	-	-
202	2	-	2	-	2	-	-	-	2	2	-	-	-	-	-
CO3	2	-	2	-	2	-	-	-	2	2	-	-	-	-	-
204	2	-	2	-	2	-	-	-	2	2	-	-	-	-	-
205	2	-	2 - 2						2	2	-	2	-	-	-
.06	2	-	2 - 2						2	2	-	2	-	-	-
Avera									- 2					-	
ge	$\frac{2}{1}$	- 	2	-	$\frac{2}{1}$			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							
KI Knowledge Level K1 Bernember K2, Understand K2, And K4, A							uerate		m) W(a	3.SUDSI	lantiai(F	ngn)			
KL-Knov PO-Progi	viedge Lo ramme C	evel:K1 Jutcome	-Remembe e; CO-Cou	r, K2— rse Out	-Underst come ;P	tand ,K3-A SO-Progra	Apply, l amme S	K4-Analy Specific C	rse, K5-l Jutcome	Evaluate,	K6-Crea	ite;			

UNIT –I FITTING WORKSHOP

Hands on experience in preparation of V- Joint, Dove tail Joint, T-Joint and Square Joint.

UNIT -- II GAS WELDING

Hands on experience in preparation of Butt Joint, Lap Joint, T-Joint and Fillet Joint.

UNIT –III PIPE FITTING SHOP

Hands on experience in preparation of Pipe fitting, Pipe Joints, overhauling valves and pressure testing of

valves.

UNIT -IV CARPENTRY

Hands on experience in preparation of Square Joint, T-Joint and Dove tail Joint.

UNIT -V FOUNDARY

Process of foundry for different objects and shape

TEXT BOOK:

- 2. K.V. Natarajan, "Engineering Mechanics".
- 3. R.S Khurmi, "A Textbook of Engineering Mechanics".

REFERENCE :

- 5. S.S. Bhavikatti, "Engineering Mechanics"
- 6. Palanichamy & Nagan, "Engineering Mechanics Statics & Dynamics"
- 7. S. Rajasekaran, G. Sankara Subramania, "Fundamentals of Engineering Mechanics".

PROGRAM	BE - Mining Engineering				
Course Code	Course Name :	L	Т	Р	С

UBLECPB	Soft Skills-I	0	0	4	2									
		I Year (I Semester) Contact hours per week												
Year and	I Year (I Semester)	Contact hou	irs per week											
Semester		(4 Hrs)												
Prerequisite	NIL													
course														
Course	To help learners develop	their listeni	ng skills, w	hich will, er	hable them									
Objective	listen to lectures and co	omprehend	them by as	sking quest	ions, seek									
, , , , , , , , , , , , , , , , , , ,	Clarifications.	-	-											
	To help learners develop their speaking skills and speak fluently in real													
	Contexts.													
	Making them realise the	importance	of English a	s Global lar	nguage and									
	its importance in today's	scenario.												
Course Outcome	Students will be able to understand													
	1. Develop skills in informal co grammatical errors	onversation; o	comprehend t	heir views w	vithout making									
	2. Define their perspective mor	e operational	ly											
	3. Infer the delicacy of using the linguistics skills													
	4. Develop listening and speak	ing skills for	effective pres	sentation										
	5. Develop good attitude and behavior													
	6. Build interview skills and pe	ersonality dev	velopment											

POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	-	-	-	-	-	2	2	2	2	2	-	2	-	-	-
CO2	-	-	-	-	-	2	1	2	2	3	-	2	-	-	-
CO3	-	-	-	-	-	2	1	2	2	2	-	3	-	-	-
CO4	-	-	-	-	-	2	2	2	2	1	-	3	-	-	-
CO5	-	-	-	-	-	3	2	2	3	2	-	1	-	-	-
CO6	-	-	-	-	-	3	1	2	1	2	-	2	-	-	-
Aver	_	_	_	_	-						_		_	_	_
age	-	-	-	-		2.3	1.5	2	2	2	-	2.2	-	-	-
Correlation Levels				1.Sligh	nt(Low)			2.Moderate(Medium)				3.Substantial(High)			

KL-Knowledge Level:K1-Remember,K2--Understand,K3-Apply,K4-Analyse,K5-Evaluate,K6-Create : PO-Programe Outcome: CO-Course Outcome :PSO-Programe Specific Outcome

UNIT 1: GRAMMAR AND FOUNDATON

18 Hrs

Training the students on basic grammar and foundation and laying the standard platform. A complete standard syllabus of Cambridge is used. The main part of the 1st semester is to cover the major tenses (Present tense, Present Continuous, Past Tense, Past Continuous, Present Perfect, and Present Perfect continuous.

UNIT II: FOCUS ON LANGUAGE - VOCABULARY

General Vocabulary-Dictionary-Word Formation: Prefix and Suffix-Synonyms and antonyms-Idioms and Phrases- Diplomatic Phrases – Food Phrases- Vocabulary-Words commonly misspelt –Lab-Test.

UNIT III: INTERACTIVE ENGLISH

The main objective is English for International communication. It course contains conversations, snapshots, readings, activities, a greater variety and amount of listening materials and more visuals to introduce vocabulary, more opportunities to build fluency, and up-to-date art and design. The course covers the fours skills of listening, speaking, reading and writing, as well as improving pronunciation and building vocabulary.

UNIT IV: LISTENING AND SPEAKING

Types of Listening -Listening and note taking-Pronunciations-Stress and Intonation-Conversation technique-Dialogue Writing -Professional Communication-Interview-Group Discussion –Power point Presentation- Debate , Oratorical Lab

UNIT V: INTERVIEW SKILLS AND PERSONALITY DEVELOPMENT 14 Hrs

Out of box thinking -Lateral Thinking- Intrinsic and Extrinsic Motivators- Factors influencing Attitude- Challenges and lessons from Attitude- Etiquette-Value of time- Diagnosing Time Management- Weekly Planner To do list- Prioritizing work.

TOTAL: 60 PERIODS

4 Hrs

14 Hrs

PROGRAM		BE- Min	ing Engineering	5							
Course Code:			L	Т	Р	С					
UBLEC02	Course	Name:	2	0	0	2					
	TECHNICAL	ENGLISH-II									
Year and Semester	I Year (II S	EMESTER)	Co	ontact ho	urs per week						
Prerequisite course	N	IL	(2Hrs)								
Course category	Humanities and Social Sciences	Management courses	Professional Core Professional Electi								
	\sim										
	Basic Science	Engineering Science	Open El	ective	Mandat	ory					
Course Objective	 Identify the process of confinance and rocus on language Use Vocabulary & English Grammar in communication Read and understand the language. Learn to write technical drafts. Application of imperative passive. 										

	Students will be able to 1. Identify the importance of technical English 2. Apply good communication skill for enhancing vocabulary
Course Outcome	 Apply good communication skill for channeling vocabulary Develop skills in reading Build knowledge on writing letters and descriptive writings Develop speaking and listening skills Apply the correct pause and pronunciation

POS/ COS	PO1	PO2	PO3	PO4	PO 5	PO 6	PO 7	PO8	PO9	PO1 0	PO11	PO 12	PS O1	PSO 2	PSO3
CO1	-	-	-	-	-	2	2	-	2	2	-	2	-	-	-
CO2	-	-	-	-	-	3	2	-	2	2	-	2	-	-	-
CO3	-	-	-	-	-	2	1	-	2	2	-	2	-	-	-
CO4	-	-	-	-	-	2	2	-	2	2	-	2	-	-	-
CO5	-	-	-	-	-	2	2	-	2	2	-	2	-	-	-
CO6	-	-	-	-	-	1	3	-	2	2	-	2	-	-	-
Aver	-	-	-	-	-								-	-	-
age						2	2	-	2	2	-	2			
Correla	ation L	avale		1 Slig	ht(I o	W)		2.Mc	derate	e(Medi	u 3	Subet	ntial(High)	
Coneia		20015		1.5hg	III(LO	w)		m)			5	Subsid	initiai	Ingil)	
KL-Knov	KL-Knowledge Level:K1-Remember, K2—Understand ,K3-Apply, K4-Analyse, K5-Evaluate, K6-Create ;														
PO-Prog	ramme (Outcome;	CO-Cour	se Outco	me ;PS	O-Prog	gramme	e Specifi	c Outco	ome					

UNIT I COMMUNICATION SKILL & READING SKILL

Process of Communication - Language as a tool of Communication- Importance of Technical Communication-Lab Intensive Reading-Skimming the text- Scanning- Topic sentence and Its Role-Reading and Interpretations-Critical Reading -Creative and Critical Thinking- Note Making -Transfer of Information-Visual Aids-Graphics-Lab

UNIT II FOCUS ON LANGUAGE – VOCABULARY

General Vocabulary-Dictionary-Word Formation: Prefix and Suffix-Synonyms and antonyms-Idioms and Phrases-Homophones-Technical Vocabulary-Words commonly miss spelt -Lab-Test **6Hrs**

UNIT III ENGLISH GRAMMAR

Parts of Speech-Subject Verb Agreement-Tenses, Articles, Prepositions-Common errors in English-Lab-Test **UNIT IV WRITING SKILL**

Descriptive Writing – Paragraph-Technical descriptions-Essays-Letter Writing – Formal and Informal-Business Letters-Job Application Letter-Types of reports-Instructions and Checklists-Lab-Test

UNIT V LISTENING AND SPEAKING

Types of Listening - Listening and note taking- Pronunciations- Stress and Intonation- Conversation technique-Dialogue Writing - Professional Communication- Interview- Group Discussion - PowerPoint Presentation

Total : 30

6 Hrs

6Hrs

6Hrs

6Hrs

Hours

REFERENCES:

1. Anderson, Paul V. Technical Communication: A Reader-Centered Approach. Cengage. New Delhi. 2008

2. Muralikrishna, & Sunita Mishra. Communication Skills for Engineers. Pearson, New Delhi. 2011

3. Riordan, Daniel. G. Technical Communication. Cengage Learning, New Delhi. 2005

4. Sharma, Sangeetha & Binod Mishra. Communication Skills for Engineers and Scientists. PHI Learning, New Delhi. 2009

5. Smith-Worthington, Darlene & Sue Jefferson. Technical Writing for Success. Cengage, Mason USA. 2007

Designed by Department of English"

PROGRAM BE. MINING ENGINEERIN Course Code Course Name															
	Cours	e Code		Cours	e Name					L		Т		Р	С
	UBM	ITC02		Engin	eering N	lathema	tics-II			3		1		0	4
	Year and	l Semest	er	I Year	r&IISe	emester					Cont	act hours	per wee	.k	
	Prerequi	site cour	se	Nil								(4Hrs	s)		
				Hur Soc	nanities ial Scien	and	Man co	agemen ourses	t	Professio	onal Cor	e	Professi	ional Ele	ctive
	Course	category	y	Ba	sic Scier	ice	Eng So	ineering cience	5	Open 1	Elective		Ma	andatory	
					\checkmark										
	Course (Objectivo Outcome	es s	1 2 3 4 5 At the 1 2 3 4 5 6	 To p equa To p diffe To ir To e and integ To d end of t Infer Illust Solve Dem Appl engin 	rovide t tions. rovide rential e troduce laborate illustrat rals knowle rate the onstrate onstrate y diffe neering	the reque the reque equation e the sta e the cla e the cla e the cla e the cla e the sta e the sta	ired known uired id assification integration dent will ordinar ordinar operties ce trans equations	owledge leas to s echnique tion of i ons of t tion and l be able y differe y differe or calculu of analy forms in ons, ve	to apply solve the es of con asolated he calcu their ap to: ential firs ntial hig us tic funct enginee ctor ca	the control of the co	ncepts o ems on 1 riable p rities an residues ns. equation er equation plication and La	of ordina higher of roblems d exam d exam in the ns ions	ary diffe order or s ine the evaluat	rential dinary theory ion of ms in
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
CO1	3	2	3	2		-	-	-	-	-	-	-	2	2	2
CO2	3	2	3	2		-	-	-	-	-	-	3	2	2	2
CO3	2	3	2	2	2	_	-	-	-	-	-	-	2	-	2
CO4 3 2 3 2									-	-	-	2	2	2	2
CO5	2	3	2	3	1	-	-	-	-	-	-	2	3	2	3
CO6	3	2	3	2	2	-	-	-	-	-	_	2	3	2	2
Aver	2.7	2.3	2.7	2.2	2	-	-	-	-	-	-	2.3	2.3	2	2.2
Correla	tion Lev	vels		1.Slight(Low) 2.Mod				2.Moderate(Medium) 3.Substantial(High)							
				. 0	. /										

KL-Knowledge Level:K1-Remember,K2--Understand,K3-Apply,K4-Analyse,K5-Evaluate,K6-Create : PO-Programe Outcome: CO-Course Outcome :PSO-Programe Specific Outcome

UNIT I ORDINARY DIFFERENTIAL EQUATION

First order Linear differential equation – Bernoulli's Equation – Exact differential equation – Equations of first order higher degree – Solvable for p, x, y – Clairaut's equation – Application to engineering problems. Higher order equations with constant coefficient – Method of variation of parameters.

UNIT II PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equation – Solution of PDE by direct Integration- Solution of equations of First order – Four types -

UNIT III ALGEBRA OF MATRICES

Rank of a matrix – Gauss Jordan method to find the inverse – Consistency and inconsistency of system of linear equations – solution of system of linear equations- characteristic equation – Eigen values and Eigen vectors – Cayley Hamilton theorem.

UNIT-IV DIFFERENTIATION OF VECTORS

Vector differentiation – Velocity and acceleration – Vector operator del, gradient, divergence and curl – Physical interpretation of divergence of F and Curl F – del applied twice to point function and del applied product of point functions.

UNIT V INTEGRATION OF VECTORS 12Hrs

Line integrals – work - surface integrals- Flux- Green's theorem in the plane – Stoke's theorem- Volume integral – Gauss Divergence theorem – Simple problems. Total: 60 hours

TEXT BOOKS:

- 1. Dr. B.S. Grewal, "Higher Engineering Mathematics", 40th edition, Khanna Publishers, New Delhi, 2007.
- 2. T. Veerarajan, "Engineering Mathematics for First Year", 1st edition, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 2008.

REFERENCES:

- 1. H.K.DASS "Advanced Engineering Mathematics", 15th Revised edition, S.Chand& Co. Ltd., New of variables in double and triple integrals with simple examples.
- 2. E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice HallIndia, 1995.
- 3. L. Ince, Ordinary Differential Equations, Dover Publications, 1958.
- 4. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th Ed., Mc-Graw Hill, 2004.

Designed by "Department of Mathematics"

12Hrs

12Hrs

PROGRAM	BE. MINING ENG	INEERING								
Course Code	Course Name:		L	Т	Р	С				
UBPHC02	Engineering Physics	s- II	2	0	0	2				
Year and Semester	I Year (II Semester	·)		Contact h	ours per week					
Prerequisite course	Higher Secondary S Education; Fundam of Physics	School ental concepts		3	Hours					
	Humanities and Social Sciences	Management courses	Pro	ofessional Core	Profes	sional Elective				
Course category										
	Basic Science	Engineering Science	Open l	Elective	Mandator	у				
	\checkmark									
Course Objective	 Students should a To know the bas To familiarize the To determine the To know about set 	acquire knowledge ic concepts of Elec e Quantum physics e crystal structures emiconductors and	of electrom tromagnetic of solids supercondu	agnetic theory c theory actors						
Course Outcome	 Demonstrate the applications of sound waves Explain the principles of laser and its applications Illustrate miller indices and X-Ray power defraction method to identify crystal structure Compare the electrical conductivity in semiconductors and superconductors Contrast dielectric and magnetic materials Infer the principles of light and sound waves in various applications 									

POS															
/	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р		Р		PS	PS
CO	0	0	0	0	0	0	0	0	Ο	0	PO	0	PS	0	0
S	1	2	3	4	5	6	7	8	9	10	11	12	01	2	3
CO1	2	2	1	-	-	-	-	-	-	-	-		2	2	2
CO2	2	1	2	2	-	-	-	-	-	-	-		2	2	2
CO3	3	2	1	2	-	-	-	-	-	-	-	-	2	-	-
CO4	2	3	2	1	1	-	-	-	-	-	-		2	2	2
CO5	3	3	2	2	2	-	-	-	-	-	-	2	2	2	2
CO6	3	2	2	1	-	-	-	-	-	-	-	2	2	2	2
Ave						-	-	-	-		-				
rage	2.5	2.2	1.7	1.6	1.5					-		2	2	2	2

Correlation Levels 1.Slight(Low) 2.Moderate(Medium) 3.Substantial(High)

KL-Knowledge Level:K1-Remember,K2--Understand,K3-Apply,K4-Analyse,K5-Evaluate,K6-Create : PO-Programe Outcome: CO-Course Outcome :PSO-Programe Specific Outcome

UNIT – I: Acoustics and Ultrasonics

musical sound. Loudness – Weber Fechner law – Decibel – Reverberation – Reverberation time – Sound absorption coefficient- Sabine's formula for determining reverberation time (Rate of Growth and Rate of Decay) – determination of sound absorption coefficient – ***Factors affecting acoustics of buildings** (Optimum reverberation time, loudness, focusing, eco, echelon effect, resonance and noise) and their remedies. Ultrasonics- production- piezo-electric method – SONAR-Ultrasonic flaw detector as non-destructive testing technique.

UNIT-II: Laser and Fibre Optics:

(9 Hours)

Laser-principle-properties-Einstein coefficient (A and B)-Nd-YAG laser- CO₂ laser-Applications of laser-***Holography-construction and reconstruction of a hologram**. Principle and propagation of light in an optical fibre-types of optical fibres-applications-fibre optic communication system (block diagram)-fibre optic sensors.

UNIT-III: Crystal Physics:

Lattice-unit cell-Bravais lattice-lattice planes-Miller indices-'d' spacing in cubic latticecalculation of number of atoms per unit cell-atomic radius-coordination number-packing factor for ***SC, BCC, FCC and HCP structures**-Diamond and graphite structures (qualitative treatment). X-ray - Powder diffraction method to identify crystal structure parameters.

UNIT-IV: Semiconductors and superconductors

Semiconductors- intrinsic and extrinsic semiconductor. Fermi level-Variation of Fermi level with temperatureelectrical conductivity. Band gap determination-Hall effect-Determination of Hall coefficient –Applications. Superconductivity: Properties-Type I and Type II superconductors-BCS theory of superconductivity-High T_c superconductors- ***Applications of superconductors-SQUID, cryotron, magnetic levitation**.

UNIT-V: Dielectric, Magnetic and New engineering materials (9 Hours)

Electrical susceptibility-dielectric constant-electronic, ionic, orientational and space charge

(9 Hours)

(9 Hours)

polarizations-frequency and temperature dependence on polarization-internal field-Claussius-Mosotti relationuses of dielectric materials. Magnetic properties-diamagnetic-paramagnetic- -ferromagnetic materials- super paramagnetism-Transducers. ***Properties and applications of metallic glasses- nano materials-shape memory alloys-bio materials**.

TOTAL: 45 PERIODS

1. S. O Pillai "Solid State Physics", New Age International Pvt Ltd; 7th edition, 2015.

2. Ajoy Ghatak, "Optics", McGraw-Hill Education; 1st edition 2009.

3. Ajoy Ghatak, "Introduction to Fiber optics", Foundation Books, 2002.

References:

1. Charles Kittel," Introduction to Solid state physics", Wiley; Eighth edition 2012.

2. Ghatak and Thyagarajan, "Laser Fundamentals and Applications", Springer, 2011.

3. Richard Feynmann, Robert Leighton and Matthew Sands,"The Feynmann Lectures on Physics", Volume 1, Student Edition, Narosa Publishing house, 2003.

4. Richard Feynmann, Robert Leighton and Matthew Sands "The Feynmann Lectures" on Physics, Volume 2, Student Edition, Narosa Publishing house, 2003.

Designed by Department of Physics

PROGRA	AM						BE	-Mining	Engineer	ring					
Course C	ode:							L	Τ	I			С		
UBEEC0	1	0	Course l	Name:				3	0	()		3		
		E	asic Ele	ectrical	and										
		E	lectron	ics Eng	ineerin	g									
				0	·	0									
Year and	Semest	er	ΙY	ear (II	Semest	ter)			Co	ontact h	ours pe	r week			
Prerequis	ite cour	se		N	L	,				(3	B Hrs)				
Course c	ategory	H	lumaniti Social Sci	es and iences	Mana	agement urses	Pro	fessiona	l Core	```	Profe	ssional I	Elective		
			Basic Sc	ience	Engi	neering	0	pen Ele	ctive		Ν	/landato	ory		
					Sc	ience							· ·		
						\checkmark									
C	Course Outco me)	At the 1. Ou 2. Illu 3. Ex 4. Inf	end of the atline KC ustrate the plain the fer the per-	he course CL, KVL he operat e principle erforman	e the stuc and relation of sir le of oper ce charac	lent will ted meth ngle phas ration of cteristics	be able ods to s se AC C three ph of Sem	to: olve DC o ircuits nase AC (iconducto	circuits Circuits or Device	s				
POS/			6. Ap	ply the l	knowledg	ge of elec	ctric circ	uits and	electroni	c devices	for engi	neering	applicati	ons PSO	P
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	1	2	3
CO1	3	2	3	2	-	-	-	-	-	-	-	3	3	2	(1)
CO2	2	3	2	2	-	-	-	-	-	-	-	2	2	2	(1)
CO3	2	3	3	2	-	-	-	-	-	-	-	2	2	2	
CO4	3	3	2	2	-	-	-	-	-	-	-	3	3	2	3
CO5	3	2	2	2	-	-	-	-	-	-	-	2	2	2	
CO6	3	3	3	2	-	-	-	-	-	-	-	3	3	2	
Aver		-	-	-	-	_	-	2.5	2.5	2	3				
age	2.7	2.7	2.5	2						1		2.0.1	1/1	I . 1 \	
Correla	ation Lev	eis		1.5lig	nt(Low)			2.MO	derate(M	edium)		3.Subs	tantial(F	11gn)	
KL-Kn CO-Co	owledge ourse Out	Level:K come :P FI F	1-Remen SO-Prog	nber,K2 rame Spe	-Understa ecific Out	and,K3-A tcome S	.pply,K4	-Analyse	,K5-Evalı 0 Hrs	uate,K6-C	Freate : F	O-Progr	ame Out	come:	
Ohm and I	's Law RMS Va	– Kirc Ilue – I	hhoff's Power ar	Laws – nd Powe	Steady r factor	State So – Single	olution e Phase	of DC and Th	Circuits ree Phas	– Introd e Balanc	uction t ed Circ	o AC C uits.	circuits	– Wave	efo

UNIT II ELECTRICAL MECHANICS

9 Hrs

Construction, Principle of Operation, Basic Equations and Applications of DC Generators, DC Motors, Single Phase Transformer, Single phase induction Motor.

UNIT III SEMICONDUCTOR DEVICES

Characteristics of PN Junction Diode – Zener Effect – Zener Diode and its Characteristics–Voltage regulation Bipola Junction Transistor – CB, CE, CC Configurations and Characteristics

UNIT IV DIGITAL ELECTRONICS

Binary Number System – Logic Gates – Boolean Algebra – Half and Full Adders – Flip-Flops – Registers and Counters – A/D and D/A Conversion

UNIT V RECTIFIERS AND FILTERS

Half wave and Full wave Rectifiers – Capacitor filter – inductor filter- LC filter- CLC Filter.

TEXT BOOKS:

1. Mittle N., "Basic Electrical Engineering", Tata McGraw Hill Edition, New Delhi, 1990.

2. Sedha R.S., "Applied Electronics", S. Chand & Co., 2006.

REFERENCES:

- 1. Muthusubramanian R, Salivahanan S and Muraleedharan K A, "Basic Electrical, Electronics and Computer Engineering", Tata McGraw Hill, Second Edition, (2006).
- 2. Nagsarkar T K and Sukhija M S, "Basics of Electrical Engineering", Oxford press (2005).
- 3. Mehta V K, "Principles of Electronics", S.Chand& Company Ltd, (1994).

4. MahmoodNahvi and Joseph A. Edminister, "Electric Circuits", Schaum' Outline Series, McGraw Hill, (2002).

5. Premkumar N, "Basic Electrical Engineering", Anuradha Publishers, (2003).

Designed by "Department of Electrical and Electronics Engineering

9 Hrs

9 Hrs

Total: 45 Hours

9 Hrs

PROGR	AM		BE - 1	Mining Er	gineering											
Course C	Code		Cours	e Name :									L	Τ	Р	С
UBITC0	1		Fund	amentals	of Comp	uter P	rograr	nming	5				3	0	0	3
(Commo	n to BE –	Me	chanic	al Marine	, BE – EE	EM, B	E –PE	, BE –	HE, B	E - NA	&OE)					
Year	;	and	I Year	: (II Seme	ester)				Conta	ct hour	s per we	eek				
Semester	•								(3 Hrs	5)						
Prerequis	site		NIL													
course																
Course	Object	ive	Learn	to Progra	mming in	C lang	guage.	Studer	nts will	be gai	n the kr	nowledg	ge in usa	age of ar	rays,	
			string	s, functior	ns, pointer	s, stru	ctures a	and un	ions in	C lang	guage.					
			Stude	nt will be	able to											
1. Learn the organization of a digital com										r						
			2.	Learn t	o think lo	gically	and w	rite ps	eudo c	ode or	draw flo	ow cha	rts for p	roblems		
Course C	Outcome		3.	Use arr	ays and fu	unctior	is in pr	ogram	ming							
			4.	Unders	tand the f	unction	n and p	ointer	S							
			5.	Familia	ar with fur	with functions of structure and unions										
			6.	Summa	arize the u	rize the usage of pointers and structures in C language										
POS/ COS	PO1	PC	02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3		3	3	-	-		-	-	-	-	-	3	2	-
CO2	2	3		2	3	-	-	2	3	2	3	-	-	2	3	
CO3	2	2		2	2	-	-	2	2	2	2	-	-	3	3	2
CO4	1	1		2	1	-	-					-	-	3	2	3
CO5	1	1		1	3	-	-		2	3	2	3		2	2	-
CO6	1	1		1	1	-	-		2	2	2	2		2	1	-
Average	1.66667	1.8	83333	1.83333	2.16667	-	-	-				2.5 2.16667 2.5				
Correlatio	on Levels		_		1.Slight(I	Low)			2.Mo	lerate(1	Medium)		3.Subs	stantial(H	ligh)	
KL-Know CO-Cours	ledge Level se Outcome	:K1 :PS	-Remen O-Progi	iber,K2Ui ame Specif	iderstand,k ic Outcome	3-Appl	у,К4-А	nalyse,l	≤5-Eval	uate,K6	-Create :	: PO-Pr	ograme (Jutcome:		

UNIT I INTRODUCTION

Generation and Classification of Computers - Basic Organization of a Computer - Input and Output Devices - Number System -Binary – Decimal – Conversion – Problems. Need for logical analysis and thinking – Algorithm – Pseudo code – Flow Chart

UNIT II **C PROGRAMMING BASICS**

Problem formulation - Problem Solving - Introduction to "C" programming - fundamentals - structure of a "C" program compilation and linking processes – Constants, Variables – Data Types – Expressions using operators in "C" – Managing Input and Output operations – Decision Making and Branching – Looping statements – solving simple scientific and statistical problems.

UNIT III **ARRAYS AND FUNCTIONS** Arrays – Initialization – Declaration – One dimensional and two dimensional arrays. String - String operations – String Arrays -

UNIT IV **FUNCTION AND POINTERS**

Simple Programs - sorting and searching - matrix operation

Function – definition of function – Declaration of function – Pass by value – Pass by reference – Recursion – pointers – definition - initialization - pointer arithmetic - pointers and arrays - examples

UNIT V STRUCTURES AND UNIONS

Introduction – need for structure data type – structure definition – Structure declaration – Structure within a structure – Union – program using structures and Unions – storage classes, pre-processors directives.

TEXTBOOKS:

Balagurusamy E, "Programming in ANSI C", Sixth Edition, TATA McGraw Hill. 1.

REFERENCES:

- 1. Computer Fundamentals Concepts, Systems and Applications- D.P.Nagpal (Wheeler Publishing)
- 2. A.N.Kanthane Programming with ANSI and TURBO C, Pearson Education, New Delhi 2004.
- 3. Y.Kanetkar Let Us C 4th Edition BPB Publications, New Delhi 2004.
- 4. Foundations Of Information Technology- Chanchal Mittal & PragatiPrakashan " Department of Information Technology"

Total: 45 Hours

D TRAINING DEEMED TO BE UNIVERSITY (Under Section 3 of UGC Act 1956) SYLLABUS FOR UNDER GRADUATE IN ENGINEERING AND TECHNOLOGY **B.E – MINING ENGINEERING**

ACADEMIC YEAR 2016-2020 (BATCH - I)

9Hrs

9Hrs

9Hrs

9Hrs

9Hrs

PROGRAM	BE- Mining Engineering												
Course Code:					L		Г	Р			С		
UBMCCPA	Course Name:				0		2	1			3		
	ENGINEERIN	GRAPHI	CS										
Year and Semester	I Year (II	SEMEST	ER)			Co	ntact	hours pe	r week				
Prerequisite course		NIL						(4Hrs)					
Course category	Humanities and	Mana	gement	; 1	Professio	onal Co	re	Pro	fessiona	l Electiv	'e		
	Social Sciences												
									\checkmark				
	Basic Science		Open]	Elective		Mandatory							
		Sc	ience										
Course Objective	Understanding th	e course for	r										
	1. Solid str	ictures and	shapes										
	2. Gain kno	wledge on	planes a	nd proj	ections								
	3. Projectio	n of solids											
	4. To impro	ve the skill	s on soli	id deve	lopment	ts							
	5. Knowled	ge on isom	etric pla	nes									
	At the end of the	course the	student v	will be	able to:								
Course Outcome	1. Identify the three Dimensional objects in two-dimensional media												
	2. Construct the projection of points, straight lines and determination of true length and												
	true inclination												
	3. Illustrate	the simple	solid on	plain s	surface			сс					
	4. Demonstrate the projection of solids and development of surfaces												
5. Construct the isometric projection of simple solids													
	0. Examine		it isoille		ws and	projecti							
POS/ PO1 PO2	PO3 PO4 PO	5 PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO		

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	0	1	2	1	2	3
CO1	2	2	2	2	2	-	-	-	-	1	-	-	-	-	-
CO2	3	3	2	3	1	-	-	-	-	2	-	-	-	2	-
CO3	2	2	3	2	2	-	-	-	-	3	-	-	-	2	-
CO4	3	3	2	2	1	-	-	-	-	1	-	-	3	-	-
CO5	3	2	2	3	3	-	-	-	-	2	-	-	2	-	2
CO6	3	3	2	2	3	-	-	-	-	3	-	2	-	-	2
Ave												2	2.5	2	2
rage	2.7	2.5	2.2	2.3	2	-	-	-	-	2	-	2	2.5	2	2
Corre	lation I	Levels		1.Slig	ht(Low	v)		2.Moderate(Medium) 3.Substantial(H					l(High)		

KL-Knowledge Level:K1-Remember, K2—Understand ,K3-Apply, K4-Analyse, K5-Evaluate, K6-Create ; PO-Programme Outcome; CO-Course Outcome ;PSO-Programme Specific Outcome

UNIT I : PLANE CURVES AND ORTHOGRAPHIC VIEWS

Introduction-Use of drafting instruments-Drawing conventions-size-Line types-Lettering and dimensioning Curves used in engineering practices: Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Construction of cycloid – construction of involutes of square and circle – Drawing of tangents and normal to the above curves Visualization concepts: Representation of Three Dimensional objects in two dimensional media-Visualization of objects from pictorial views to orthographic views

UNIT II: PROJECTION OF POINTS, LINES AND PLANE SURFACES

Orthographic projection: Principal views and principal planes of projection-First angle projection-Third angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes -Determination of true lengths and true inclinations by rotating line method-Projection of plane surfaces

UNIT III: PROJECTION OF SOLIDS

Projection of simple solids placed in Different positions-perpendicular to HP or VP-parallel to either HP or VP and inclined to the other-Inclined to both VP and HP

UNIT IV: PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES Sectioning of simple solids in simple vertical position when the cutting plane is inclined to the one of the principal planes-Development of lateral surfaces of simple solids by Parallel line method and radial line method

UNIT V: ISOMETRIC PROJECTION AND ISOMETRIC VIEWS

Principles of isometric projection-isometric projection of simple solids-Guide lines to read the isometric view visualizing of plane surfaces inclined to the direction of view.

TOTAL : 60 Hours

TEXT BOOK:

1. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008. **REFERENCES**:

- 1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 50th Edition, 2010
- 2. Natrajan K.V., "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2009. **Designed by**" Department of mechanical Engineering

PROGRA	M	BE- N	Mining	Engin	eering										
Course Co	ode:							L		Г	Р		С		
UBEECP	A	Course Name			urse Name:)	2		1		
		BAS ELE LAB	IC ELI CTRO	ECTR NICS	ICAL A ENGIN	AND NEERI	NG								
		1													_
Year and Semester		I Yea	ar (II S	SEMES	STER)			Contact	t hours)	per wee	ek				
Prerequisi course	ite	NIL													
Course category		Hum Socia	anities Il Scier	and nces	Management courses			Profess	sional (Core	Professi	onal Ele	ective		_
		Basic	Basic Science Engineering Science					Open H	Electiv	е	Mandat	ory			
						\mathbf{x}									
Course Objective1. To provide exposure to the students with hands on experience on various electrical engineering practices.2. To familiarize the students with the design, analyze and application of electronic devices.3. To provide knowledge on circuits. 4. To enrich knowledge on measuring devices.5. Providing subject knowledge on troubleshooting on electrical equipment.Course Outcome0n completion of this LAB course, the students will be able to 1. Demonstrate instruments such as ammeter and voltmeter for measuring resistance, power and power factor 2. Compare the vector diagrams of series and parallel R,L and C circuits 3. Explain how to measure power input to three phase induction motor using watt meters 4. Illustrate the characteristics of PN diode, Zener diode and JFET											-				
		6	. Con	nbine r	neasuri	ng inst	rument	s for di	fferent	parame	ters in er	ngineerir	ng applic	at	
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO
CO1	2	2	2	1	-	-	-	-	2	-	-	-	2	2	-
CO2	2	2	3	2	-	-	-	-	1	2	-	2	3	1	2
CO3	2	2	2	2	1	-	-	-	2	2	2	2	2	2	2
CO4	2	2	2	2	1	-	-	-	1	2	-	1	3	1	2
CO5	2	2	2	2	2	-	-	-	3	1	3	3	3	2	2
CO6	2	2	3	2	3	-	-	-	2	3	3	3	3	1	2
Average	2	2	2.3	1.8	1.8	-	-	-	1.8	2	2.7	2.2	2.7	1.5	1.

Correlation Levels	1.Slight(Low)	2.Moderate(Medium)	3.Substantial(High)										
KL-Knowledge Level:K1-Remember, K2—Understand ,K3-Apply, K4-Analyse, K5-Evaluate, K6-Create ;													
PO-Programme Outcome; Co	PO-Programme Outcome; CO-Course Outcome ;PSO-Programme Specific Outcome												
	1	x 1, 1 , 1											
1. Experimental verification of Kirchhoff's voltage and current laws													
2. Study of CRO and measurement of sinusoidal voltage, frequency and power factor.													
3. Experiment	3. Experimental determination of time constant of series R-C electric circuits.												
4. Experiment	4. Experimental determination of frequency response of RLC circuits.												
5. Characterist	tics of Semiconductor diode	and Zener diode.											
6. Characterist	tics of a NPN Transistor un	der common emitter, comm	non collector and common base										
Configuration	ons.												
7. Characterist	tics of JFET.												
8. Realization	8. Realization of passive filters.												
9. Single Phase half-wave	and full wave rectifiers wi	th inductive and capacitive	filters.										
_		*	Total : 30 Hours										
Designed by Department of I	Electrical and Electronics E	ngineering"											

PRO	GRAM			BE	- Minin	ıg Engir	neering										
Cours	e Code			Cou	ırse Nai	me :	0			L	Т		Р	С			
UBITCPA					Fundamentals of Computer Programming Lab							0		2	1		
Year				ΙY	'ear (II	Semeste	er)		Co	ontact ho eek	ours per						
Semes	ster									(2	Hrs)						
Prerec	luisite			NI	L												
course	e																
Cours	e			To	To learn, write and execute program in C language.												
Objec	tive																
				Sti	Student will												
				1			Learn th	ie organ	ization	of a digi	ital						
				2			Re expo	sed to t	he numb	or suste	me						
							Learn to	think l	orically	and wr	ite pseud	do code	or drav	/ flow	charts		
Cours	e Outco	me		3	3 for												
					problems												
				2	4 Be exposed to the syntax of C												
				4	5 Be familiar with programming in C												
	Cours	e Outc	ome		After completion of the course, the students will be able												
					1. Develop logics to swap two numbers, finding largest of given												
					numbers and roots of quadratic equation												
					2. Develop logic to print Fibonacci Series and sum of odd numbers and												
					to find the area and Perimeter of the Circle, Triangle, and Square												
					3. Determine maximum, minimum, Sum and average of elements of an												
					array												
					4. Determine the sum and multiplication of two matrices												
						5. I	Determir	ne whetl	ner a str	ing is p	alindro	me or n	ot and f	ind nu	mber of		
					vowels and of consonants in a given string												
						6. 1	Develop	logic to	perform	n the op	erations	using f	unction	and p	ointer		
POS/	DO1	DOJ	DO2		DO5	DOG	DO7	DO9	DOO	DO10	DO11	DO12	PSO	PSC	PSO		
COS	FUI	FU2	105	г U 4	FUS	100	FU/	100	гUУ	FUIU	FUII	F012	1	2	3		
CO1	2	2	2	1		_	-	-	_	2	-	1	_	-	-		

CO2	3	2	3	2	-	-	-	-	-	2	-	2	-	-	-
CO3	3	2	3	2	2	-	-	-	-	1	-	2	-	-	-
CO4	2	2	2	1	2	-	-	-	-	1	-	2	-	-	-
CO5	2	2	2	2	2	-	-	-	-	2	-	2	-	-	-
CO6	2	3	3	2	3	-	-	-	-	2	-	2	-	-	-
AVE RAG E COR	2.3 RELATI	2.2 ION LEV	2.5 ELS	1.7	2.3 1.SLIGH	- T(LOW)	-	- 2.M	- ODERAT	1.7 E(MEDI	- UM)	1.8 3.SU	- UBSTAN	- TIAL(HI	- GH)
K	L-Knowl	ledge Lev	el:K1-Re	emember	K2Und	lerstand,	K3-Apply	,K4-Ana	lyse,K5-E	Valuate, l	K6-Creat	e: PO-F	Programe	Outcom	e:
				C	CO-Cours	e Outcor	ne :PSO-	Program	e Specific	Outcom	e				
LIST	OF EX	PERIN	IENTS												
1. 2. 3. 4. 5. 6. 7. 8. 9. 10 11 12 13	Pro Pro Pro Pro Pro Pro Stat Pro Pro Stat Pro Pro Pro Stat Pro Pro Pro Stat Pro Pro Pro Pro Pro Pro Pro Pro Pro Pro	gram to gram to	Swap T find the find the find the print the display find the find the find the find the find the find the find the	Wo Nur Larges roots o Revers e Fibona series a Area a maxim e Sum o sum of Multip mether a mber of	nbers w t of the f the Qu e of the acci Ser nd find nd Perir um and of 10 ele two ma lication string is vowels	ithout u given the adratic given n ies the sum neter of minimu ements of trices of two palindr and num	sing Thi ree num Equatio umber n of 1+3- the Circ um numb of an arr matrices come or p nber of c	rd varia abers n +5+ ele, Trian oer in an ay and s not. consonar	ble +n ngle, Sq array how the nts in a g	uare usi Averag given str	ng swite ge ing.	ch and v	while		
													Tota	l : 30 H	rs
Desig	ned by							" Depar technolo	tment of ogy"	f Inform	ation				

PROGRA	M	В	E - Miı	ning Ei	ngineer	ring									
Course Co	ode	С	ourse N	Name :								L	Τ		С
UBWSCP	В	E	ngineer	ring Pr	actice	Praction	cal-II					0	0		2
Year Semester Prerequisi course Course	te categor	y	IL Huma Socia	nities a l Science	nd ces	M	I Yea	r (II So L ment es	emester P	r) rofession	Cor per (4 I al Core	ntact hor week Hrs) Prof	urs čessional	Electi	ve
		S	cience	Basic		Engin	ieering	Science	Ele	ctive	en		Man	idatory	7
Course Ou	Dbjectiv	e S	1. 7 2. 7 3. 7 4. 7 5. 1 5. 1 5. 1	To pro fittings To far weldin To pro To enr Provid Joint. s will b	ovide s engin niliari g. vvide k ich kn ing su we able	exposineerin ze the cnowled owled ibject to und	ure to g prace stude edge o lge on know	the stices. tices. ents w n lab j Pipe f ledge	tudent ith the oints. itting. on Ha	e design nds on o	hands , analy experier	on exp rze and	oerience applic oreparati	on ation	var of Sq
			1. (2. (3. (4. I 5. H 6. (Constru Create Develog Plan as Constru	the op simple p the P sembli act sim	structu compo Process ng and ple lap	of chij of chij disma	ing we using l pping, ntling and tee	lding e athe an filling, of comp joints	quipmer d drillin hack say ponents using arc	ntes. g machi wing, dr c weldin	ne illing a g equip	nd tappi ments	ng	
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS O2	PSO3
CO1	2	-	2	-	2	-	-	-	2	2	-	-	-	-	-
CO2	2	-	2	-	2	-	-	-	2	2	-	-	-	-	-
CO3	2	-	2	-	2	-	-	-	2	2	-	-	-	-	-
CO4	2	-	2	-	2	-	-	-	2	2	-	-	-	-	-

CO5	2	-	2	-	2	-	-	-	2	2	-	2	-	-	-
CO6	2	-	2	-	2	-	-	-	2	2	-	2	-	-	-
Average	2	-	2	-	2	-	-	-	2	2	-	2	-	-	-
Correlatio	on Leve	ls		1.Sli	ght(L	ow)		2.Mc	derate	(Mediu	m) 3.	Substa	ntial(Hi	gh)	I
KL-Knowle PO-Program	edge Level nme Outc	:K1-Rep	member O-Cour	r, K2—l se Outc	Underst	and ,K3	8-Apply	, K4-An Specifi	alyse, Ka	5-Evaluat ne	te, K6-Cr	eate ;			
r o rrogru		, onic, e	0 0000	se oute	, inc.			Speen	e o uteor						
UNIT I FI	ITING						Hane	ds on ex	xperien	ce in pro	eparation	n of			
							V-J	oint, Do	ove tail	201000					
							Joint	., 1-J01	nt and s	Square					
IINIT II W	OBKE	IUD					Hand	ls on ex aration	xperien	ce in	an				
UNIT III	GAS W	ELDI	NG				prep	aration	of Dut	John, I	Jap				
							Inint	тТа	int and	Eillet L	int				
							Joint	, I–J0	int and	rinet J	onnt.				
UNIT IV	PIPE F	ITTIN	G SHO	OP											
							Hands Pipe f	s on exp	perienc Pine	e in prej	paration	of			
							Joints	, overh	auling	valves a	nd press	sure			
	~						testin	g of val	lves.		_				
UNIT V O	CARPE	NTRY					Hands	on exp	erience	in nren	aration	of			
							Square	e Joint,		, in prop	urution	01			
							T-Join	t and D	ove tai	l Joint.					
														(T H	otal: 60 rs)
Destaurel	b							" Dep	artmen	t of Me	chanical				
Designed	by							Engir	ieering						

PROG	RAM		BE-Mir	ning Eng	gineerin	g									
Course	e Code:								L	Т		Р			С
UBLE	ECPC		Course	e Name	:				0	0		4			2
			SOFT S	SKILLS	-II										
Year a	ind Sem	ester	I Year	(II Sem	ester)						Contact	hours p	er week	C C	
Prereq	uisite co	ourse			NIL							(2Hrs)			
			Huma	nities ar	nd	Manag	gement	D	rofessio	nal Core	<u>_</u>	Dr	ofession	al Elec	tive
			Social	Science	es	cou	rses	1	10105510		-	11	01035101		
Cour	se categ	gory		\checkmark											
		-	Basic	c Scienc	e	Engino Scie	eering ence		Open E	lective			Man	datory	
			1. Stude	ents sho	uld obta	in the sl	cill to de	esign ex	perimen	ts to de	monstra	te vario	us conc	epts of	Spoken
Course	e Objec	tive	English	•											
			2. Stren	gthen E	nglish c	ommun	ication s	skills.							
			3. Enric	h the vo	ocabular	y for be	st comn	nunicati	on.						
			4. Creat	te know	ledge or	n synony	ms and	antony	ns.						
			5. To b	uilt time	managi	ng skill	s.								
			At the e	end of th	e course	e the stu	dent wi	ll be abl	e to:						
Course	e Outco	me			1. Ap	ply Art	icles, P	repositio	ons, Pro	nouns,	Adjectiv	ves and	Adverb	os in the	eir speaking
					and	1 writing	g skills								
					2. Inf	er the k	nowledg	ge on pu	blic spe	aking a	nd cond	uct of m	neetings		
					3. De	velop sl	cills on	interacti	ve Engl	ish					
					4. De	velop li	stening	and spe	aking sk	tills for	effectiv	e presen	tation		
					5. De	velop g	ood attit	ude , be	havior a	and com	imunica	tion skil	ls		
7001				1	6. Bu	ild inter	view sk	ills and	persona	lity dev	elopme	nt.	200		
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO3
CO1	-	-	-	-	-	2	2	2	2	2	-	-	-	-	-
CO2	-	-	-	-	-	2	1	2	2	3	-	-	-	-	-
CO3	-	-	-	-	-	2	1	2	1	2	-	2	-	-	-
C04	-	-	-	-	-	2	2	3	2	3	-	2	-	-	-
C05	-	-	-	-	-	3	2		3	2	-	2	-	-	-
CU6	-	-	-	-	-	2	1	2	3	3	-	2	-	-	-
age	-	-	-	-	-	2.2	15	2	っ っ	25	-	2	-	-	-
Correla	ation Lev	/els		1.Sligh	t(Low)	2.2	1.5	2.Mode	erate(Me	dium)		3.Subst	tantial(H	ligh)	
				0	× /			l		,			× ×	0 /	
KL-Kn	owledge	Level:K	1-Remem	ber,K2	Understa	nd,K3-Aj	pply,K4-4	Analyse,F	K5-Evalu	ate,K6-C	reate : P	O-Progra	ame Out	come:	
CO-Co	urse Out	come :P	SO-Progr	ame Spec	cific Outo	ome									
UNI Train	II:G	KAMI studa	VIAK A	IND FC	DUNDA	AIUN f. gramr	nar euo	hacl	rticles	Dranos	14 sitions	Hrs Property	ine Me	ndal An	viliaries

Parts of Speech, Adjectives and Adverbs)

UNIT II: INTRO TO PROFESSIONAL ETHICHS

Stepping the students to advanced learning resource and introducing them about International standards How to conduct meetings, huddle, public speaking, free speech. Dress code.

UNIT III: INTERACTIVE ENGLISH (Unit 9 to Unit 16)

10 Hrs

The main objective is English for International communication. It course contains conversations, snapshots, readings, activities, a greater variety and amount of listening materials and more visuals to introduce vocabulary, more opportunities to build fluency, and up-to-date art and design.

UNIT IV: LISTENING AND SPEAKING

Types of Listening –Introduction to International Standards of listening skills. Presentation skills: delivery (emphasis and phrasing) / making it interesting / body language / referring to visual aids

UNIT V: INTERVIEW SKILLS AND PERSONALITY DEVELOPMENT

Familiarize the students with types of Interviews such as mock interviews, campus Interview, skype interview, telephonic Interview, Panel Interview,

TEXT BOOKS:

1. Essential Grammar in use- Raymond Murphy, Cambridge, New Third Edition

REFERENCE BOOKS:

1. New Interchange (English for International Communication) Jack C. Richards

"AMET CENTRE FOR IELTS" **Designed by**

(TOTAL: 60 Hrs)

14 Hrs

14 Hrs

8 Hrs

PROGR	RAM							BE-Min	ing Engi	neering								
Course	e Code:								L	T		Р			С			
UBMT	ГС03		G	N .T														
			Course	Name	:				3	1		0		4				
			Engineer	ing Math	nematics	-III												
Veere				II Vee	. (111 C		···)			Ca								
Year a	ind			n real	r (111 Se	emester	r)			Co		Jurs per	r week					
Dramag	ler				NIII						(4	Hrs)						
Fleleq	luisite				INIL													
Course	e cateo	ory	Huma	nities an	d	Manac	rement	P	Professio	nal Cor	•	Prof	essional	Electiv	ρ			
Course	e caleg	ory	Social	Science	s	cou	rses		10105510			110	costona	Licenv				
			Basic	Science		Engin Scie	eering ence		Open F	lective			Manda	tory				
				\checkmark														
Course Object	e tive e Outco	me	Dask Science Engineering Science Of Science 1. To introduce Fourier series and its applicat 2. To introduce the effective mathematical to Equations that model several physical proces 3. To Solve the boundary value problems in 4. To expose the statistical methods designed judgments in the face of uncertainty and varia o make a decision about the value of a popula At the end of the course the student will be able to: 1. Analyze the Partial Differential Equation 2. Infer about the Fourier Series 3. Classify the Boundary Value Problems 4. Analyze the Fourier Transform 5. Infer the Z -Transform And Difference Fourier						cations tools f cesses. in one and to c ariation ulation tions tions	in engi or the s and two ontribu parame	ineering olution o dimen te the p	g fields s of par sional. orocess ed on si	rtial dif of mak ample c	ferentia	ll entific			
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3			
3	3	3	2	_	-	-	-	-	-	-	_	2	2	2	3			
3	3	3	2	2	-	-	-	-	-	-	2	2	2	2	3			
2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	2			
3	3	3	2	2	-	-	-	-	-	-	2	2	2	2	3			
2	2	2	2	2	-	-	-	-	-	-	2	-	3	3	2			
3	3	3	2	To introduce the effective mathematical tools for the solutions of partial differential puations that model several physical processes. To Solve the boundary value problems in one and two dimensional. To expose the statistical methods designed to contribute the process of making scientific lgments in the face of uncertainty and variation. Take a decision about the value of a population parameter based on sample data the end of the course the student will be able to: 1. Analyze the Partial Differential Equations 2. Infer about the Fourier Series 3. Classify the Boundary Value Problems 4. Analyze the Fourier Transform 5. Infer the Z -Transform And Difference Equations 5. Apply the PDE in engineering calculations 5. Apply the PDE in engineering calculations 7. PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 PS03 7. 2 2 2 2 2 3 7. 2 2 2 3 3 2 2 7. 2 2 2 3 3 3 3 7. 2 2 2 3 3 3 3 3 7. 2 2 2 3 3 3 3 3 7. 2 2 2 3 3 3 3 3 7. 2 2 2 2 3 3 3 3 3 7. 2 2									3					
2.7	2.7	2.7	7 2	2	-	-	-	-	-	-	2	2.3	eldsf partial differentialonal.cess of making scientialon sample data 012 PS01PS02PS222222222222223333332.32.42.42.422.4					
Correlati	on Levels		•	1.Slight(I	Low)	·		2.Moder	ate(Medium)		3.Substar	ntial(High)		·			

(Under Section 3 of UGC Act 1956) SYLLABUS FOR UNDER GRADUATE IN ENGINEERING AND TECHNOLOGY **B.E – MINING ENGINEERING** ACADEMIC YEAR 2016-2020 (BATCH - I)

KL-Knowledge Level:K1-Remember,K2--Understand,K3-Apply,K4-Analyse,K5-Evaluate,K6-Create: PO-Programe Outcome: CO-Course Outcome :PSO-Programe Specific Outcome

UNIT I PARTIAL DIFFERENTIAL EQUATIONS Formation of partial differential equation - Solution of PDE by direct Integration- Solution of

Qq R Nonlinear equations First Pp of order Four

f(p,q) = 0, f(z, p, q)0, fx, p f y, q and zхp yqf(p,q)

UNIT II FOURIER SERIES

Definition of Fourier's series - Fourier Coefficients - Expansion of functions in Fourier series - Even and odd functions - Half

range Fourier series for any interval l, l. Harmonic analysis – Estimation of Fourier coefficients given values of function in it domain.

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Classification of PDE – Method of separation of variables - Solutions of one dimensional wave equation - One dimensional equation of heat conduction - Steady state solution of two dimensional equation of heat conduction (excluding insulated edges).

NIT IVFOURIER TRANSFORMS

Definition-Fourier Integral Theorem-Fourier Transform-Properties of Fourier transform (Without proof)-Convolution-Relation between Fourier and Laplace transforms.

UNIT V **Z – TRANSFORMS**

Definition- standard Z-transforms- Standard results- properties of Z- transform (Without proof)-Initial value and Final value theorem- Inverse Z-transform -Convolution theorem-Convergence-Evaluation of Z-transform

TEXT BOOKS:

- 1. Veerarajan. T., "Transforms and Partial Differential Equations", Tata McGraw Hill Education Pvt.Ltd., New Delhi, Second reprint, 2012.
- 2. Grewal. B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, Delhi, 2012.
- 3. Narayanan.S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students" Vol. II & III, S.Viswanathan Publishers Pvt Ltd. 1998.

REFERENCES:

- 1. Bali.N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 7th Edition, Laxmi Publications Pvt Ltd, 2007.
- 2. Ramana.B.V., "Higher Engineering Mathematics", Tata Mc-GrawHill Publishing Company Limited, NewDelhi, 2008.
- 3. Glyn James, "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education,
 - 2007.
 - 4. Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, Wiley India, 2007.
 - Ray Wylie. C and Barrett.L.C, "Advanced Engineering Mathematics" Tata McGraw Hill Education Pvt Ltd, Sixth Edition, 5. New Delhi, 2012.

Datta.K.B., "Mathematical Methods of Science and Engineering", Cengage Learning India Pvt Ltd, Delhi

Designed by " Department of Mathematics" types

12

12

equation

12

12 Hrs

12 Hrs

Total 60 Hrs

PROC	GRAN	[BE-Mi	ning Eng	gineerin	g				
Course	e Code	e:							I	L	Τ		Р		С
UBMI	N301		Cours	se Nan	ne:					3	1		0		3
			INTR	ODUC	CTION	TO M	INING	Ĵ							
			ENGI	NEER	ING										
															<u> </u>
Year a	and			II Y	ear (III	Seme	ster)			С	ontact	hours	per we	ek	
Semes	ster										((4 Hrs)		
Prerec	juisite				NI	L									
course	è														
Course	e cate	gory	Hum	anities	and	Ma	nagem	ent	Pro	fessiona	l Core	P	rofessio	onal Ele	ctive
			Soci	al Scier	ices	(courses								
			D	• • •					0						
			Bas	sic Scier	nce	En	gineeri	ng	0	pen Ele	ctive		Ma	ndatory	
						,	Science								
Cours	e			1. T	'o know	the kno	wledge	about N	lineral r	esources	s of Indi	a.			
Object	tive			2. T	'o know	about s	surface 1	mining							
5				3. U	Indersta	nd abou	t underg	ground r	nining	•					
				4. II 5 I	ntroduct Indersta	101 abound the e	ut mach	ineries i nental in	ised in r nnacts d	nines lue to mi	nino				
			At the	end of the	ne cours	the stu	ident wi	ill be ab	le to:		iiiig				
Cours	e Outc	ome	1.	Descr	ibe abou	ıt Minin	g indust	ry							
00000	• • • • • •	01110	2.	Expla	in about	Surface	e mining	g							
			3.	Sumn	narize al	oout Un ut machi	dergrou	nd minii 1 in min	ng ing indu	etry					
			5.	Identify	the pote	ential en	vironme	ental im	pacts	suy					
			6.	Describ	e the rol	e of mir	ning in e	economy	y of a co	ountry.					
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1		2		3		1		2		3	2		3
CO2	1		2		2		3	2		2	1		3	2	
CO3		2		3	2		1		2		3	2	1		3
CO4	2		3		2		3		2		3		2	2	
CO5	1	2		3		2		2		3		2	3		2
CO6	2		1		3			2	<u> </u>	3		2	2	2	
Aver age	2	1.6	2	2.6	2.2	2.5	2.3	2.3	2	2.5	2.3	2.2	2.2	2	

 Correlation Levels
 1.Slight(Low)
 2.Moderate(Medium)
 3.Substantial(High)

 KL-Knowledge Level:K1-Remember,K2--Understand,K3-Apply,K4-Analyse,K5-Evaluate,K6-Create : PO-Programe Outcome:
 CO-Course Outcome : PSO-Programe Specific Outcome

UNIT I INTRODUCTION

Mining definition – Historical overview – Role of the industry – Economic importance and impact on society – Mineral resources of India

UNIT II SURFACE MINING

Overview - Types of surface mines - Planning & Selection of sites - Unit operations Basic bench geometry – Applicability and Limitations – Advantages and Disadvantages.

UNIT III UNDERGROUND MINING

Overview - Coal mining methods - applicability and limitations- advantages and Disadvantages - Metal mining Methods-Applicability - Limitations - Advantages and Disadvantages.

UNIT IV MINING MACHINERY

Drilling machines for coal and metals mining – Dewatering pumps – Hydraulic escalators – aerial ropeways – crushers – breakers and feeders.

UNIT V ENVIRONMENT AND SAFETY

Environmental impact of mining and associated activities – Pollution – air, water, noise – Mine safety systems - Mining laws and regulations

Text Books: H.L.Hartman "Introduction to Mining Engineering", John Wiley and Sons, Second 1.

Edition, 1999

2. D.J.Deshmukh "Elements of Mining Technology", Vol.1, Vidyaseva Prakashan, Nagpur,1994

Reference Books

1. Introduction to Mining Engineering - H.L.Hartman – 4th Edition

Designed by: "Department of Mining Engineering

09 Hrs

09 Hrs

09 Hrs

09 Hrs

Total:50 Hrs

PROGR	AM						В	E-Minir	ıg Engiı	neering					
Course C	Code:								L	Т			Р		С
UBMN3	02	Co	urse Na	ame:					3	1			0		3
		GEO	OLOGY	-I											
Year and			II	Year (I	II Sem	leste	r)			Co	ntact h	nours j	per weel	k	
Semester	•										(4Hrs))		
Prerequis	site			N	IIL										
course						_									
Course of	category	/ H S	umaniti ocial Sci	es and ences	N	fanaş cou	gement rses	Pr	ofessio	nal Core	2	P	rofession	al Electi	ve
]	Basic Sci	ience	I	Engin Scie	eering ence		Open E	lective			Mand	latory	
				1.	Illust	rate a	bout the g	geologi	e struct	ures					
Course				2.	Desci	ibe a	bout the s	stratigra	iphy						
Objective	e			3.	Class	ify th	e mineral	S a atmati	~~~ h ~~						
				4. 5	Unde	rstan	d about th	e strati	grapny	letures					
				5.	onde	istan			gie sui	uctures					
		At t	he end o	f the cour	rse the	stude	nt will be a	ble to:							
Course C	Outcome		1.			Exp	lain detail	s of Mi	neral e	xplorati	on				
			2.			Dist	inguish th	e types	of Roc	- ks					
			3.			Clas	sify the n	ninerals							
			4.			Sum	marize th	e stratig	graphy						
			5.	Evelo	in abo	Exp	lain detail	s of geo	ologic s	structur	es				
DOSI				Expla				the typ		OCKS	DO1	DO1			
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	1	2	PSO1	PSO2	PSO3
CO1	2	1		2	1								1	2	2
CO2	1		2		3								2	3	1
CO3	1	2		3		2	2						1	2	3
CO4	2	2	3	2			3						2	3	2
CO5	2		3		2			2					3	1	2
CO6	1	1	2	2						2		3	2	2	2
Average	1.5	1.5	2	2.2	2	2	3	2		2		3	1.8	2.1	2
Correlation	Levels			1.Slight	(Low)		2.Moderate	(Medium)			3.Subs	tantial(H	igh)		
KL-Knowl CO-Course	edge Level e Outcome	:K1-Rem :PSO-Pro	ember,K2- ograme Sp	Understa ecific Outo	nd,K3-A come	pply,F	K4-Analyse,F	K5-Evalua	ate,K6-Ci	reate : PC)-Progra	ime Outo	come:		
L															
UNIT I IN	TRODU	JCTION	N							10 H	rs				

Earth and its interiors – Composition – Scope of economic geology and exploration geology – Mineral exploration - Concepts and methods - Stages of exploration - Strategy and design – Resources and Reserves

UNIT II PETROLOGY

Rocks and their classification - Formation of igneous, metamorphic and sedimentary rocks - mode of occurrence -Common rocks and composition

UNIT III MINERALOGY

Physical and Chemical properties - Crystal classes and systems - Properties of common silicate minerals – Quartz, feldspar, pyroxene, amphibole, garnet, olivine, mica – Sulphides – Pyrite, chalcopyrite, Galena, Sphalerite and Oxides - Haematite, Magnetite, Chromite, Pyrolesite, Psilomelane - Atomic minerals - Beach sands

UNIT IV STRATIGRAPHY

Geological time scale – distribution of mineral resources – economic importance of Archaean, Paleozoic, Mesozoic and Cenozoic rocks of India.

UNIT V STRUCTURAL GEOLOGY

Topographic maps - Aerial photographs and Satellite imageries - Attitude of planar and linear structures

- Strike, dip, foliation - Geological structures - folds, faults, unconformities and joints - Igneous intrusions - dykes, sills, batholiths - Principles of stereographic projections of linear and planar features

Text Books:

- Parbin Singh. Geology for Engineers, IBH Publications, N. Delhi. 1991. 1.
- 2. Arthur Holemess, Principles of Physical Geology, Thomas Nelson and Sons, USA, 1964.

Reference Books

- 1. Blyth F.G.H. and de Freitas M.H. Geology for Engineers, 7th edition, Elsevier Publications, 2006.
- 2. Bell F.G. Engineering Geology, Elsevier Publications, 2007.
- 3. Ford, W.E. Dana's Textbook of Minerology (4th edition), Wiley Eastern Ltd., N. Delhi, 1989.
- 4. Winter, J.D. An Introduction to Igneous and Metamorphic Petrology, Prentice Hall, N. Delhi, 2001.
- 5. Billings, M.P. Structural Geology, Prentice Hall Ino., N. Jersey, USA, 1972.

Designed by " Department of Mining Engineering

10 Hrs

10 Hrs

PROG	RAM]	BE-Mini	ng Engii	neering					
Course	e Code:								L	Т		Р		(2
UBMN	1303		Course	Name:					3	1		0			3
			FLUID F	LOW OI	PERATI	ONS									
Year a	nd		I	I Year	· (III Se	mester)			Cor	ntact ho	urs per	week		
Semest	ter										(4	Hrs)			
Prerequ	uisite				NIL										
course															
Course	e catego	ory	Human Social	ities and Sciences	d S	Manag cour	ement ses	Pı	rofessio	nal Core		Prof	essional	Elective	
									V	/					
			Basic	Science		Engine Scie	ering nce		Open E	lective			Mandat	ory	
Course Object	e ive e Outco	me	2. Det 3. Des 4. To 5. To At the end	termine scribe th acquire know a d of the o 1. 2. 3. 4. 5. 6.	the Flow ne types the kno about the course the Explain fluid. Underst Analyze pipe syss Classify Solve the fluid. and type	w Measu of fluid wledge ne dime e studen about and about and about e the flo stems. y the typ ne dime under s of simi	and Fiu urement ls and it about th ensiona t will be Fluid M out press w regim es of pu nsional rstand at litude an	and Tra s proper he Flow l analys able to: Mechani sure vari hes using analysis oout the t	ansmissi rties Measur sis cs and ation in g Reync d unders s, types ypes of f of forces	ion Of E rement a physica a a fluid old's nur stand the s of simi fluids, flo acting in	Energy nd Tran al and t at rest a nber and e perform litude a ow measu a fluid	smission hermod and appl d calcula mance c nd types arement,	n Of End ynamic ication t ate the n urves. s of forc dimensio	propert o mano ninor los ces actin	ies of meter. sses in g in a ysis
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	2	2	2	-	-	-	-	-	-	-	1	2	-
CO2	2	2	2	2	2	-	-	-	-	-	-	-	1	2	-
CO3	3	1	3	3	3	-	-	-	-	-	-	-	2	3	-
CO4	2	2	2	2	2	-	-	-	-	-	-	-	1	2	-
CO5	3	1	3	3	3	-	-	-	-	-	-	-	2	3	-
CO6	2	1	2	2	2	-	-	-	-	-	-	-	3	2	-
Aver	2.3	1.5	2.3	2.3	2.3								1.6	2.3	

age															
Correlat	tion Leve	ls		1.Slight	(Low)			2.Mode	rate(Medi	ium)		3.Subst	antial(Hig	gh)	
KL-Kn CO-Co	owledge urse Out	Level:K1 come :PS	-Remem SO-Progr	ber,K2 ame Spe	Understa cific Out	and,K3-A come	pply,K4-	Analyse,	K5-Evalı	uate,K6-0	Create : 1	PO-Prog	rame Ou	tcome:	
UNIT	I INTR	ODUC	TION												
Units ar	nd Dime	ensions	– Prope	rties of :	fluids -	Mass, I	Density,	Specific	c weigh	t, Speci	fic volu	me,			
Specif	ic grav	ity, Vi	scosity,	Comp	ressibili	ity, Vaj	pour pr	essure,	Capilla	ary and	l surfac	e tensi	ons –		
Thermo	dynami	c prope	rties - Is	otherma	al proce	ss, adia	batic pr	ocess.							
UNIT I	I FLUI	D STA	TISTIC	'S & FI	LUID D	YNAM	ICS								
- simp fluid fl equation	Fluid p le & dif low – E on of m	ressure ferentia quation otion.	 Pasca 1 manor of cont 	l's law neter – 1 inuity &	– Presso Pressur t its app	ure varia e & Ten lication	ation in nperatur – Equa	a fluid a e at any tion of 1	at rest – 7 point in motion -	Measur n compr – Berno	ement o essible ulli's eq	of pressu fluid – (uation -	ıre - Ma Classific - Navier	nometer ation of stokes	rs f
UNIT I	II FLO	W ME	ASURE	CMENT	' & TR	ANSMI	ISSION	OF EN	ERGY						
pipes -	Ventur - Darcy	i, Orific weisba	e, Nozz ch equa	les, Mo tion – L	uth piec osses ir	ces – pit 1 pipelin	ot tube les - Hy	& sharp draulic	crested & energ	l weirs/r y gradie	notches - ent	– Steady	y flow tl	rough	

UNIT IV DIMENSIONAL ANALYSIS

Introduction – Need for dimensional analysis – Methods of dimensional analysis – Dimensions of physical quantities – Dimensional groups – Buckingham π theorem – group method – Rayleigh's method of indices – Dimensionless numbers – Applications of dimensional method – Similitude – Types of similitude.

UNIT V PUMPS & TURBINES

Centrifugal pumps - Working principle – Reciprocating pump - Working principle - Indicator diagram – Rotary pumps - Classification - Comparison of working principle with other pumps - Advantages – Classification of turbines - heads and efficiencies - velocity triangles - axial, radial and mixed flow turbines - pelton wheels and francis turbine.

Text Book:

(Total: 50 Hrs)

10 Hrs

1. Streeter, V. L. and Wylie E. B., Fluid Mechanics, McGraw Hill Publishing Co.(2010)

2. Kumar K. L., Engineering Fluid Mechanics, Eurasia Publishing House (p) Ltd. New Delhi(2004)

References Books:

1. Robert .Fox, Alan T. McDonald, Philip J.Pritchard, "Fluid Mechanics and Machinery", ISBN 978-0-470-54755-7, 2011.

Designed by "Department of Mining Engineering".

PROGR	AM							BE-M	ining En	gineering	3				
Course C	Code:										Т		Р		С
UBMN3	04									3	1		0		3
			Co	urse N	ame:										
			MI	NE DE'	VELOP	MENT									
Year and	Seme	ster		II	Year (III Sen	nester)			C	ontact l	nours p	er weel	k	
Prerequis	site co	urse]	NIL	,				(4 Hrs)	1		
Course of	catego	ry	Н	umaniti	ies and	N	Ianagen	nent	Pro	fessional	Core	Pr	ofession	al Electi	ive
	U	2	S	ocial Sc	ciences		course	S							
										\checkmark					
				Basic Sc	eience	1	Enginee Scienc	ring 'e	0	pen Elec	etive		Mand	latory	
							Strong	•							
				4	T 1	.1 1	1 1	1 ·		T. J'					
Course (Jbject	ive		1. 2	To kno	w the ki	nowledge	e about i	mines of	India.					
				2. 3.	Unders	stand ab	out unde	rground	mining						
				4.	Introdu	action at	out mac	hineries	used in 1	nines					
				5.	Unders	stand the	e environ	mental i	mpacts d	lue to mi	ning				
~ ~			Att	the end c	of the cou	urse the	student v	will be al	ble to:						
Course C	Outcom	ne		1. De 2. Ext	scribe at	out Surfa	ing mau ice minir	stry 19							
				3. Su	mmarize	about U	ndergrou	und mini	ng						
				4. Illu	istrate al	out mac	hines us	ed in mir	ning indu	stry					
				5. Ide	ntify the	potentia	al enviro	nmental	impacts						
POS/				o. De	scribe in	e role ol	mining	in econo	my of a c						
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO:
CO1	2	1	2	2	2	3	3	1		2	1	3	2	2	3
	1	2	2	3	2		1	2	2	2	3	2	1	2	3
	2	2	3	5	2		3		2		3	2	2	2	
C04	1	2	5	3		2	5	2	-	3	5	2	3	2	2
CO6	2	-	1	5	3	-		2		3		2	2	2	
Average	2	1.6	2	2.6	2.2	2.5	2.3	2.3	2	2.5	2.3	2.2	2.2	2	
Correlation	n Levels		1	1.Sligh	nt(Low)			2.Mod	erate(Me	tium)		3.Subst	antial(Hi	gh)	
KL-Know	ledge L	evel:K1-	Rememb	er,K2U	Inderstar	nd,K3-Aj	oply,K4-A	Analyse,F	K5-Evalu	ate,K6-C	reate : P	O-Progr	ame Out	come:	
CO-Cour	se Outco	ome :PSC)-Progra	me Speci	ific Outco	ome									
UNIT I	I	NTROD	UCTION	J				10	Hrs						
Historica	al overvi	ew of mir	ning - Rol	le of the r	nining in	dustry in	the mode	rn world a	and contri	bution to	national e	economy	– Role of	mining	
engineer	s in indu	ıstry – Pre	esent and	Future tre	ends of m	ining ind	ustry – M	lineral de	posit - Di	fferent typ	bes and th	eir classif	fication –	Indian	
mineral	resource	S													
UNIT I	I OPEN	ING-UP	OF DEP	OSITS							10	Hrs			
Choice o	of mode of	of entry –	adit. shat	ft. decline	e and com	bined mo	de, their	applicabi	lity, numł	per and dis	sposition	– Vertica	l and Incl	ined Shaf	its –
Location	, shape,	size, and	organisat	ion of sha	aft sinking	g, constru	iction of s	shaft colla	r, shaft fi	ttings	rostion	. ordeu			

UNIT III SINKING OPERATIONS

Ground bearing and muck disposal - tools and equipment, lining, ventilation, lighting and dewatering – Sinking in difficult and water-bearing ground – Insets - Design, excavation and lining – Mechanised Sinking - Simultaneous sinking and lining - slip-form method of lining - high speed sinking.

UNIT IV SHAFT BORING

Methods and equipment - Special Attributes - Widening and deepening of inclined and vertical shafts - staple shafts - raised shafts.

UNIT V DRIFTING & TUNNELLING

Purpose, shape, size and location – Excavation – ground breaking, muck disposal, ventilation and supporting – High speed Drifting & Tunnelling – Application of mechanised methods – roadheaders and tunnel boring machines.

TEXT BOOKS: 1. Hartman, H.L., Introduction to Mining Engineering, John Wiley and Sons, Second Edition, 1999.

2. Deshmukh, D.J., Elements of Mining Technology, Vol.I, Vidyaseva Prakashan, Nagpur, 1994.

REFERENCES:

1. Hartman, H. L. (Editor), SME Mining Engineering Handbook, 3rd edition, Vol I & II, Society of Mining Engineers, New York, 2011.

Designed by "Department of Mining Engineering"

10 Hrs

10 Hrs

10 Hrs

(Total: 50 Hrs)

PROG	RAM							BE-Min	ing Engi	neering					
Course	e Code:	:							L	Т		Р		(С
UBMC	CC06		Course	e Name	:				2	0		0			2
			Materia	l Scien	ce				Z	0		0			Z
Year a	nd			II Year	r (III Se	emester	;)			Cor	ntact ho	ours per	week		
Semes	ter										(2	Hrs)			
Prereq	uisite				NIL										
course															
Course	e categ	ory	Huma Social	nities an Science	d s	Manag cou	gement rses	Р	rofessio	nal Core	•	Prof	essional	Elective	9
		-	Basic	Science	:	Engino Scie	eering ence		Open E	lective			Manda	tory	
Course	ive e Outco	ome	Makir Promin At the er	questio To help ng them ent alloy nd of the 1. 2. 3. 4. 5. 6.	course the course the	the studer ars Dev the im the studer tree the ties the mate by the water the the water the the water the the water the the water the studer	nt will be portand t will be constit erial pro various various knowl rement	and the second s	aterials errous ma alloys a by van s and no eatmen etallic of mate	, engined aterials: (and pha rious ma on-ferro t proces materia erial sc	ering pr Cast iron se diag aterial t ous met ss and i ls with cience	ofession , Steel, S grams t esting t als with ts signi its app on ma	a and ma Stainless o ident techniq h its apj ficance lication	ify the ues plicatio	metal on on for
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2										2			3
CO2	3											2			3
CO3	3									1		3			3
CO4	3	3										2			3
CO5	3	2	2		3					1		3			3
CO6	3	2	3		3	3						3			3
Aver	3	2								1		2			3
age		1		1.011 -								0.0.1			
Correla	tion Leve	els	121 D	1.Sligh	t(Low)			2.Mode	erate(Med	lium)	Cours 1	3.Subst	antial(Hig	gh)	
CO-Co	iowledge ourse Ou	tcome :	KI-Kemer PSO-Prog	nder,K2- rame Spe	-Underst ecific Out	and,K3-A come	ърр іу,К4	-Analyse	,K5-Eval	uate,K6-	create :	r O- Prog	grame Ou	itcome:	

(Under Section 3 of UGC Act 1956) SYLLABUS FOR UNDER GRADUATE IN ENGINEERING AND TECHNOLOGY **B.E – MINING ENGINEERING** ACADEMIC YEAR 2016-2020 (BATCH - I)

UNIT I: Materials Science and Engineering

Introduction, Developments in materials, engineering profession and materials, classification of materials, criteria for selection of materials for petroleum industries.

Ferrous materials: Cast iron, Steel, Stainless Steel, Prominent alloy steel.

Non-Ferrous materials: Copper, Brass, Bronze, Aluminium, Lead, Tin.

Materials for High and Low temperature service, classification of heat resistant materials

UNIT II: Properties of materials

Mechanical Properties: Hardness, Strength, Toughness, Stiffness, Ductility, Malleability, Harden ability, creep and fatigue

Electrical properties: Conduction, Semiconductors and insulators

Optical properties: Absorption, Reflection, Transmission and Refraction optical fibers and lasers. Magnetic properties: Various types of magnetic materials, Diamagnetic, Paramagnetic, Ferromagnetic, Anti

ferronmagnetic and ferromagnetic materials, hard and soft materials

Thermal properties: Thermal expansion, Heat capacity, Thermal conduction, Thermal Stresses

UNIT III: Composite Materials

Classification of composites, Reinforcing phase, Matrix phase, Fiber reinforced plastics, Metal matrix composites, General and practical composite systems, Tribological behavior of composite, special composites. Concrete, Asphalt concrete, reinforced concrete, prestressed concrete, concrete polymer composite, fiber reinforced cements.Nanostructures materials, Powder processing

UNIT IV: Heat Treatment and Material Testings

Heat treatment: Annealing, Normalizing, Hardening, Tempering

Case Hardening – Carburizing, Nitriding, Cyaniding and carbon nitriding, Flame hardening, induction Hardening, Surface treatmentStudy of fractures of engineering materialsDestructive testing, Tensile testing, compression testing, Impact Testing, Hardness test, Jominy endquench test for hardenability of steel.Non destructive testing. 9 Hrs

UNIT V: Materials environment interactions

Principles of corrosion, Electrochemical corrosion direct dissolution mechanisms, Dry and wet corrosion, Galvanic corrosion.

Methods of corrosion control, cathodic and anodic protection, corrosion inhibitors. Surface coatings, corrosion monitoring, Polarization corrosion prevention.

Reference Books:

1. Schaeffer J.P: Saxena A, Antolovich S.D, Sanders T.H. Jr., Warner S.B., The Science & Design of Engineeing Materials, McGraw-Hill International.

2. Askeland Donald R. and Phule P.P. The science and engineering materials, Thomson learning.

3. Callister william D.Jr Material Science and Engineering an Introduction, John Wiley & sons inc.

Designed by "Department of Mechanical Engineering

TOTAL:45 Hrs

9 Hrs

9 Hrs

9 Hrs

9 Hrs

PROGR	AM							B	E-Mini	ng Engin	eering					
Course (Code:							1	L		T		Р		С	
UBMN3P	ΡA		COURS	SE FI	LE:			_			-		-			
			GEOLO	GY PF	RACTI	ICAL -	·I	()		0		2		1	
			02020	0111			-			1					1	
Year		and	II Year (IV Se	medter	·II Yea	r (III S	Sentes	netadt h	ours per	weeko	ntact hou	ars per	week		
Semest	er		Semest	er		,		(2	Hrs)		(2	Hrs)				
Prerequ	iisite		NHrerequ	uisite		NIL										
course			course													
			Humanities	s and S	ocial	Mana	gement	course	.c	Profess	zional (ore	P	rofessio	nal Elective	
Course	catego	ory	Scie	ences		Ivialia	gement	course	0	1101030	, ionar C	.010		10103510		
		-							-		✓					
		Ŀ	Basic Scien	ce	I	Enginee	ering Sc	ence	Ope	en Electiv	ve	ſ	Mandato	ory		
					T 1		6									Щ
				1.	Ident	titicatio	on of m	uneral	S							
Course				2.	Ident		on of for	res	lda an	diainta						
Objectiv	ve			5. 1	Maar	giiitioi	nt of d	in and	ius and	u jonns						
				4. 5	Stere	ogrant	ni or u	ip and	suike	contour	mans					
			At the end	d of the	e course	e the sti	ident w	ill be a	ble to	contour	maps					
Course	Outcor	ne		<i>a</i> or u	1.	Un	derstan	nding o	of mine	erals						
Course	Juicor	ne			2.	Un	derstan	ding	of rock	ζS						
					3.	Un	derstan	ding	of ores	5						
					4.	Rec	cogniti	on of f	aults,	folds and	d joints	5				
					5.	Me	asurem	nent of	dip an	d strike						
	1	T		r	6.	Ste	reogra	phic pi	ojectio	ons and	contou	r maps	1			
POS/ COS	PO1	PO	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO3	
CO1	1	2		2		3			2			1	2		2	
CO2	2		2		3		2			3		2	2		2	
CO3		2		2			3		2		1		1	2		
CO4	3		2			2		3			2		2	2		
CO5	1	3		1		2		1	1	2		2		2	2	
CO6	2	1	1				3		2	ł	1		2		2	
Averag	1.8	2.3	1.6	1.6	2.5	2.3	2.6	2	2	2.5	1.3	1.6	1.8	2	2	
e Correlativ	on Laval	6		1 Slig	ht(Low))	2 1	Iodarata	Madiu	m)	3 Sub	tantial/Hic	rh)			
KL-Kno	wledge l	s [_eve]•	K1-Remem	her K2	Under	, rstand I	Z.IV. K3-Annl	$\mathbf{v} \mathbf{K} \mathbf{A}_{-} \mathbf{A}$	nalvse	nn) K5-Evalu	1916 K6	Create • I	2017 20-Prog	rame O	utcome•	
CO-Cou	rse Outo	come :	PSO-Progr	ame Sp	pecific (Jutcom	6 172-1766	IY,IX-	maryse,	1X3-12 valu	<i>acc</i> ,1x0-		0-110g		accome.	
Tint - PE																
LISU OF EX	sperime		Idanti	ficatio	n of m	inarole	,									
			1/ 1001111													
		1. 2	Identi	ficatio	n of re	nnerais)									l
		1. 2. 3.	Identi	ficatio ficatio	n of ro n of ro	nnerais ocks res	•									
		1. 2. 3. 4.	Identi Identi Identi Recos	ficatio ficatio ficatio	n of ro n of ro n of or of fau	res ilts, fol	ds. ioir	nts etc								

- 6. Measurement of dip using Brunton compass and Clinometer
- 7. Stereographic projections
- 8. Contour Maps

TOTAL 24 Hrs

TEXT BOOKS:

Bateman, A.M., Economic Mineral Deposits, John Wiley and Sons, 1956.

Krishnaswamy, S. Indian Mineral Resources, Oxford and IBH Publication Company, New

Bell F.G., Engineering Geology, Elsevier Publications, 2007.

Designed by "Department of Mining Engineering"

PROGRAM						В	E-Minin	g Engine	eering					
Course Code								L	Т		Р		С	
UBPE3PB		Course	Name:					0	0		2		1	
		FLUID F	LOW OI	PERATI	ON LAE	3								
X 7 1			T X7						<u> </u>	. 1		1		
Year and			II Year	(III Se	mester)				Conta	act hour	rs per w	/eek		
Semester				NIII						(2H	rs)			
Prerequisite				NIL										
Course cotor	oru	Humar	nities and	•	Manage	ment	Pr	ofession	al Core		Profess	sional Fl	ective	
Course calleg	ory	Social	Sciences		cours	ses		0105510116			1101055		ccuve	
	F							\vee						
	-	Basic	Science		Engine Scier	ering nce	()pen Ele	ective		Μ	andator	y	
Course Objective		 De De De 	scribe th scribe th scribe th	ie role c ie role c ie role c	of flow n of losses of differe	neasuren in pipes ent pump	ments 5 55							
Course Outco	ome		1. 2. 3. 4. 5.	Comput Comput Analyze Evaluat Determi differen Comput	te the co te the co te the Ber te the typ tine the 1 tt temper te the fri	efficient efficient rnoulli's be of flo kinemati ratures. ction fa	t of disc t of disc Theore w using ic viscos	harge us harge us m using Reynole sity and the pipe	sing Orif sing Ven Bernoul ds Appar dynami s with di	ice Meto turi Meto lli's theo ratus c viscos fferent o	er ter orem Ap sity of th diameter	paratus ne lubrio	cating	oil at
POS/ COS PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO 2	PSO3
co1 2	2	2	2	2	-	-	-	-	-	-	-	1	2	-
CO2 2	2	2	2	2	-	-	-	-	-	-	-	1	2	-
соз З	1	3	3	3	-	-	-	-	-	-	-	2	3	-
CO4 2	2	2	2	2	-	-	-	-	-	-	-	1	2	-
CO5 3	1	3	3	3	-	-	-	-	-	-	-	2	3	-
CO6 2	1	2	2	2	-	-	-	-	-	-	-	3	2	-
Averag 2.3	1.5	2.3	2.3	2.3								1.6	2.3	
Correlation Levels			1.Slight(Low)			2.Moder	rate(Medium	ı)		3.Substa	ntial(High)		1
KL-Knowledge Lev CO-Course Outcon LIST OF EXI 1. Flow Meas	el:K1-Rer le :PSO-P PERIM	nember,K21 rograme Spec ENTS:	Understand, cific Outcom	K3-Apply,I ie	K4-Analyse,	K5-Evaluat	e,K6-Create	e: PO-Prog	rame Outcor	ne:				

 i) a. Calibration of Rotometer b. Flow through Venturimeter ii) Flow through a circular Orifice iii) Determination of mean velocity by Pitot tube iv) Verification of Bernoulli's Theorem v) a. Flow through a Triangular Notch b. Flow through a Rectangular Notch 	
2. Losses in Pipes	6 Hrs
Determination of friction coefficient in pipes	
Determination of losses due to bends, fittings and elbows	
3. Pumps	6 Hrs
i. Characteristics of Centrifugal pumps	
11. Characteristics of Submersible pump	
III. Characteristics of Recipiocating pump	
4. Determination of Metacentric height Demonstration Only	4 Hrs
	(Total : 24 hrs)
 TEXT BOOKS: 1. Hydraulic Laboratory Manual, Centre for Water Resources, Anna Universi 2. Modi P.N. and Seth S.M., Hydraulics and Fluid Mechanics. Standard Book 	ty, Chennai. 2004. A House, New Delhi, 2000.
REFERENCES:	
 Subramanya, K. Flow in open channels, Tata McGraw - Hill pub. Co.1992 Subramanya, K. Fluid mechanics, Tata McGraw- Hill Pub. Co., New Delhi 	i, 1992.
	(Total: 24 Hrs)
Designed by "Department of Mining Engineering"	

PRO	GRAM		BE - M	ining Eı	ngineeri	ng											
Cours	e Code		Course	Name :					L		Т		P		С		
UBLE	ECPD		Soft Sk	ills -III					4		0		0		1		
(Com	mon to l	BE – N	Iechanic	al, BE –	EEEM	, BE – P	E, BE –	HE, BE	E - NA&	OE)							
Year a	and Sem	lester	II Year	(III Ser	mester)			Co	ntact ho	urs per v	week						
Prerec	quisite c	ourse	SOFT	SKILL	S-III			(4	Hrs)								
Cours	e Objec	ctive	То	make s	tudents	s to lear	n the	adva	anced E	nglish							
			То	raise uj	p their	confide	nce lev	el									
			Ma	king th	em awa	are of th	ne corp	orate w	orld an	d the ex	xpectati	ions					
			Pre	pare th	em for	campus	s Interv	iew									
			The stu	dent wil	l be abl	e to											
			1	Constr	ructivis	m : Cor	nceptua	lizing t	he nuar	nces of	the tens	ses in si	ituatior	nal usag	ge		
			2	Learni	ng The	eory :	Enhanc	ing ve	rbal an	d colla	aboratir	ng othe	er com	munica	tive		
C	0			activit	ies												
Cours	e Outco	me	3	Critica	l think	ing: coo	ordinati	ng and	buildin	g fluen	cy in th	e indiv	iduals	lexical			
			4	Coope	rative l	earning	: Inter	active p	particip	ation of	f the sel	f with o	other ir	ndividu	als		
			5	Active	Partici	pation:	to cont	fidently	step in	to and	comma	nd situ	ations	with Cl	air.		
			6	Enhances the versatility of the students on all skills. student will be able to													
			The stuc	Enhances the versatility of the students on all skills. student will be able to Apply listening sharply and reading keenly to understand and act apply													
				student will be able to 1. Apply listening sharply and reading keenly to understand and act aptly.													
				2.	Take _l	part in p	presenta	tions a	nd in G	roup D	iscussio	ons.					
				2	D 111	1 • 11	•,	• .			.,.	• ,.					
				3.	Build	skills to	o write	interna	itional c	competi	itive ex	aminati	ions				
C	0			4	Doval	on falic	ity of a	voracci	on and	familia	rity wit	h tochr	ology	anabla	1		
Course	Outcom	ie		4.	Comm			лрісвы	on and	lamma	iny wn		lology	enabled	1		
					Comm	iumcati	on										
				5	Analy	se disti	inouish	and Pr	enare th	neir ow	n resum	ne and r	enort				
				5.	7 mary	se, uisti	inguisii	and I I	epare u		n resun		epon.				
				6.	Apply	skills t	o succ	essfully	get jol	os by er	nhancin	g the C	Overall	Person	alitv		
					11 5			5	0 5	2		0			5		
POS/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO	PSO		
COS	101	102	105	104	105	100	10/	100	10,	1010	1011	1012	1	2	3		
CO1						2		2	2	3		2			<u> </u>		
CO_2						2		2	2	3		2					
C03						2		2	2	<u></u> २		2					
C05						2		2	2	3		2					
CO6						2		2	2	3		2					
Ave	1					2	1	2	2	3		2					

rage														
Correlation I	Levels		1.Slig	ht(Low	')		2.Mo	derate(I	Mediun	1)	3.Sub	stantial	l(High)	
KL-Knowledge Course Outcom	Correlation Levels 1.Slight(Low) 2.Moderate(Medium) 3.Substantial(High) KL-Knowledge Level:K1-Remember,K2Understand,K3-Apply,K4-Analyse,K5-Evaluate,K6-Create : PO-Programe Outcome: CO-Course Outcome :PSO-Programe Specific Outcome													
UNIT 1: GF	RAMM	AR AN	ND FO	UNDA	TON								10 H	rs

Training the students on basic grammar and foundation and laying the standard platform. A complete standard syllabus of Cambridge is used. The main part of the 1st semester is to cover the major tenses (Present tense, Present Continuous, Past Tense, Past Continuous, Present Perfect, and Present Perfect continuous.

UNIT II: BODY LANGUAGE AND LEXICAL RESOURCE WITH BASIC WRITTEN SKILLS 8hrs

Posture, eye contact, gestures with hands and arms, speech, tone of the voice One word substitutes, E-mail communication, creating blogs, free writing on any given topic, writing definitions.

UNIT III: INTERACTIVE ENGLISH

(Unit 1 to 8)

6 Hrs

The main objective is English for International communication. It course contains conversations, snapshots, readings, activities, a greater variety and amount of listening materials and more visuals to introduce vocabulary, more opportunities to build fluency, and up-to-date art and design. The course covers the fours skills of listening, speaking, reading and writing, as well as improving pronunciation and building vocabulary.

UNIT IV: LISTENING AND SPEAKING Hrs

Types of Listening -Listening and note taking-Pronunciations-Stress and Intonation-Conversation technique-Dialogue Writing -Professional Communication-Interview-Group Discussion –Power point Presentation-Lab.

UNIT V: INTERVIEW SKILLS AND PERSONALITY DEVELOPMENT 8 Hrs

Personality development – Self motivation, Self-actualization, Stress management, Interview skills,

Negotiation skills, familiarization and strategies of telephonic, skype, one on one, panel, exit interviews

TOTAL: 40 PERIOD S

TEXT BOOKS:

- 1. Essential Grammar in use- Raymond Murphy ,Cambridge , New Third Edition
- 2. Communication skills

1. New Interchange (English for International Communication) Jack C. Richards **Designed by**"AMET CENTRE FOR IELTS

PROGRAM	1							BE-	Mining	Engine	ering				
Course Co	ode:]		Т		Р		С
UBMTCO)4		Cour	rse Nar	ne:										
			PROI	BABILI	TY&				4	4	0		0		4
			STAT	<u>FISTICS</u>	5										
X 7 1	0 (TT X/	(11	7.0					0	1		1	
Year and	Semest	er		II Y	ear(1)	$\frac{1}{1}$ Sem	ester)				Con	itact n	ours per	week	
Prerequisi	ite cour	se	TT		N.		·		Duc	Pagatana	1 Care	(4	+ Hrs)		
Course ca	ategory		Soc	namues ial Scier	and Ices	IVI	courses	ent	PT0	lessiona	li Core		Prol	essional	Elective
							••••								
			Ba	sic Scier	nce	E	ngineeri	ng	0	pen Ele	ctive			Manda	tory
							Science								
				\bigvee											
Course O	utcome		2. To Equa 3. D techn 4. To judgr o mak 6. Ex 3. 4. 5. 5. 6.	introductions the tions the escribe iques us expose ments in the a deco plain the end of the Describe Classify Analyze Infer the Apply the	uce the nat mo- the not eful in e the sin e the sin the fa- cision a e applic he cour- e types out the the Bo- e the Fo- e Z -Tra- ne PDE	e effec del sev tion of makin tatistic ace of about t cation of se the s of class Fourie burder burder ansforr E in eng	tive ma veral ph samplin g rationa cal meth uncerta the valu of probal tudent wi ssification er Series y Value Transform n And D gineering	themat ysical g distril al decis ods de inty an e of a p bility in ll be abl on in va Problem m	ical to proces butions ion in r signed d vari- popula l locatin le to: riance. ns ce Equa ations	ols for ses. and ha nanage to cor ation. tion pa ng a mi	the so we acquement p ntribut aramet ne reso	olutior uired l probler e the p er bas erve	ns of par knowledg ns . process of sed on sa	tial diff ge of sta of mak ample d	ferential atistical ing scientific lata
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO 2	PSO3
C01	2	1		2	1	1		1			+	-	1	2	2
CO2	1		2		3								2	3	1
CO3	1	2		3		2	2						1	2	3
CO4	2	2	3	2			3						2	3	2
CO5	2		3		2	1		2			1		3	1	2
CO6	1	1	2	2		1				2	1	3	2	2	2
Average	1.5	1.5	2	2.2	2	2	3	2		2		3	1.8	2.1	2
Correlation	Levels	_1	1	1.Sligh	t(Low)	2	.Moderate	e(Mediun	n)	1	3.Sub	stantial(High)	L	
KL-Knowl CO-Course	edge Leve e Outcom	el:K1-Re le :PSO-P	member, Programe	K2Und Specific	erstand Outcon	,K3-Apj ne	ply,K4-Ar	nalyse,K	5-Evalua	ate,K6-C	Create :	PO-Pr	ograme O	utcome:	

UNITI RANDOM VARIABLES

Discrete and continuous random variables - Properties- Moments - Moment generating functions and their properties. Binomial, Poisson, Geometric, Negative binomial, Uniform, Exponential, Gamma, and Weibull distributions. **UNIT II TWO DIMENSIONAL RANDOM VARIABLES 12 Hrs**

Joint distributions - Marginal and conditional distributions - Covariance - Correlation and Regression - function of a random variable-Transformation of random variables - Central limit theorem. 12

12 Hrs

UNIT III TESTING OF HYPOTHESIS

Sampling distributions - Testing of hypothesis for mean, variance, proportions and differences using Normal, t, Chi-square and F distributions - Tests for independence of attributes and Goodness of fit. UNIT IV DESIGN OF EXPERIMENTS 12

Hrs

Analysis of variance – One way classification – CRD - Two – way classification – RBD - Latin square. **UNIT V RELIABILTY AND QUALITY CONTROL 12 Hrs**

Concepts of reliability-hazard functions-Reliability of series and parallel systems- control charts for measurements (x and R charts) – control charts for attributes (p, c and np charts)

TOTAL :60Hrs

TEXT BOOKS

1. J. S. Milton and J.C. Arnold, "Introduction to Probability and Statistics", Tata McGraw Hill, 4th edition, 2007. (For units 1 and 2) 2. R.A. Johnson and C.B. Gupta, "Miller and Freund"s Probability and Statistics for Engineers", Pearson Education, Asia, 7th edition, (2007) REFERENCES 1. Walpole, R. E., Myers, R. H. Myers R. S. L. and Ye. K, "Probability and Statistics for Engineers and Scientists", Seventh Edition, Pearsons Education, Delhi, 2002.

2. Navidi, W, "Statistics for Engineers and Scientists", Special Indian Edition, Tata McGraw-Hill Publishing Company Ltd, New Delhi, 2008.

3. Spiegel, M.R, Schiller, J and Alu Srinivasan, R, "Schaum"s Outlines Probability and Statistics", Tata McGraw-Hill Publishing Company Ltd. New Delhi, 2007.

Designed by "Department of Mathematics"

PROG	RAM]	BE-Mini	ng Engir	neering						
Course	Code:								L	Т		Р			С	
UBMC	CC09		Course	Name:												
			Strength solids)	n of mat	terial (I	Mechar	ics of		4	0		0			3	
			,					I						•		
Year a	nd		Ι	I Year	(IV Se	emester)			Cor	ntact ho	urs per	week			
Semest	ter										(4	Hrs)				
Prerequ	uisite				NIL											
course																
Course	catego	ory	Human Social	ities and Sciences	1	Manag cour	ement ses	Pı	rofession	nal Core	;	Prof	essional	Elective	•	
			Basic	Science		Engine Scie	ering nce		Open El	lective			Mandat	tory		
						V										
			• [To help	learne	rs knov	v about	the Ma	aterial S	Science	•					
Course	•		•]	listen t	to lect	ures a	nd co	mprehe	nd P	ropertie	es of m	naterials	s them	by a	asking	
Object	ive		(questio	ns, see	k clarif	ication	S								
			•	To help learners Developments in materials, engineering profession and materials king them realize the importance of Ferrous materials: Cast iron, Steel, Stainless Steel,												
			Makin	king them realize the importance of Ferrous materials: Cast iron, Steel, Stainless Steel,												
			Promine	king them realize the importance of Ferrous materials: Cast iron, Steel, Stainless Steel, minent alloy steel.												
			At the end	d of the c	ourse th	e studen	t will be	able to:								
Course	Outco	me		1.	Apply	the co	ncept of	of stres	s-strain	relatio	onship	on the	bars w	vith dif	ferent	
					loading	g condit	ions.				-					
				2.	Analys	e the i	mpact	of stre	sses or	n thin	and thi	ick sh	ells du	e to in	ternal	
					pressur	e										
				3.	Constr	uct she	ar for	e and	bendin	ig mor	nent di	iagrams	s of va	rious l	beams	
					under v	arious	load co	onditior	ns.							
				4.	Analys	e the be	ending	stress c	of vario	us sect	ion of t	beams.	· 1- ·· 1	0 - 1: 1	-16	
				5.	Catego	rise the	maxin	num po	wer an	a torqu	le trans	mitted	through	i Solid	snafts	
				6	anu nu Idontifi	now si w the	iaits	s of	closed	and	onen o	oil en	ings f	or roal	time	
				0.	applica	tions	stimes	55 01	cioseu	anu	open c	on spi	ings i	of feat	time	
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	2	2									3	2			
CO2	3	3	3									3	2			
CO3	3	2	2									3	3			
CO4	3	3	3									3	3			
CO5	3	3	3									3	3			
CO6	3	2	2			3		3				3	2			
Avera	3	2.5	2.5			3		3				3	2.5			

(Under Section 3 of UGC Act 1956) SYLLABUS FOR UNDER GRADUATE IN ENGINEERING AND TECHNOLOGY **B.E – MINING ENGINEERING** ACADEMIC YEAR 2016-2020 (BATCH - I)

2.Moderate(Medium)

KL-Knowledge Level:K1-Remember,K2--Understand,K3-Apply,K4-Analyse,K5-Evaluate,K6-Create: PO-Programe Outcome: **CO-Course Outcome : PSO-Programe Specific Outcome** STRESS, STRAIN AND DEFORMATION OF SOLIDS UNIT I (10 Hrs) Rigid bodies and deformable solids – Tension, Compression and Shear stresses – Deformation of simple and compound bars - Thermal stresses - Elastic constants - Volumetric strains - Stresses on inclined planes - principal stresses and principal planes - Mohr's circle of stress.

UNIT II TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAM (10Hrs) Beams – types transverse loading on beams - Shear force and bending moment in beams -

Cantilevers - Simply supported beams and over - hanging beams. Theory of simple bending - bending stress distribution – Load carrying capacity – Proportioning of sections – Flitched beams – Shear stress distribution.

UNIT III TORSION

ge

Correlation Levels

Torsion formulation stresses and deformation in circular and hollow shafts - Stopped shafts - Deflection in shafts fixed at the both ends – Stresses in helical springs – Deflection of helical springs, carriage springs. **UNIT IV DEFLECTION OF BEAMS** (10 Hrs)

Double Integration method - Macaulay's method - Area moment theorems for computation of slopes and deflections in beams – Conjugate beam and strain energy – Maxwell's reciprocal theorems.

UNIT V THIN CYLINDERS, SPHERES AND THICK CYLINDERS (10 Hrs)

1.Slight(Low)

Stresses in thin cylindrical shell due to internal pressure circumferential and longitudinal stresses and deformation in thin cylinders – spherical shells subjected to internal pressure – Deformation in spherical shells – Lame's theory – Application of theories of failure.

(Total: 50 Hrs)

Text Books :

- 1. Bansal.R.K., Strength of Materials, Laxmi publications (P) Ltd., 2007
- 2. Jindal U.C., Strength of Materials, Asian Books Pvt.Ltd., New Delhi, 2007

Reference Books :

- 1. Egor. P.Popov "Engineering Mechanics of Solids", Prentice Hall of India, New Delhi, 2001.
- Hibbeler.R.C., "Mechanics of Materials", Pearson Education, Low Price Edition, 2007 2.
- **Designed by** " Department of Mechanical Engineering

ACADEMY OF N AND TRAINING DEEMED TO BE UNIVERSITY

(10 Hrs)

3.Substantial(High)

PROGRAM		BE	- Mining Engir	neering		
Course Code:			L	Т	Р	С
UBMN401	Course Name:		4	0	0	3
	MINING GEOLO	GY				
X 7 1			1	<u> </u>		
Year and	II Year (IV S	SEMESTER)		Contact	hours per week	
Broroquisito	NI	T	-		(4Hrs)	
course	111	IL				
Course category	Humanities and	Management	Profession	al Core	Professional	Elective
	Social Sciences	courses				
	Basia Sajanga	Engineering	Open Fl		Manda	tory
	Dasic Science	Science	Open Ei	ecuve	Ivianua	tor y
Course Objective	1. Describe th	e physical geology				
objective	2. Explain the	mineral deposits in	n India			
	3. Differentiat	te coal and petroleu	m geology			
	4. Describe th	e role of geophysic	al prospectir	ng methods		
	5 D'		1 1	C		
	5. Discuss geo	biogical investigatio	on.			
	At the end of the c	ourse the student w	ill be able to	:		
Course Outcome	I. Explain the	physical geology	T 1'			
	2. Analyze the	e mineral deposits i	n India			
	5. Explain the	vladga patrology	n geology			
	4. Apply Knov	ote sensing and CIS				
	6. Discuss rem	ote sensing and GIS				
		6				

POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3		3		1		2					1	2		1
CO2	2				2		1	3					3	2	
CO3	3		3				2			2		1			3
CO4	2				2		1	3					3	2	

CO5	3		3		1		2					1	1		2
CO6		2		3		1		2		3	2		1		1
Aver															
age	2.17	0.33	1.50	0.50	1.00	0.17	1.33	1.33	0.00	0.83	0.33	0.50	1.67	0.67	1.17
Correla	age 2.17 0.33 1.50 0.50 1.00 0.17 Correlation Levels 1 Slight(Low)							2.Mo	derate	(Mediu	m) 3.	Substant	ial(Hig	h)	

KL-Knowledge Level:K1-Remember, K2—Understand ,K3-Apply, K4-Analyse, K5-Evaluate, K6-Create ;

PO-Programme Outcome; CO-Course Outcome ;PSO-Programme Specific Outcome

UNIT I INTRODUCTION

Introduction and scope of Economic geology – Process of Ore formation – Mineral deposits formed from magmatic, hydrothermal and volcanic process.

UNIT II ECONOMIC MINERAL DEPOSITS IN INDIA

Metallic – Non-metallic deposits – Study of Graphite, copper, zinc, gold, lead, iron, manganese, radioactive minerals, asbestos, mica, gemstone – Origin, mode of occurrence and distribution in India – Origin and occurrence of industrial minerals – ceramic, refractory, abrasive, glass and paint industry.

UNIT III COAL AND PETROLEUM GEOLOGY

Origin – Physical properties – Processes – Occurrence of coal and its types – Petroleum deposits – Fossil fuel distribution in sedimentary basins of India.

UNIT IV GEOPHYSICS

Geophysical prospecting methods – Seismic, electrical, magnetic and gravity methods of mineral prospecting – Location of ore body, coal and petroleum reserves, subsurface litho- $\log - 3D$ models.

UNIT V REMOTE SENSING AND GIS

Introduction to aerial and satellite remote sensing – Identification of photo recognition elements – Applications of remote sensing and GIS in geological mapping and mineral exploration.

(Total: 50 Hrs)

Text Books:

1. Bateman, A.M., Economic Mineral Deposits, John Wiley and Sons, 1956

(10 Hrs)

(10 Hrs)

(10 Hrs)

(10 Hrs)

(10 Hrs)

PROG	RAM						E	BE-Minin	g Engin	eering					
Course	Code:								L	Τ		Р		С	
UBMN	1402		~												
			Course	Name:					3	0		0		3	
			DRILLIN	IG AND	BLAST	ING									
Year a	nd		I	I Year	(IV Se	mester				Cont	act hou	rs per v	veek		
Semest	ter		-		(1 - 20					Com	(34H	Hrs)			
Prerequ	uisite				NIL							,			
course															
Course	e categ	ory	Human Social	ities and Sciences	1	Manage cours	ement ses	Pro	ofession	al Core		Profes	sional E	lective	
										\checkmark					
			Basic	Science		Engine Scier	ering Ice	C)pen El	ective		N	Iandato	ry	
_			1. Disc	uss types	s of exp	loratory	drills a	nd their a	applical	oility					
Course			2. Expl	ain type	s of dril	ling in s	surface i	mines							
Object	Objective3. Define blasting in surface mir4. Understand the explosives an								ethods						
			5. Unde	erstand c	drilling	and blas	ting in i	undergro	ound mi	nes					
			At the end	d of the c	ourse th	e student	will be	able to:							
Course	Outco	me	1. (Classify	the type	es of exp	loratory	drills a	nd their	applical	oility				
			2. I	Explain (the expl	osives a	nd deto	nating m	ethods						
			3. 1	Distingu	ish type	s of dril	ling in s	urface m	nines						
			4. 1	Explain (drilling	and blas	ting in i	undergro	und mi	nes					
			6. 1	Discuss 1	the met	hods to c	trill a m	ineral re	serve.	nes					
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1		2		3		1		2		3	2		2
CO2	1		2		2		3	2		2	1		3	2	
CO3		2		3	2		1		22		3	2	1		2
CO4	2		3		2		3		22		3		2	2	
CO5	1	2		3		2		2				2	3		2
CO6			1		3			2		3		2	2	2	2
Avera	2	1.6	2	2.6	2.2	2.5	2.3	2.3	2	2.5	2.3	2.2	2.2	2	2
Correlati	ion Levels			1.Slight	(Low)			2.Moder	rate(Mediu	ım)		3.Substa	ntial(High)	1
KL-Kno CO-Cou	owledge L arse Outco	evel:K ome :P	1-Remember, SO-Programe	K2Under Specific O	rstand,K3 Jutcome	-Apply,K4	-Analyse,	K5-Evalua	te,K6-Cre	eate : PO-l	Programe	Outcome:			
UNIT I	INT	ROD	UCTION					(09	Hrs)						
			. .										~		
0.1	Boring	g for e	exploration	ı – Vario	ous type	es of exp	loratory	drills and	nd their	applical	bility – .	Auger -	Cable-to	ool -	

(Under Section 3 of UGC Act 1956) SYLLABUS FOR UNDER GRADUATE IN ENGINEERING AND TECHNOLOGY B.E – MINING ENGINEERING ACADEMIC YEAR 2016-2020 (BATCH - I)

Interpretation of borehole data.

UNIT II EXPLOSIVES AND ACCESSORIES

Types of explosives – Composition, properties, classification – Selection of explosives – manufacture, transport, storage and handling of explosives, testing of explosives - Types of initiating systems – electrical detonators - detonating fuse - detonating relays - NONEL – Blasting accessories –exploders..

UNIT III DRILLING IN SURFACE MINES

Blasthole drills – types, classes, classification, applicability and limitations - Mechanics of drilling – performance parameters – drilling cost – compressed air requirement for hole cleaning – selection of drilling systems – drilling errors – organization of drilling.

UNIT IV BLASTING IN SURFACE MINES

Mechanics of rock fragmentation – Livingstone theory of crater formation – factors affecting blasting – blast design – estimation of burden and spacing – estimation of charge requirement – initiation patterns – secondary blasting – pop and plaster shooting – problems associated with blasting – ground vibration and air over pressure – blast instrumentation

UNITV:DRILLING&BLASTINGINUNDERGROUNDMINES

Coal mines - drilling systems and their applicability – blasting-off-solid – different Blasting cuts – ring hole blasting – calculation of specific charge – specific drilling and detonator factor – initiation patterns Metal mines - drilling systems and their applicability – blast design for horizontal drives different blasting cuts – long hole blasting – vertical crater retreat blasting.

Text Book:

- 1. Rao, K.U.M, and Misra, B., (1998), Principles of Rock Drilling, Oxford & IBH Publications, New Delhi, p.265.
- 2. Jimeno, C.L., Jimeno, E.L, Carcedo, E.J. Drilling and Blasting of Rocks, A. A. Balkema, Rotterdam
 - 1. Clark, G.B., Principles of Rock fragmentation, Wiley Interscience Publication, 1987.
 - 2. Konya, C.J. and Walter, E.J. Surface Blast Design, New Jersey, 1990.
 - 3. Bhandari, Sushil, Engineering Rock Blasting Operations, A. A. Balkema, Rotterdam, 1997.
 - 4. Per-Anders Persson, Roger Holmberg, and Jaimin Lee. Rock Blasting and Explosives Engineering, CRC Press, 1994.
 - 5. Hustrulid, W. A. Blasting Principles of Open Pit Mining, Vol. 1- General Design Concept, A.A. Balkema, Rotterdam, 1999.
 - 6. Singh, B and Pal Roy, P., (1993), Blasting in Ground Excavations and Mines, Oxford & IBH Publications, New Delhi, p.177.
 - 7. Chugh, C.P., (1999), Diamond Drilling, Oxford & IBH Publications New Delhi.
 - 8. Pradhan, G.K., and Sandhu, G.S., Manual of Rock Blasting, IME Publications, 1996.
 - 9. Janusz Reś, Krzysztof Wladzielczyk and Ajoy K. Ghose., Environment-friendly Techniques of rock breaking, CRC Press, 2003.
 - 10. Langefors, U., and Kihlstrom, (1973), B., The Modern Techniques of Rock Blasting, URMO Publications

Designed By:Department of Mining Engineering

TOTAL: 45 Hrs

09 Hrs

(09Hrs)

09 Hrs

09 Hrs

PROGRAM							BE-M	lining E	Inginee	ring					
Course Code:								L		ſ]	2	С	
UBMN403	Cour	se Nam	e:						3	1		()	3	
	MINE	E SURV	'EYIN	IG											
										ľ				1	
Year and Semester		II Ye	ar (IV	Sen	nest	er)				Conta	ct hou	rs per v	veek		
Prerequisite course			NI	L		,					(4 H	Irs)			
Course category	Hum	anities a	nd	N	Mana	agem	ent	Pr	ofessio	onal Cor	e	Profes	sional l	Elective	
	Soci	al Scienc	es		co	ourses									
									V	/					
	Bas	ic Scienc	e]	Engi	ineeri	ng		Open H	Elective		Ν	landato	ory	
					50	cience									
															-
Course Objective	1	Toun	dersta	nd f	he r	nath	ematic	rs in ci	irvevi	no to c	alcula	te areas	and v	olumes	
course objective	1.	for di	fforont	nu i	ine i	ha Ta	idan	tify fo	ur ve yr	ing to c		nrohlon	na in t	ba field	
				i più	neci			ury, ic)1111u1c	ue and	SOIVE	problem		lie lielu	
		or adv	anced	i sur	vey	ing.									
	2	2. Ability to analyze survey data and design mining engineering projects.													
	2. Ability to analyze survey data and design mining engineering projects.														
	3.	To en	gage i	n lif	e- lo	ong l	learnir	ng wit	h the a	advance	es in si	urvey te	chnig	ues.	
			0.0			0		0				j	1		
	4.	Under	stand	the	prin	nciple	es of t	riangu	lation	survey					
	1.	At the	e end c	of th	e co	ourse	, stude	ents w	ill be	able to	Sumn	narize P	lane		
Course Outcome		Surve	ying a	nd I	Dist	ance	and D	Directi	ons in	real m	ining l	lease su	rveyin	ıg	
	2.	Illustr	ate dif	ffere	ent t	ypes	of Le	veling	g Instru	uments	and n	nethods	of lev	eling	
	3.	Expla	in to u	ise tl	he c	conto	uring	and T	heodo	lite Su	veyin	g in mi	ning a	rea	
	4.	Apply	Princ	ciple	s of	f Tra	versin	g							
	5.	Apply	Princ	ciple	s of	f triai	ngulat	ion su	rvey.						
	6.	Descr	ibe ov	veral	l co	nven	tional	meth	ods of	survey	ing		1		
POS/ COS PO1 PC	02 PO3	PO4	PO5	РОС	6	РО 7	PO8	PO9	PO1 0	PO11	PO1 2	PSO1	PSO 2	PSO3	
CO1 ²	1	3						2				2	1	3	
CO2 2	2		1			3			2		2		2	2	
CO3 2 1		3		2			3		2	1		2		1	
CO4 2 1		2	3			2		3		1		2	3		
CO5 1 3		2		3			2		1		2	1	2	3	
CO6 1 2		3	2	1				2		2		2	2	1	T
Average 1.6 1.8	1.5	2.6	2	2.3		2.6	2.5	2.3	1.6	1.3	2	1.8	2	2	\uparrow
Correlation Levels		1.Slight	(Low)		2.M	Ioderat	e(Mediui	m)		3.Substa	ntial(Hig	h)			

KL-Knowledge Level:K1-Remember,K2--Understand,K3-Apply,K4-Analyse,K5-Evaluate,K6-Create : PO-Programe Outcome: **CO-Course Outcome : PSO-Programe Specific Outcome**

UNIT I INTRODUCTION

Definition – Objective – Classification and principles of surveying

UNIT II LINEAR MEASUREMENT

Instruments for measuring distances - Chains - tapes - electronic distance measurement - total station - ranging and taping survey lines - Chain surveying - principle- field work-offsets- booking and planning- obstacles in taping - Total station construction & working with total stations.

UNIT III ANGULAR MEASUREMENT

Bearing of lines - Rectangular coordinate system - Essentials of the micro-optic theodolite - Measurement of horizontal and vertical angles - temporary and permanent adjustments - theodolite traversing - computation of co-ordinates adjustment of traverse - temporary and permanent adjustments.

UNIT IV LEVELLING (10 Hrs) Definition & terminology – Levelling instruments - Types - tilting, autoset and digital levels

levelling stares - different types of levelling - differential, profile, cross-sectional and reciprocal levelling - booking and reduction methods - underground levelling - temporary and permanent adjustments of levels. **UNIT V CONTOURS**

(10 Hrs)

Concepts - characteristics of contour - contour interval - methods of contouring - plane

table contouring - Uses of contours.

Text Books:

- 1. Punmia, B.C., Surveying Vol I and II, Laxmi Publication, New Delhi, 1991
- 2. Kenetkar, T.P., Surveying and Levelling, Vol I and Vol II, United Book Corporation, Poona, 1991.

Reference Books:

- 1. Winniberg, F., Metalliferous Mine Surveying
- 2. Mason, E., Coal Mining Series, Surveying , Vol I And Vol II, Virtue And Company Limited, London.
- 3. Clark, D., Plane And Geodetic Surveying, Vol I And Vol II, CBS Publishing Co., 1986.
- 4. Borshch, V., Komponiets, A., Navitny, G.AndKnysh., Mine Surveying, MIR Publishers, Moscow, 1989.

Designed by " Department of Mining Engineering"

(10 Hrs)

(10 Hrs)

(10 Hrs)

(Total: 50 Hrs)

PROG	RAM							BE-Mini	ing Engi	neering					
Course	Code:		Course N	Vame:				L	,	Т		Р		С	
UBMN4	404		Disaster	manage	ement			3		0		0		3	
Veere	n d			Vaar	IV Car	n a chara)		1		Corr					
Year al	na		11	rear (Iv Sen	nester)				Cor	(3)	urs per	week		
Drorogu	uisito				NII						(3	1115)			
course	uisite				INIL										
Course	catego	ory	Humani Social S	ties and ciences	Ν	Ianagen course	nent	Prof	essional	Core		Profe	ssional l	Elective	
			Basic S	Science	I	Engineer Scienc	ring e	Op	en Elec	tive		I	Mandato	ory	
									V	/					
Course Objecti	ive		1. U 2. D 3. D 4. E 5. D	Understar Discuss ti Describe Explain ti Discuss ti	nd the ty he meth the imp he conti he lesso	ypes of l ods to p acts of o ngency ns leam	hazards prevent 1 disaster plan of t from v	risk on deve disaster various d	lopmen manage lisasters	t ement					
Course	Outco	At the end of the course the student will be able to: 1. Explain the disaster management 2. Analyze the method of prevention 3. Explain the impacts of disaster on development 4. Apply contingency plan of disaster management 5. Create the prevention chart for various disasters 6. Explain the overall prevention and mitigation measures													
POS/	PO1	PO	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO 1	PSO	PSO 3
C01	2	1		2		3		1		2	1	3	2	4	2
CO2	1		2		2		3	2		2	1		3	2	
CO3		2		3	2		1		2		3	2	1		2
CO4	2		3		2		3		2		3		2	2	
CO5	1	2		3		22		2		3		2	3		2
CO6			1		3			2		3		2	2	2	2
Aver	2	1.6	2	2.6	2.2	2.5	2.3	2.3	2	2.5	2.3	2.2	2.2	2	2
age		Ļ		1 01: 1											
Correla	ation Lev	els	ol.K1 Dove	1.Sligh	t(Low)	oratord	K3 A	2.Mod	erate(Me	edium)	into VC	5.Subs	DO P	ugn)	
Outcor CO-Co	nowledge me: ourse Ou	itcon	el:K1-Rem ne :PSO-Pr	ograme (Specific	Outcom	кз-Арр e	I y,K4- Al	naryse, n	S-Evalu	ale, NO-	create :	PO-Pro	grame	
UNIT Definit	T I INT ion	ROI – I	DUCTIO Disaster,	N Hazar	·d,	Vuln	erabilit	(9 H zy, Resi	Irs) lience,	Ris	ks –	Ту	pes of	di	sasters

ACADEMY OF MARITIME EDUCATION AND TRAINING DEEMED TO BE UNIVERSITY (Under Section 3 of UGC Act 1956)

SYLLABUS FOR UNDER GRADUATE IN ENGINEERING AND TECHNOLOGY B.E – MINING ENGINEERING ACADEMIC YEAR 2016-2020 (BATCH - I)

-Earthquake, Landslide, Flood, Drought, Fire – Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial.

UNIT II APPROACHES TO DISASTER RISK REDUCTION (DRR)

Disaster cycle – Phases, Culture of safety, prevention, mitigation and preparedness of community based DRR, structural – non-structural measures, Roles and responsibilities of community, Panchayat Raj Institutions/Urban Local Bodies (PRI/ULB), States, Centre and other stake-holders – Institutional Processes and Framework at State and Central level – State Disaster Management Authority (SDMA).

UNIT III INTER-RELATIONSHIP BETWEEN DISASTERS AND DEVELOPMENT (9 Hrs)

Factors affecting Vulnerabilities, differential impacts, impact of development projects such as dams, embankments, changes in Land-use – Climate change adaptation – IPCC scenario and Scenarios in the context of India.

UNIT IV DISASTER RISK MANAGEMENT IN INDIA (9 Hrs) Hazard and Vulnerability profile of India, Components of Disaster relief – Water, Food, Sanitation, Shelter, Health, Waste management – Role of GIS and Information technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment.

UNIT V DISASTER MANAGEMENT:

APPLICATIONS AND CASE STUDIES AND FIELDWORKS

Landslide Hazard Zone - Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure – Drought Assessment - Case studies – Coastal Flooding – Storm Surge Assessment – Floods - Fluvial and Pluvial Flooding - Case studies – Forest Fire - Case studies – Man Made Disasters - Case studies.

(TOTAL: 45Hrs)

Text Books

1. Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13:978-9380386423

2. Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education

Pvt.Ltd., 2012. ISBN-10: 1259007367, ISBN-13: 978-1259007361

3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011

4. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010.

References:

- 1. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005
- 2. Government of India, National Disaster Management Policy,2009.

Designed by: "Department of Mining Engineering

DEPT OF MINING ENGINEERING

(9 Hrs)

(9 Hrs)

PROG	RAM							BE-M	ining Er	gineerin	g				
Course	e Code:									L	Τ		Р		С
UBMN	405		Co	urse Na	ame:					3	0		0		3
			IN	FRODU	JCTIO	N TO									
			PE	TROLE	EUM E	NGINI	EERIN	G							
			I												
Year a	nd Sen	nester		II	Year (I	V Sem	ester)			(Contact	hours	per we	ek	
Prereq	uisite c	ourse			l	NIL			1			(3 Hrs)		
Course	e categ	ory	H	umaniti	es and	N	lanagen	nent	Pro	ofessiona	al Core	P	rofessio	nal Elec	etive
		-	S	ocial Sc	ences		course	S							
				· · a											
				Basic Sc	ience	Ľ	ingineei Scienc	ring	U	pen Ele	ctive		Mar	idatory	
							Juin	.c							
						1						- 1			
Course	e Obje	ctive		1. Ex	plain th	e physic	cal and	chemic	al prope	erties of	oil				
	5			2. De	scribe tl	he types	s of wel	ls and i	ts limita	ations					
				3. Illu	strate t	he rock	propert	ies obta	ined fr	om core	sample	es for oi	1		
				4. D18	cuss the	e metho	ods used	l to pro	duce oil	from w	vell				
				$\begin{array}{ccc} 5, & \mathbf{Ex} \\ 5, & \mathbf{Da} \end{array}$	plain the	e non-te	echnica.	l operat	10ns per	formeu	in wei	recorno			
			Δt f	$\frac{0}{100} \text{ De}$	f the cou	rse the	oration	uill be a	ble to	n or per	roleum	reserve			
Course	Outor	mo	Fit u	1. De	scribe a	hout oil	indust	viii oc u V	010 10.						
Course	2 Outco			2. Ex	olain ab	out Sur	face str	uctures							
				3. Sui	nmarize	e about	Underg	round c	oil						
				4. Illu	strate a	bout ma	achines	used in	oil indu	ıstry					
				5. Ide	ntify the	e potent	ial envi	ironmen	ital imp	acts of o	oil Indu	stry			
				6. De	scribe th	ne role o	of oil pr	oductio	n in eco	onomy o	of a cou	ntry.			
DOG	T	1		1			T	1	T	T	1		1		1
POS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	POS	POQ	PO1	PO1	PO1	PSO	PSO	PSO
cos	101	102	105	104	105	100	10/	100	107	0	1	2	1	2	3
CO1	2	1		2		3		1		2		3	2		3
CO2	1		2		2		3	2		2	1		3	2	
CO3		2		3	2		1		2		3	2	1		3
CO4	2		3		2			2		3		2	2		
CO5	1	2		3		2	2		3		2	3		2	
CO6	2		1		3		2		3		2	2	2		
Aver	2	1.6	2	2.6	2.2	2.5	2.3	2.3	2	2.5	2.3	2.2	2.2	2	
age	<u> </u>			1 (1) 1								2.5.1			l
Correla	ation Le	vels	174 D	1.Sligh	nt(Low)	1 4	1172 4	2.Mod	lerate(M	edium)		3.Subs	stantial(H	High)	
KL-Ki	nowledg	ge Level	:K1-Re	member	,K2U1	iderstai	1d,K3-A	Apply,K4	4-Analy	se,K5-E	valuate	,K6-Cre	ate : Po	J-Progra	ame
	nne: ourse O	utcome	·PSO-P	Program	e Snecif	ic Outco	ome								
00 0	ourse o	accome		i ogi ani	e opeen		onne								

UNIT-I INTRODUCTION

Chemistry of petroleum. Structure of petroleum compounds. Types – alkanes, Naphthenes, paraffins, aromatics. Physical and chemical properties of oil, gas and formation water.

UNIT II DRILLING A WELL

Drilling – History, types of drilling –cable tool, rotary, drilling rigs and components. Types of wells – exploratory, delineation, development wells. Vertical, deviated, inclined, horizontal and ERD wells. Drilling fluids, casing and cementation. Planning – GTO.

UNIT III FORMATION EVALUATION (10 Hrs) Formation Evaluation – cutting, cores, mud logging unit. Well logging, types of well logs their use. Sub surface correlation.

UNIT IV WELL ACTIVATION

Well Testing, perforation, testing methods, well completion production. Stimulation methods, recovery methods, Material balance, reserves estimation

UNIT V WELL SITE OPERATIONS

Wellsite operations, roles of drilling, reservoir and production hazards, environmental concerns transportation of oil and gas, oil pollution and control, petroleum economics

(TOTAL: 50 Hrs)

(10 Hrs)

TEXT BOOKS:

Geology of Petroleum – Leverson, A.L Formation Evaluation – Lynch Drilling Manual – ONGC Principles of oil Production – T.E.W. Wind

REFERENCES

Introduction to Petroleum Engineering – Geltin Designed by "Department of Petroleum Engineering"

(10 Hrs)

(**10 Hrs**) anes. Napht

(10 Hrs)

PROG	RAM							BE-Min	ing Engi	ineering						
Course	e Code:							L		Τ		P		С		
UBMN4	4PA		Course	Name				0		0		2		1		
			GEOLO	GY PRA	TICAL-	Π		Ŭ		Ũ		-		-		
Voor	nd						T	[Voor	(IV So	mastar)						
Semest	ter						1	i i cai	(1 * 50	mester)						
Prerequ	uisite								NIL							
course																
Cours	se cate	gory		Hun	nanities	and	Mar	agemen	t	Profess	sional C	ore	Professi	onal El	ective	
				Soci	ial Scien	ices	C	ourses								
				Ra	sic Scier		Fno	incoring		Oper	V Floctiv	0	Me	ndator	7	
				Da	SIC SCIEL		S	cience	5	Oper	I LICCUV	C	1010	inuatory	, ,	
			1. I	dentifica	ation of	minera	ls									
Course	e		2.	Identific Descent	cation of	f ores	folda an	diainta								
Object	ive		5. 4	Measura	ment of	f din an	1010s and	u joints								
				Stereog	raphic p	roiectio	ons and	contour	maps							
			At the en	d of the	course th	ne stude	nt will be	able to:	.1							
Course	e Outco	me	1. Cla	1. Classification of minerals												
			2. Di	scussion	1 of roc	ks										
			5. Cla 4 Re	cognitic	aion of fai	ores ilts fol	ds and i	oints								
			5. Me	asurem	ent of d	ip and s	strike ep	lanation								
			6. Pro	eparation	nof Ster	eograp	hic proje	ections a	and con	tour ma	ps					
POS/	PO1	PO2	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1 2	PSO 1	PSO 2	PSO 3	
CO1	1	2		2		3			2	•		1	2		2	
CO2	2		2		3		2			3		2	2		2	
CO3		2		2			3		2		1		1	2		
CO4	3		2			2		3			2		2	2		
CO5	1	3		1		2		1		2		22		2	2	
CO6	2		1		2		3		22		1		2		2	
Aver	1.8	2.3	1.6	1.6	2.5	2.3	2.6	2	2	2.5	1.3	1.6	1.8	2	2	
Correl	ation Le	vels		1 Slive	t(Low)			2 Mod	erate(M	edium)		3 Sub		l Iigh)		
KL-K	nowledg	e Lev	el:K1-Ren	nember,	K2Un	derstan	d.K3-Ap	ply,K4-	Analyse	K5-Eva	luate,K	6-Creat	e: PO-F	rogram	e	
Outco	me:			,			/ I	1 57	·	,	,			8		
	ourse O	utcom	ne :PSO-P	rograme	Specifi	c Outco	me									
List of l	Experim	ents														

- 1. Identification of minerals
- 2. Identification of rocks
- 3. Identification of ores
- 4. Recognition of faults, folds, joints etc
- 5. Measurement of strike using Brunton compass and Clinometer
- 6. Measurement of dip using Brunton compass and Clinometer
- 7. Stereographic projections
- **8.** Contour Maps

TOTAL 24 Hrs

TEXT BOOKS:

Bateman, A.M., Economic Mineral Deposits, John Wiley and Sons, 1956.

Krishnaswamy, S. Indian Mineral Resources, Oxford and IBH Publication Company, New

Bell F.G., Engineering Geology, Elsevier Publications, 2007.

PROC	GRAM	[BE-Mir	ning Eng	gineerin	g				
Course	e Code	:							Ι		Т		Р		С
UBMC	CPG		Cours	se Nan	ie:			-	()	0		2		1
			STRE	NGTH	I OF M	14755					Ű		-		-
							unts								
			LAD												
Veere	an d			II V.	an (IV	Carros				0	a reta at	1		-l-	
rear a	ina			II Y	ear (IV	Seme	ster)			C	ontact	nours	per we	ек	
Semes	ter				• • • •	т						(2 Hrs)		
Prereq	uisite				NI	L									
course	;				_										
Course	e categ	gory	Hum	anities	and	Ma	nageme	ent	Prof	essiona	l Core	P	rofessio	onal Ele	ctive
			Soci	al Scien	ces		courses								
			Bas	ic Scien	ice	En	gineerii	ng	OI	pen Ele	ctive		Ma	ndatory	
						•	Science								
Course	-			1 E	vnloin	Compr	ossion t	ost							
Object	5 			1. L 2 L	iscuss	various	test on	wood							
Object	live			2. D	escribe	Hardn	ess test	on met	ale						
				5. D 4 F	xnlain	double	shear <i>&</i>	torsio	n						
				5 D	escribe	the de	flection	limit c	n of beam						
			At the	end of th	ne cours	e the stu	ident wi	ll be abl	e to:						
Course	e Outco	ome	1.	Deter	mine th	e value	es of yi	eld stre	ss, brea	king st	ress and	d ultima	ate stres	ss of the	e given
Course	e Outer	JIIIC		specii	nen un	der tens	sion tes	t.		e					C
			2.	Expla	in the	procedu	ure to p	erform	Hardne	ess test	and fin	nding h	ardness	numbe	er with
				variou	is speci	mens									
			3.	Exper	riment	with D	eflection	on test	on Mi	ld Stee	l, Alur	ninium	to fin	d the y	oung's
				modu	lus.										
			4.	Deter	mine th	e modu	ilus of i	rigidity	of Mile	l steel ı	ising to	rsion te	st		
			5.	Identi	fy the s	stiffnes	s of the	open co	oil and	closed	coil spr	ing and	grade	hem.	
			6.	Expe	iment v	with giv	ven spec	cimen t	o find t	he com	pression	n streng	gth and	fatigue	
				streng	gth and	impact	strengt	h of ma	terials						
DOGY							-			DO1	DO1	DO1	DCO	DCO	DEC
POS/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9		1 POI	PO1 2	PSO 1	PSO 2	PSO 3
C01	ર	ર	3	ર					ર	v	-	<u>~</u> 2	<u>ר</u> ג	- 2	
	2	2	2	2					2			्र २	्र २	2	└───┤
<u>CO2</u>	2	2	2	2					2			2	2	2	
CO4	े २	2	2	<u>२</u> २					2			ך ר	ך ר	2	
C05	2	2	2	2					2			2	2	2	
C05	2	2	2	2					2			2	2	2	
Aver	<u> </u>	2	2	<u> </u>					3			3	3		
age	2.7	2.5	2.5	2.5					3			3	3	2.3	
Correla	ation Lev	rels		1.Sligh	t(Low)			2.Mode	erate(Me	dium)		3.Subs	tantial(H	igh)	

KL-Knowledge Level:K1-Remember,K2--Understand,K3-Apply,K4-Analyse,K5-Evaluate,K6-Create: PO-Programe **Outcome:**

CO-Course Outcome : PSO-Programe Specific Outcome

LIST OF EXPERIMENTS

- Tension test on mild steel rod 1.
- 2. Compression test on wood
- 3. Double shear test on wood
- 4. Torsion test on mild steel rod
- Impact test on metal specimen (Izod and Charpy) 5.
- 6. Hardness test on metals (Rockwell and Brinell Hardness Tests)
- 7. Deflection test on metal beam
- 8. Compression test on helical spring
- 9. Deflection test on carriage spring

REFERENCES

1. IS 432(Part I) – 1992 – Specification for mild steel and medium tensile steel bars and hard drawn steel wire for concrete reinforcement.

Designed by	" Department of Mining Engineering"

(24 Hrs)

PROGRAM	BE - 1	Mining Er	ngineerin	g											
Course Code	Cours	e Name :					L	1	[Р		С			
UBLECPE	Soft S	kills-IV					0	0)	2		2			
	-														
Year and Semester	II Yea	r (IV Sei	nester)			C_{C}	o <mark>ntact h</mark> o 2 Hrs)	ours per	week						
Prerequisite	SOFT	SKILL-I	II			(-									
course	2011														
Course category	(General	Fo	oundation	n		Core	/		Ele	ctive				
							Professi	onal							
		-		-			C- 1	4			-				
Learning	a	b	с	d	e		f	g	h	1	j	k			
outcome	~	´				✓				✓					
Mapping of															
Instructional	15				1	5				15					
loarning	1-5				1-	.5				1-5					
Outcome															
Aim / Purnose		Toms	ke the s	tudents	to le	arn	the cor	norate	culture	and ma	ster the	<u>ــــــــــــــــــــــــــــــــــــ</u>			
Affin / Turpose		profes	cional a	thiog		am		porate	culture		Ster th				
of the course	Б	protes	sional e	unes obiovo (hain	~ ** ~	onizoti								
Instructional	P Stude	Prepare them to achieve their organizational goals dents will be able to													
instructional objective of the		lents will be able to Improvise on the usage of grammar and vocabulary in all circumstances													
objective of the	1	lents will be able to Improvise on the usage of grammar and vocabulary in all circumstances													
course	2	To carry	/ onesen	r expres	sing	bei	navioral	etnics		•					
	3	To colla	borate v	with ind	1V1du		such as	to impi	rove pr	onuncia	t10n				
	4	To disti	nguish t	between	stand	dar	ds and 1	illustrat	e a cha	inge in l	istening	g and			
		speaking	g skills.												
	5	Formula	ating and	d applyi	ng va	aric	ous forn	ns of w	ritten c	ommuni	ications	s that			
		are learn	nt.												
	6	Actively	/ partici	pate in t	the cl	lass	s and un	derstan	id conc	epts. W	ill be re	eady			
		to hand	e large	groups	witho	out	any fea	r							
	At the e	end of the o	course the	student	will be	e ab	le to:	1 •	11 1		•				
		1.	Develop	vocabi	ulary	an	d langu	age ski	lls rele	vant to e	enginee	ering as			
			a profes	sion			<u>.</u>				C 1				
		2.	Analyze	e, interp	ret ar	nd e	effectiv	ely sum	imarize	e a varie	ty of te	extual			
Course			content					_							
Outcome		3.	Organiz	e a giv	en te	chr	nical/no	n-techn	ical to	pic in a g	group s	setting			
			and arri	ve at ge	neral	ıza	tions/co	onsensu	IS						
		4.	Illustrat	e the E ort	ngıne	eeri	ing activ	vities w	ith effe	ective pr	esentat	tion			
		5.	Develor	varioi	is nei	rso	nality sl	kills to	groon	n in pro	fessior	n			
		6.	Analvze	e profes	sion	al a	and tech	nical de	ocume	nts that a	are clea	r and			
		0.	adhering	p to all t	the ne	ece	ssarv de	ocumen	ts						
L			aunoring	5 10 un 1			soury u	Jeamen							

POS/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO	PSO
COS	101	102	105	104	105	100	107	100	10)	1010	1011	1012	1	2	3
CO1						2		2	1	2		2			
CO2						2		2	1	2		2			
CO3						3		2	2	3		3			
CO4						3		2	2	3		3			
CO5						2		2	1	2		2			
CO6						3		2	2	3		3			
Aver															
age						2.5		2	1.5	2.5		2.5			
Correla	ation Lev	vels		1.Sligh	t(Low)			2.Mode	erate(Me	dium)		3.Subs	tantial(H	ligh)	

KL-Knowledge Level:K1-Remember,K2--Understand,K3-Apply,K4-Analyse,K5-Evaluate,K6-Create : PO-Programe Outcome: CO-Course Outcome :PSO-Programe Specific Outcome

Training the students on basic grammar and foundation and laying the standard platform. A complete standard syllabus of Cambridge is used. The main part of the 1st semester is to cover the major tenses (Present tense, Present Continuous, Past Tense, Past Continuous, Present Perfect, and Present Perfect continuous.

UNIT II: PROFESSIONAL ETHICS

How to address the gathering, people, authorities, open forum, how to conduct the meetings, huddle, calibration. Learning about organizational behaviors, achieving organizational goals, nurturing professional integrity.

UNIT III: INTERACTIVE ENGLISH

(Unit 9 to Unit 16)

Second level: The main objective is English for International communication. It course contains conversations, snapshots, readings, activities, a greater variety and amount of listening materials and more visuals to introduce vocabulary, more opportunities to build fluency, and up-to-date art and design. The course covers the fours skills of listening, speaking, reading and writing, as well as improving pronunciation and building vocabulary.

UNIT IV: LISTENING AND SPEAKING

Basics of International listening, reading, writing and speaking skills.

UNIT V: WRITTEN ENGLISH

How to write memos, emails, short notes, drafting of letters, requesting leave, permission, reports, requisitions, approvals and indents.

TEXT BOOKS:

- 1. Essential Grammar in use- Raymond Murphy ,Cambridge , New Third Edition
- 2. Communication Skills

REFERENCE BOOKS:

1. New Interchange (English for International Communication) Jack C. Richards

Designed by "AMET CENTRE FOR IELTS"

DEPT OF MINING ENGINEERING

8 Hrs

8 Hrs

8 Hrs

TOTAL: 40 PERIODS

10 Hrs

PROGR	AM							BE-M	ining E	Inginee	ering				
Course C	Code:								L]	[Р		С
UBMN5	01	Co RO	urse ľ CK ME	Name: ECHAN	ICS- I				3	0)		0		3
Year and	1		III Ye	ar (V S	Semes	ster)				(Contac	$\frac{1}{21}$	irs per v	week	
Prerequi	site			N	JIL							(51	115)		
Course Course category	,	Hu So	maniti cial Sc	es and iences	Μ	anage cours	ement	Pro	fessio	nal Co	re		Profess	ional H	Elective
		В	asic Sc	ience	E	ngine Scier	ering Ice	C	pen E	lective			Ma	andato	ry
Course Outcome	e	At t	the end 1. 2. 3. 4. 5. 6.	of the c Expl Anal Expl Expl Anal Anal	ourse t ain the lyze the lain the lain the lyze the lyze the lyze the	he stu e Tern e Pro e Mec e Cha he Pre he roc	dent wil dent wil ninolog perties hanical nge of l sence o k and i	l be ab rock a l be ab ties Us of Roc Parar Proper f Grou ts asso	le to: ed In eks neters ties wa ciated	assoc Rock I of Ro ith Re ater In prope	Mecha cks spect t Rock rties	unics o Tin Matr	n Kock I ties ne ix	watrix	
POS/ COS	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	P 01 2	PSO1	PS O2	PSO3
CO1	2	1		2	1		1	1		1	1		1	2	2
CO2	1		2		3								2	3	1
CO3	1	2		3		2	2						1	2	3
CO4	2	2	3	2			3						2	3	2
CO5		2			2					3	1	2			
CO6	1	1	2	2						2		3	2	2	2
Averag	2.2	2	2	3	2		2		3	1.8	2.1	2			
0	1														
e Correlati	on Lev	le		1 \$150	nht(I or	w) (Moder	ate(Ma	dium		3 5	hetant	ial(High)		

UNIT I INTRODUCTION

Definition of some important terms used in rock mechanics – Application of rock mechanics in mining – Introduction to stress analysis - stresses in 2D & 3D – Mohr's circle

UNIT II PHYSICAL PROPERTIES OF ROCKS AND ROCK INDICES 12 Hrs

Physical properties of rocks – Density, porosity, moisture content, permeability, water absorption – Various indices of rocks like swell index, slake durability index, impact strength index, protodynakov index, thermal conductivity, hardness, durability – Rock mass classification

UNIT III MECHANICAL PROPERTIES OF ROCKS

Preparation of test specimens, laboratory determination of mechanical properties of rocks – compressive strength, tensile strength, flexural strength, shear and triaxial strength, modulus of elasticity, Poisson's ratio, Mohr's envelope – Effect of various parameters on the strength of rocks, in-situ strength, post failure behavior of rocks

UNIT: IV ROCK MASS CLASSIFICATION

Engineering Rock Mass Classification: Tirzah's rock mass classification; Stand up Mine. Rock Quality Designation, Rock structure rating (RSR): Geo Mechanical Classification: Modifications to RMR for Mining: Uses of Rock Mass Classification Systems.

UNIT: V INDUCED STRESS

Stress around Undergoing openings, displaced caused by undergoing openings. Stress around circular openings, Radical Stress, Tangential stress, Radial Displacement, Tangential Displacement, Stress around semi circular Openings. **TEXT BOOKS: TOTAL: 60 Hrs**

Vutukuri, V.S., and Lama, R.D., Handbook on Mechanical Properties of Rocks, Vol. I, II, III and IV, Transtech Publication, Berlin, 1974/78.

1. Peng, S.S., Ground Control, Wiley Interscience, New York, 1987.

REFERENCES:

Obert, L. and Duvall, W.I., Rock Mechanics and Design of Structure in Rock John Wiley and Sons Inc., New York, 1967.

Designed by "Department of Mining Engineering"

12 Hrs

12 Hrs

12 Hrs

PROG	RAM						E	BE-Minin	g Engine	eering					
Course	Code:								L	Т		Р		С	
UBMN	502		Course	Name:					3	0		0		3	
			SURFAC	E MININ	٩G										
			I												
Year a	nd		I	II Year	(V Sei	mester)				Cont	act hou	irs per v	week		
Semest	ter										(3H	Irs)			
Prerequ	uisite				NIL										
course				• • •						10					
Course	catego	ory	Human Social	ities and Sciences	L	Manage	ement	Pro	ofessiona	al Core		Profes	sional E	lective	
			boeiur	Sciences		court			1	/					
			Basic	Science		Engine	ering	()pen Ele	ective		Ν	Iandato	ry	
						Scien	ice		-						
			1 D.C.	1		•	1	.c	•						
Course	•		1. Define 2 Spec^2	ie the te	actors a	ffecting	the site	selectio	ning						
Objecti	ive		2. Spec	ribe the	operational operation	ons need	led in si	pecial co	ndition						
			3. 2050		operation		ieu m sj	eenar ee	mannon						
			At the end	l of the c	ourse the	e student	will be	able to:							
Course	Outco	me	1. E:	xplain tl	he Term	inologie	es Used	in Surfa	ce Mini	ng					
			2. D	iscuss the	te Desig	gning &	Plannin	ig of Lay	yout						
			3. D	escribe	the Fact	ors Alle	cung u	le Sile S	election	L					
			5. U	nderstar	nd the O	peration	is Need	ed in Sp	ecial Co	ondition	\$				
			6.Apply	the surfa	ace minii	ng operat	ions.	ou ili op							
			6.												
POS/	PO1	PO	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO 1	PSO 2	PSO 3
C01	2	1		2		3		1		2	1	3	2	2	2
CO2	1		2		2		3	2		2	1		3	2	
CO3		2		3	2		1		2		3	2	1		2
CO4	2		3		2		3		2		3		2	2	
CO5	1	22		3		2		2		3		2	3		2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								2		3		2	22	2	2
Aver 2 1.6 2 2.6 2.2 2.5 2.3								2.3	2	2.5	2.3	2.2	2.2	2	2
age															
Correla	ation Lev	vels		1.Sligh	nt(Low)			2.Mod	erate(Me	edium)		3.Subs	stantial(H	ligh)	
KL-Ki	nowledg	e Lev	el:K1-Rem	ember,I	K2Und	erstand,	,КЗ-Арр	oly,K4-A	nalyse,K	K5-Evalu	ate,K6-	Create :	PO-Pro	grame	
	me: ourse Oi	utcom	ne •PSO-Pr	ograme	Specific	Outcom	ie								
				~ 5 . unit	~peeme	Jucoli									
	-														
UNIT I	INTRO	DUC	TION												
	Ganara	l info	rmation or	d ·	Jacoffica	tion of	Curt	non min	ing m	othodo	~	sociated	torms		
	Genera	1 1110	mation an	u (Jassinca	uon of	Surfa	ace min	ing m	eurous	- as	sociated	terms,		

determination of major dimensions and main parameters – Annual production and life of mine – Surface mining methods - Scope, applicability and limitations.

UNIT II BASIC LAYOUTS

Layout planning for horizontal, inclined and steep deposits – Factors influencing the choice of layouts – Design of benches

UNIT III OPENING UP OF DEPOSITS

Box cut - Objective, types, parameters, methods – Factors affecting selection of box cut site – Production benches - formation, parameters and factors affecting their selection

UNIT IV PREPARATION FOR EXCAVATION

Ripper - Types, classification, applicability and limitations – Method and cycle of operation – Estimation of output – Concept of rippability – Estimation of number of drills required for a given mine production

UNIT V SPECIAL MINING SITUATION

Quarrying of dimensional stones – Hydraulicking – Dredging of placers – Mining over old underground workings.

(Total: 50 Hrs)

Text Books :

- 1. Kennedy, B.A., Surface Mining 2nd Edition, SME, New York, 1990.
- 2. Hartman H.L., Introductory Mining Engineering, John Wiley and Sons, 2002.

Reference Books :

- Hartman, H.L. (Ed.), SME Mining Engg. Handbook Vol. I and II, Society for Mining, Metallurgy, and Exploration, Inc., 3rd edition, 2011.
- 2. Mishra G.B., Surface Mining, Dhanbad Publishers, Dhanbad, 1990.
- 3. Pfleider, E. P, Surface Mining, 1st Edition, New York, 1968.
- 4. Rzhevsky V., Open pit Mining Operations, Mir Publications, 1971.
- 5. Das, S.K., Surface Mining Technology, Lovely Prakashan, Dhanbad, 1994.

Designed by: Department of Mining Engineering

PROG	RAM							BE-Mi	ning En	gineerin	g				
Course	e Code	:							L	Τ		Р		(2
UBMN	N503		Cou	irse Na	ame:				4	0)	0			3
			SUB	SURFA	ACE MI	NING F	FOR								
			COA	L											
X 7	1		T	TT X7	(31.0		<u> </u>			0	1		1		
Y ear a	ind		1	II Yeai	(V Se	emester	()			Coi	itact h	ours pe	er week	C C	
Semes	ter				NIT	т					('	Hrs)			
Prereq	uisite (course	II	nonition	INI.			4 D	nofocie	mal Car		Ducf	actional	Floativ	
Course	e categ	gory	Soc	ial Scie	nces		agemen urses	ι r	roressio		re	Prol	essionai	Liecuv	e
										\checkmark					
			Ba	sic Scie	nce	Engi	neering	5	Open l	Elective			Manda	tory	
						Sc	ience								
G	01.1		1.	Illust	rate Co	al Min	ing and	its geo	logical	seam s	tructur	e			
Course	e Obje	ctive	2.	Desc	ribe Bo	ora ana	pillar m	thods	- develo	opment					
			3. 4	Desc	ribe co	ntinuou	s and c	velie m	ethods	of extr	action				
			5.	Unde	erstand	the roc	k and it	s assoc	iated p	ropertie	s				
									I	1					
			At th	e end of	f the cou	irse the	student	will be a	able to:						
Course	e Outco	ome	2	Dese	l.	Illust	rate Co	al Mini	ng and	its geo	logical	seam st	tructure	;	
			2.	Desc	ribe Bo	ora ana	pillar m	thods	- develo	opment					
			3. 4	Desc	ribe co	ntinuou	is and c	velie m	ethods	of extr	action				
			5.	Expla	ain the	rock an	d its as	sociate	d prope	erties	action				
			6	. Dise	cuss t	he coi	mplet	e deta	ils of	sub si	urface	minir	na for	coal.	
DOG															
POS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
COS	101	101	1 00		100	100	101	100	107	0	1	2	1	2	3
CO1	2	1		2	1								1	2	2
CO2	1		2		3								2	3	1
CO3	1	2		3		2	2						1	2	3
CO4	2	2	3	2			3						2	3	2
CO5	2		3		2			2					3	1	2
CO6	1	1	2	2		-	-	-		2		3	2	2	2
Ave	1.5	1.5	2	2.2	2	2	3	2		2		3	1.8	2.1	2
Correl	ation I 4	vels		1 Sligh	nt(Low)			2 Mod	erate(M	[edium)		3 Sub	 stantial/	High)	
KI-K	nowled	ge Leve	l:K1-R4	emembr	r.K2	Underst	and K3	-Apply	K4-An	alvse K ^r	5-Evalu	ate.K6-	Create	• PO-	
Progr	ame Ou	itcome:				c nuci și		·			. Lyaiu		Jican	0-	
CO-C	ourse C	outcome	e :PSO-	Program	ne Spec	cific Ou	tcome								

UNIT I INTRODUCTION

History of coal mining – Coal resource and their geographical distributions – Coalification and factors affecting coalification process – Modes of accumulation of coal – Formation of coal – Occurrence and distribution of coal in various stratigraphic horizons – Coal seam structure and abnormalities – geological and other features of Indian coalfields.

UNIT II BORD AND PILLAR METHOD - DEVELOPMENT

Design and development of a district/panel - sizes and shapes of galleries and pillars

- bord and pillar, room and pillar methods - with conventional and continuous mining techniques with various equipment.

UNIT III BORD AND PILLAR METHOD - EXTRACTION

Pillar extraction – Caving and stowing methods – Mechanized extraction of pillars – shaft pillar extraction – systematic supports – surface, underground and face arrangements for stowing – Partial extraction.

UNIT IV LONGWALL METHOD (10 Hrs) Advance and retreat methods – continuous and cyclic systems – extraction with different

machines – ploughs, shearers – design of longwall workings – optimum length of face, size of panel, gates, support system, personnel, organisation and safety measures, salvaging and relocations of equipment – Punch longwall.

UNIT V SPECIAL METHODS OF WORKING

Problems of working thick & thin seams – multi slices – sublevel caving – horizon mining – gallery blasting method – contiguous seam working – working steeply inclined seams – working under surface structures and seams liable to spontaneous heating – outburst and bumps – Hydraulic mining – Wongawalli – shortwall – highwall mining – Underground coal gasification – coal bed methane – shield mining.

(TOTAL: 50 Hrs)

TEXT BOOKS:

- 1. Singh, R.D. Principles and Practices of Modern Coal Mining, New Age International (P) Ltd., Chennai, 1994.
- 2. Peng S.S., and Chiang, H.S., Longwall Mining, John Willey and Sons, New York, 1992.

REFERENCES

Singh, T.N. Singh, Underground Winning of Coal – Oxford & IBH Publishing Co. Ltd., 1992.
 "Designed by "Department of Mining Engineering"

(10 Hrs)

(10 Hrs)

(10 Hrs)

(10 Hrs)

Course UDMN:	e Code: 504		Course Undergr	Name: ound	: Mining	g for m	etals	L		T 0	I ()		C 4	
Year Semes Prereq	ter uisite	and	II	I Year	(V Se	mester)	-		С	ontact h (·	ours pe 4Hrs)	r week		
Course	categ	ory	Human Social	ities an Science	d N s	lanager course	nent es	Profe	essional	Core		Profe	essional	Elective	
			Basic	Science	I	Enginee Sciene	ring ce	Ор	en Elec	tive		1	Mandato	ory	
Course Object Course	ive	me	 De De De Di Di Di 	efine the escribe scuss the scuss the escribes At the er 1. 2. 3. 4. 5. 6	e termin the layo ne recen ne vario the me explair Illustra Descril Explain Discus	nologie out usin nt advan ous met ethods u e course n the te the the c be the the s the re	s used i ag stopi: ncemen hods of used in the stud rminolo lesign p ayout u urious n cent ad nethods	n metal ng ts in m f stopin mineral ent will ogies us procedu sing sto nethods vancem	I minin ining a g l exploi be able sed in r re for a oping of stop nents in n mine	g nd its ac itation to: netal min mine bing mining cal expla	lvantages ning	advantag	es		
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 1 2										3					
CO2	1				2			3							
CO3	03 1 2								3						
CO4		1			2			3							
CO5	1	1 2								3					
CO6															
Avera ge	0.5	0.3	0	0	1	0	0	0.5	1	1	0	0	0	0	0

Correlation Levels	1.Slight(Low)	2.Moderate(Medium)	3.Substantial(High)
KL-Knowledge Level:K1-Reme	mber,K2Understand,K3-Apply,	K4-Analyse,K5-Evaluate,K6-Create	e : PO-Programe Outcome:

UNIT I INTRODUCTION

Metal mining Terminology - Typical modern metal mine features - Exploration - estimation of block wise and mine wise reserves and actual production - typical pre-stoping ore block constructional features - classification of mining/stoping methods.

(9 Hrs)

UNIT II GENERAL MINE DESIGN

Mode of mine and stope entry - Layouts - Determination of optimum production level - sequence of extraction production scheduling – Basic design – Level Intervals, ore pass, common ore pass, size of blocks ore handling in stope and other openings - overview of constructional features - X cuts, Raises, Winzes.

UNIT III STOPING - GENERAL CONCEPTS

Techno-economic characteristics impacting choice of method - typical unit cost parameters - Optimum size of a mine and slope - stope layout, design, equipment selection - preparing a stoping block - organization - production cycle - unit cost calculation - comparison of methods and costs.

UNIT IV STOPING METHODS

Unsupported methods - Stope and pillar, room and pillar, shrinkage, sublevel stoping - Supported stoping - cut and fill, stull, square set - Caving methods - Top slicing, sublevel caving, block caving, case studies of indian and foreign underground metal mines - Comparison of various methods of stoping and costs.

. UNIT V ADVANCEMENTS AND SPECIAL APPLICATION

Hydraulic mining – slurry mining – solution mining – nuclear mining – Rapid excavation – Radial – axial splitter – Thermal fragmentation – shock wave breaking – Deep mining – narrow contiguous veins – Shaft and remnant pillars – VCR – Ring drilling – Large Blast hole stoping.

TEXT BOOKS:

- 7. Hartman, H.L., Introductory Mining Engineering, John Wiley and Sons, New York, 1987.
- 8. Hustrulid, W.A. Ed., Underground Mining Methods Handbook Society of Mining Engineering, AMIE, New York. 1990.

REFERENCES:

1. BICCARD J C, Gold mining in Witwatersrand, The Transvaal chamber of mines, Volume I, II, 1946

Designed by "Department of Mining Engineering

(Total: 45Hrs)

(9 Hrs)

(9 Hrs)

(9 Hrs)

(9 Hrs)

PRC	OGRA	М						BE- N	lining Ei	ngineerin	g				
Cou LIBN	rse Co	de:	C	Course N	Name:				L 3	T		P		C 3	
	VII (30)	5	R	Rock exc	cavatio	n Engi	neering	Ŗ	5	0		0		5	
Yea	r and S	Semester		III Y	Zear (V	SEME	STER)			Con	itact ho	ours per	week		
Cou	rse ca	tegory	•	Humanit	ties and	Man	nagemer	it H	Professio	nal Core	(3	Profes	sional E	lective	
				Basic S	cience	Eng	gineering cience	g	Open E	lective		N	\/ Iandato	ry	
Cou	rse O	tcome	A	1. St 2. St dt 3. St 4. St 5. R dt t the end 1. U 2. E: 3. D 4. R se 5. D 6. St	tudy abo tudents cilling te tudents opraisal tudents equence ecent d fferent of the co nderstar xplain al escribe ealize the equence. iscuss th tudents l	but Ore must 1 echnique should of mini enhance and bla levelopn scenario urse the d the ec- bout var the proc le impor	and ecc cnow a es durir have ba ng proj e their st desig ments i os are st student v conomic ious the luction tance o rn trend	onomic bout C ag expla asic kn ects du knowle gn calcu in surf <u>audied l</u> vill be a block geotec and equ f variou s in open nt adva	block n Dre rese oration. owledge ring fea edge on ilations. ace min <u>oriefly.</u> ble to: model in hnical p ipment us explose encast m ncement	nodel an erve est sibility s differe ning mo n manual parameter planning sives, in tines.	d ultim imation break e studies. nt expl ethods and co rs role i g openca itiators	ate pit l n techn even ana losives, and th mputer i n slope i ast mine and sign	imit ca iques a ilysis a initiato eir app method stability s nificanc	lculation and diff nd econ ors, initi plicabili s , e of init	ns. Ferent ation ty in
S/ S	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
1	3		3		1		2					1	2		1
2	2				2		1	3					3	2	
3	3		3			_	2	2	_	2		1	2		3
4	23		3		2		2	3	_			1	5	2	2
												1	1		4

Avera															
ge	2.17	0.33	1.50	0.50	1.00	0.17	1.33	1.33	0.00	0.83	0.33	0.50	1.67	0.67	1.17
Correl	elation Levels 1 Slight(Low						2 Mode	erate(N	[edium`)	3 Subst	tantial()	High)		

KL-Knowledge Level:K1-Remember, K2—Understand,K3-Apply, K4-Analyse, K5-Evaluate, K6-Create; PO-Programme Outcome; CO-Course Outcome ;PSO-Programme Specific Outcome

UNIT -I: Pit Planning

Development of economic block model; Pit cut-off grade and its estimation; Ultimate pit configuration and its determination – hand method, floating cone technique, Lerchs-Grossmann algorithm, and computer assisted hand method. Addition of haul road on pit plan; Pit layouts. Open-pit optimization techniques for mine geometry and output, mine development phases, quality control Output and manpower planning; calendar planning, mine scheduling, production scheduling, truck dispatch system; Feasibility Report, DPR-contents and preparation. (9 Hrs)

UNIT -II: Geotechnical Parameters

Influence of pit slope on mine economics; High wall slope stability analysis and design methodology; stability analysis and design methodology for waste dumps; Application of geotechnical investigation for design of ultimate pit slope and other design parameters. Numerical problems on slope stability analysis including mine waste rock dumps and tailing dumps.

UNIT -III: Production and Equipment Planning

Determination of mine size and sequencing by nested pits; Cash flow calculations; mine and mill plant sizing; Production scheduling. Stockpiling and blending, Spreaders and Reclaimers; computerized truck dispatch.

Selection of mining system vis-à-vis equipment system; Computations for the capacity and number of machines vis-à-vis mine production. Machine availability, productivity, maintenance scheduling, preventive maintenance, control and monitoring inventory. Workshops for HEMM. Power supply arrangements in opencast mines.

UNIT -IV: Health, Safety and Environmental Management

Occupational health hazards due to mine dust, poor lighting and ventilation, noise and vibration, radioactive emission; Impact of surface subsidence; Accidents in Surface mining and their prevention; Sources of water, assessment of drainage requirements, sump design and drainage patterns - pumping systems. Pre-drainage through diversion channels and boreholes; Water pollution, Methods of reclamation of mined out areas, dumps and tailing ponds, environmental audit. Socio-economic factors in surface mines.

UNIT -V: Modern Trends in Opencast Mines

Recent developments in mining methods and layouts. In pit crushing & conveying, continuous surface mining. Selective extraction and dumping. Extraction of seams developed/extracted by underground methods. Deep Open pit Mining; Placer mining and solution mining – scope of applicability, sequence of development and machinery; Closure of surface mines. **TEXT BOOKS :**

- 1. W. Hustrulid, M. Kuchta and R. Martin, Open Pit Mine Planning & Design.
- 2. Fundamentals of Open Pit Mine Planning & Design: Hustrulid, W. and Kuchta, M.
- 3. Surface Mining : Kennedy, B.A., 2nd Edition, SME, New York, 1990.
- 4. Surface Mining Technology, : Das, S.K., Lovely Prakashan, Dhanbad, 1994.
- 5. SME Mining Engg. Hand book Vol.I and II: Cummings, A.B. and Given, I.V., New York

REFERENCES:

- 1. SME Mining hand book I,II
- 2. S. k. Das Surface mining technology.

Designed by "Department of Mining Engineering

(9 Hrs)

(9 Hrs)

(9 Hrs)

(9 Hrs)

PROG	RAM						В	E-Minin	g Engine	eering					
Course	Code:		Methods	s of Exc	cavation	n and			L	Т		Р		С	
UBMN	507		Transpo	rt					3	0		0		3	
Year a	nd]	II Year	· (V Sei	mester)				Cont	act hou	rs per v	week		
Semest	ter					,					(3H	Irs)			
Prerequ	uisite				NIL							,			
course															
Course	e categ	ory	Human	ities and	1	Manage	ment	Pro	ofessiona	al Core		Profes	sional E	lective	
			Social	Sciences		cours	es								
			Basic	Science		Engine	ring	6	nen Ele	ective		N	Iandator	۴V	
			Dasie	Science		Scien	ce		pen ER	cuve		1	Tanuator	y	
C			1 Defi	ne the tu	mes of t	ransnort	ation of	mineral	ore						
Course) 		2. Desc	ribe the	batch p	rocess o	f excava	ation of	a rock						
Objecti	ive		3. Expla	in the m	nethods	used in o	channel	ing of ro	ck						
			4. Discu	iss the ca	alculatio	on of pro	oduction	by vari	ous met	hods					
	5.Describe the step-wise process							sportati	on of m	ineral					
	At the end of the course the stude							able to:							
Course	Outco	me		xplain th	ne Term	inologie	s Used	in Surfa	ce M1n1	ng					
			2. E	xpiain tr	le Desig	gning & rs Affec	Plannin ting the	g of Lay	oul						
			3. D 4. D	escribe	the Exc	avate the	e Mine l	Reserve							
			5. E	xplain th	ne Opera	ations N	eeded in	n Specia	l Condi	tions					
	r	-	6.Illusti	rate the s	urface m	ining ope	erationS	_	n		1	1	1	1	
POS/ COS	PO1	PO	2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	2	1		2		3		1		2		3	2		2
CO2	1		2		2		3	2		2	1		3	2	
CO3		2		3	2		1		2		3	2	1		2
CO4	2		3		2		3		2		3		2	2	
CO5	1	22		3		2		2		3		2	3		2
CO6	2		1		3			2	-	3		2	22	2	2
Aver	2	1.6	2	2.6	2.2	2.5	2.3	2.3	2	2.5	2.3	2.2	2.2	2	2
Correls	ation Lev	vels		1 Slieł	t(Low)			2 Mod	erate(Me	edium)		3 Sub		l ligh)	1
KL-K	nowledg	e Lev	el:K1-Rem	ember.	X2Und	erstand.	K3-Apn	lv.K4-A	nalyse.K	5-Evalu	ate.K6-	Create :	PO-Pro	grame	
Outco	me:	,• •				,							10110	8	
CO-Co	ourse O	utcom	ne :PSO-Pr	ograme	Specific	Outcom	e								
UNIT	Γ Ι ΙΝΤΙ	RODI	UCTION							(10) Hrs)				
	Ма	dos of	avanuation	and tran	nortatio	n Cuel	ia aant	inuous	somi as	ntinuouo	Soron	2 50			
	10100	les of	excavation	and tran	sportatio	m – Cycl	1c - cont	muous –	semi-co	nunuous	– scrape	51 S			
-doz	ers – co	IVEVO	18.												

UNIT II CYCLIC METHODS OF EXCAVATION (10 Hrs) Shovel-dumper operation – Applicability and limitations of electric shovel – hydraulic

excavators and dumpers – Cycle time and productivity calculation for shovel and dumper – Estimation for equipment required for a given mine production – Dragline operation - Applicability and limitations

- different modes of operation - Side cast diagram and calculation of reach - Cycle time and productivity calculation -

Calculation of required bucket capacity for a given handling requirement.

UNIT III CYCLIC METHODS OF TRANSPORT

Scrapers, Dozers, Front-end-loaders – Applicabilit And limitations Types and classification – Method and cycle of operation. (10 Hrs

UNIT IV CONTINUOUS METHODS OF EXCAVATION & TRANSPORT

Bucket wheel excavators – Applications and limitations – Types and principles of operation – Operational methods – half block method, full block method – Calculation of productivity – Continuous surface miners – Types, Applications and limitations, principles of operation – Operational methods – full bench method, block mining method, stepped cut method, empty travel back method, continuous mining method – Conveyors – Shiftable and high angle conveyors – Mode of operation – applicability and limitations – Merits and demerits of conveyor as a system of transportation.

UNIT V SEMI-CONTINUOUS METHODS OF EXCAVATION & TRANSPORT (10 Hrs) Continuous excavation and partly/fully cyclic transport system – Different methods and

applicability & limitations – Cyclic excavation and partly/fully continuous transport system – Different in-pit crushing and conveying and their respective applicability & limitations.

(TOTAL: 50 Hrs)

TEXT BOOKS:

- 1. Kennedy, B.A., Surface Mining 2nd Edition, SME, New York, 1990.
- 2. Hartman H.L., Introductory Mining Engineering, John Wiley and Sons, 2002.

REFERENCES:

1. Hartman, H.L. (Ed.), SME Mining Engg. Handbook Vol. I and II, Society for Mining, Metallurgy, and Exploration, Inc., 3rd edition, 2011.

Designed by Department of mining engineering

(10 Hrs)

PROGR	AM							F	BE-Min	ing Engi	neering				
Course C	Code:								L		Т		P		С
UBMN508	8									3	0		0		3
			MINER	AL R	ESOU	RCES	S OF I	NDIA		5	U		U		5
					/	~					~				
Year and	l			III Y	ear (V	Seme	ester)				Co	ntact ho	urs pe	er wee	k
Semester	r •,				NI	т			_			(3	Hrs)		
Prerequi	site				NI	L									
Course	ootogo		Huma	nitios a	nd	M	anagan	nont	T	Profession	nol Core		Pro	fossion	al Floctivo
Course	catego	bry	Social	Sciences a	ces	IVI	course	ent S	1	101055101		;	110	1055101	
			Basic	Scien	ce	Eı	ngineer	ring		Open E	lective			Man	datory
							Scienc	e			,				
							(1				1	. 111	•	1	
C					1. 1 2 1	Jetine	the pro	opertie	s of m	etallic ai	nd non-i	netallic	minera	als	
Course	_				2. 1	Discus	s the P	SU an	d its ro	le in mi	ning				
Objectiv	e				4. 1	Unders	tand t	he reg	ulatory	frame c	of miner	al author	rity in	India	
					5. I	Unders	tand th	ne disti	ribution	n of min	eral reso	ources in	India		
	_		At the en	d of the	e cours	e the stu	udent w	vill be a	ble to:	of motol	1:				~
Course	Outco	me				$\begin{bmatrix} \mathbf{L} & \mathbf{E} \\ \mathbf{L} & \mathbf{E} \end{bmatrix}$	plain u	ne proj	perties	of metal		non-met		Ineral	S
					4	$\begin{array}{ccc} 2. & \mathbf{E}\mathbf{x} \\ \mathbf{x} & \mathbf{E}\mathbf{x} \end{array}$	plain 1	the reg	ulatory	/ frame (of miner	ai autno	rity in	India	
					-	$\begin{array}{ccc} 5 & \mathbf{E} \mathbf{X} \\ 5 & \mathbf{E} \mathbf{X} \\ 5 & 5 \\ 5 \\ 5 & 5 \\ 5 \\ 5 & 5$	plain ti	ne PSU	$\int and 1$	ts role in	i mining	•	T. 1.		
					4	+. EX]	plain ti	he dist	ributio	n or min	eral res	ources ir	i India		
						$\begin{array}{ccc} \mathbf{D}, & \mathbf{E}\mathbf{X} \\ \mathbf{S} & \mathbf{E}\mathbf{Y} \\ \mathbf{S} & \mathbf{E}\mathbf{Y} \end{array}$	plain ti	he PSU	ine of i	ts role in	n mining	agulatin	r autha	rity	
					(J. LA	plantu				and its i	eguiating	g autilo	Лцу	
POS/	PO	DO	, PO	PO	PO	PO	PO	PO	PO	DOCO	DOLL	DOGO	PS	PS	PGOC
COS	1	PO	2 3	4	5	6	7	8	9	POI0	POII	PO12	01	02	PSO3
CO1	2	1		2		3		1		2		3	2		2
CO2	1		2		2		3	2		2	1		3	2	
CO3		2		3	2		1		2		3	2	1		2
CO4	2		3		2		3		2		3		2	2	
CO5	1									3		2	3		2
CO6	2		1		3			2		3		2	2	2	2
Averag	2	1.6	2	2.6	2.2	2.5	2.3	2.3	2	2.5	2.3	2.2	2.2	2	2

e															
Correlati	on Lev	els		1.Slig	ght(Low	7)	2.N	/loderat	e(Medi	um)	3.Subst	antial(Hi	gh)		
KL-Kno Outcome CO-Cou	wledge e: rse Ou	e Level:K tcome :F	X1-Rem PSO-Pr	nember rogram	;,K2U e Speci	Inderst	and,K tcome	3-Appl	y,K4-A	nalyse,K	K5-Evalu	ate,K6-0	Create	: PO-]	Programe
UNIT I UNIT II Financial a UNIT II National Explorati (JNARD) Health (N	Minera GOVI Ministr advisor I PUBI Alumin on Cor DC), N VIMH),	DDUCTI Ils – Phys ERNING ry of Min – Directo LIC SEC nium Con poration [agpur - I , Nagpur.	ON Sical pro- BODY les - Or or - Geo CTOR (npany] Limited Nationa	operties Y OF N ganisat Dogica C OMP Limitec d (MEC l Institu	s of mir IINER ional st l Surve ANIES l (NAL CL), Na tte of R	herals – ALS II ructure y of Ind & INS CO), B gpur ock Me	Metall N INDI – Cabi lia - Ino STITU hubane Jawaha echanic	ic and l A net mir dian Bu TIONS swar - rlal Ne s (NIR	Non-me nister – rreau of Hindus hru Alu M), Ko	etallic min Minister Mines. tan Copp minium I ar Gold I	(09 nerals – 1 (0 of state – (0 er Limito Research Fields, K	9 Hrs) Distributi 9 Hrs) – Secreta 19 Hrs) ed (HCL) a Develop farnataka	ion of n ry – , Kolka ment a - Natio	nineral ata - M nd Des onal Ins	s. ineral sign Centre stitute of Miners'
UNIT IV Occurren Industria pyrophyl UNIT V	MINI Ace - M I Miner lite – N META	ERAL R lineral fu als – Bar ⁄lica. AL MINI	ESOU iels - C ytes - H ERAL	RCES Coal & Kyanite RESO	lignite , andalı URCES	– Petro usite &	oleum - sillima	- Metal nite – I	lic Min Magnes	erals – B ite - Apa (09 I	auxite (tite & roo Hrs)	(0 Chromite ck phospl	9 Hrs) - Iron hate - T	ore - N °alc/ste	langanese ore - atite/
Occurrenc	e – Alu	minium	– Copp	er – Ste	eel – Le	ad – Zi	nc – G	old							
TEXT B REFERI 1. 2.	OOKS 1. NCI 2. S.Kı ENCES Geolog United	S: ERT E bo rishnaswa S: gical Surv States G	ooks on amy Ind vey of In eologic	mining lian mi ndia al Surv	g. neral re rey	esources	3								

Designed by "Department of Mining Engineering"

PROG	RAM							BEM	ning Eng	ineering					
Course	Code:								L		Т		Р		С
UBMN	ISPA		COUR	SE NAI	ME:				0		0		2		1
			DOCK	MECH			r								
			RUCK	MECH	ANIC	S LAB									
Year an	nd			III Ye	ear (V	Semeste	r)			C	Contact	hours p	er weel	K	
Semest	ter				NIII							(2Hrs)			
Prerequ	uisite				NII										
Course	categ	orv	Huma	nities ar	nd	Mana	gement		Professi	onal Co	re	P	rofession	al Elect	ive
Course	, eurog	01 9	Socia	l Science	es	cou	irses								
				<u> </u>						<u> </u>					
			Basi	c Science	e .	Engineer	ing Scie	nce	Open	Elective			Mano	latory	
				1	Analy	ze the Ha	rdness	of Rock							
Course	Objec	tive		2.	Deterr	nine the l	Porosity	of rock	S						
3. Illustrate the Impact S 4. The Water Absorption									ndex of	rocks					
				4.	The W	ater Abs	orption	In Rock	KS .						
				Э.	The T	ensne Su	ength n	I KOCKS							
			Student	s will be	able to	understan	d the								
Course	Outco	me		1.	Discus	s the Ha	ardness	Of Rock	K						
				2.	Discus	s the Po	rosity C ater Ab	Of Rocks	S In Rock	~ c					
				<i>3</i> . 4.	Explai	n the Ter	nsile Str	ength I	n Rocks	10					
				5.	Discus	s the Ve	elocities	Using	Non-Des	structive	e Testing	3			
DOC/		1		6.	Discus	s the Im	pact St	ength I	ndex of 1	rocks	DO1	DO1	DCO	DCO	DCO
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	0	1	2	PSO 1	PSO 2	PSO 3
CO1	2	1		2		3		2			1		2		1
CO2		2	2		1	2		2		1		2		2	2
CO3	2	2		3		1	2		2	3		2	2		2
CO4	2		3		2		2		1		1	2		2	2
CO5	1		3		2		2			2		2		2	
CO6	1	2	2.6	1	1.6	3	2	-	2		2		3		2
Aver age	Aver 1.6 1.7 2.6 2 1.6 2.2 2 age 1.6 1.7 2.6 2 1.6 2.2 2									2	1.3	2	2.3	2	1.8
Correla	ation Lev	vels		1.Sligh	nt(Low)			2.Mod	lerate(Me	edium)		3.Subs	tantial(H	ligh)	
KL-Kı	nowledg	e Leve	l:K1-Ren	nember,H	K2Un	derstand,	K3-App	ly,K4-A	nalyse,K	5-Evalu	ate,K6-	Create :	PO-Pro	grame	
	me:	uteomo		ogramo	Sneaifi	Outcom	A								
	Sur SC UI	acome	.150-11	ograme	Specifi		iC.								
															J
List of I	Experim	ents													

DETERMINATION OF

- 1. RQD of rocks
- 2. Protodyaknov index of rocks
- 3. Point load index strength of rock
- 4. Porosity of rocks
- 5. Water abosorption of rocks
- 6. Impact strength index.
- 7. Hardness of rocks by different methods
- 8. Uni-axial compressive strength of dry and water saturated rock samples
- 9. Tensile strength of rock using Brazilian test method
- 10. Flextural Strength of rocks
- 11. Tri-axial strength of rock and drawing of Mohr's envelope
- 12. Determination of longitudinal wave velocities of rocks using NDT
- 13. Determination of longitudinal wave velocities of rocks using NDT

Reference Books

- Vutukuri, V.S., and Lama, R.D., Handbook on Mechanical Properties of Rocks, Vol. I, II, III and IV, Transtech Publication, Berlin, 1974/78.
- 2) Peng, S.S., Ground Control, Wiley Interscience, New York, 1987.
- Hoek, E and Brown, E.T., Underground Excavations in Rocks, Institute of Mining Metallurgy, London, 1980.

PROG	RAM							BE	-Mining	Enginee	ring				
Course	Code:		MINI F	PROJEC	T				Ι		Т		Р		С
UBM	N5PB								()	0		4		2
Vear ar	nd			III Ve	ar (V S	SEMES	TER)				Conta	et hours	ner we	-k	
Semest	er		1				(1LR)				Conta	(2Hrs)	CK	
Prerequ	uisite				N	L						(21115	, ,		
course															
Course	categ	ory	Hum	anities	and	Ma	nageme	ent	Prof	essional	Core]	Professio	nal Elect	ive
		-	Soci	al Scier	ices	(courses								
		-	Bas	ic Scier	nce	En	gineeri	ng	0	pen Elect	tive		Mar	ndatory	
			200				Science		0						
~						1. Det	fine the	proble	m						
Course	•					2. Dis	cuss th	e facto	s influe	encing it					
Objecti	ive					3. Un	dersta	nd the p	principa	ls involv	ved				
4. Underst									problem	solving	procedu	ure			
						5. Un	dersta	nd the r	remedia	1 metho	ds.				
	_		After c	ompleti	on of th	e portion	1 studen	ts will b	e able to	o underst	and				
Course	Outco	me			1.	Explain Explain	the pi	roblem	fluonois	a it					
					2. 2	Explain	the rate	incipal	involv	ig it ad					
					З. Л	Explain Explain	the pr	oblem s	olving	eu procedu	ro				
					ч. 5	Explain	the rei	medial	method	s	ic				
					6.	Explain	the res	sult of t	he mini	project					
POS/															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	-	3	2	3	-	-	2	3	2	2	1	1
CO2	3	2	2	2	2	-	2	-	-	-	2	1	1	2	1
CO3	2	3	2	2	_	-	2	-	-	2	2	1	2	2	2
CO4	2	2	1	3	-	2	2	-	-	1	3	1	2	1	1
CO5	2	1	2	2	3	3	2	-	-	2	2	2	2	1	1
CO6	2	1	2	1	2	3	3	-	-	2	3	2	3	2	1
Aver							-						-	1	1
age	2.1	1.8	1.6	1.8	2.5	2	2.33	-	-	2.2	2.5	1.5	2	1.5	1.1
Corre	Correlation Levels 1 Slight(Low)									te(Med	ium)	3	Substa	ntial(Hi	gh)
KI_Kn	owledge	Level	K1.Rom	ember V	2Und	erstand I	Z3_Annl	v K4-Am	alvee K4	Fygluot	e K6-Cro	ate · PO	Program		/ e•
CO-Co	urse Ou	tcome :	PSO - P	rograme	Specifi	c Outcon	1e	.,	J		,•		- 8		
Design	ed By: 1	Departr	nent of]	Mining	Engine	ering									

PROC	GRAM		BE-Mining Engineering													
Cours	e Code	e:							L	T		Р			С	
UBM	N601		COU	RSE N	JAMF	<u>.</u>			3	0		0			3	
			ROC	K ME	CHAI	NICS II										
Year	and		III	YEAR	(VI S	SEMES	TER)				Conta	ct hour	s per v	week		
Seme	ster											(3H	rs)			
Prerec	juisite			Rocl	k mec	hanics-	Ι									
course	e															
Cours	e cate	gory	Hu	maniti	es	Mana	gemen	it I	Profes	sional		Pr	ofessi	onal E	lective	•
			and	d Socia	al	cou	rses		Co	re						
			Sc	ciences	5											
									V	/						
			Basi	c Sciei	nce	Engin	eering	g C)pen E	lectiv	e		Ma	ndato	ry	
						Sci	ence									
G					1.	Discu	ss the	various	s failui	e mod	e analy	ysis				
Cours	e				2.	Expla	in the o	design	param	ieters 1	n unde	rgrour	nd min	es		
Objec	tive				<i>3</i> .	Descr	ibe the	metho	ds & a	applica	ition o	f stowi	ing			
					4.	Under	rstand	the bas	SICS OF	hydrai	llic roo	ck mec	chanics	S Salama	ahania	<i>.</i>
			At th	a and a	$\frac{J}{J}$	Olidei	the stu	ule val	ill bo	able to	i phen	omeno		JCK IIIE	chanic	8
Cours		ome	At th	e ena (л ше 1	Discuss	the v	arious	failure	mode	'. analu	rie				
Cours	c Ouic	ome			2	Expla	in the	design	naram	eters i	n unde	ororour	nd min	65		
					2. 3	Descr	ihe the	metho	ods & :	annlica	ntion of	f stowi	ing	05		
					4.	Briefl	v expl	ain the	basics	s of hv	draulic	rock	mecha	nics		
					5.	Expla	in the	metho	ds & a	pplicat	ion of	stowi	ng			
POS																
/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO	PSO	
CO				_						0	1	2	1	2	3	
CO	2		1	3		2			2				2	1	3	
1																
		2	2		1		3			2		2		2	2	
	2	1		3		2		3		2	1		2		1	
$\begin{vmatrix} 0 \\ 3 \end{vmatrix}$	2			5		-		5		-	1		-		1	
CO	2	1		2	3				3		1		2	3		
4	1	2				2				1			1		2	
		5		2		5		2		1		2	1	2	3	
CO	1	2		3	2		3		2		2		2	2	1	
6																
Ave	1.6	1.8	1.5	2.6	2	2.3	2.6	2.5	2.3	1.6	1.3	2	1.8	2	2	
rage	lotice T			1 01:-1	ht/Lar	 .\		2 14.3	lanat= (N	(adires)		2 6.1	tontial/	TEat		
Corre	lation L	eveis		1.Slig	nt(LOW	()		2.MOC	ierate(N	ieaium)		5.Sub	stantial((High)		

KL-Knowledge Level:K1-Remember,K2--Understand,K3-Apply,K4-Analyse,K5-Evaluate,K6-Create: PO-**Programe Outcome:**

CO-Course Outcome :PSO-Programe Specific Outcome

UNIT I INTRODUCTION

Convergence indicators - load cells - strain gauges - flat jacks – LVDT - dial gauges - pressure cells and recorder - anchorage testing equipment - laboratory and in situ measurements - hydraulic fracturing rock mechanics instrumentation for B & P and longwall workings.

UNIT II PIT SLOPE STABILITY & SUBSIDENCE

(10 Hrs) Approach to slope stability – slope measurements – different types of slope failures – factors affecting slope stability - introduction to methods of failure, analysis, determination of factor of safety - introduction to different rock slope stabilisation techniques – Theories of subsidence – factors affecting subsidence – subsidence surveys - subsidence prediction techniques - subsidence control - surface and underground measures, pseudo-mining damage.

UNIT III THEORIES OF FAILURE OF ROCKS & PILLAR DESIGN AND ROCK BURST 10Hrs)

Different theories of failure of rocks – modes of failure – Griffith, Coulumb-Navier, Mohr's, Hoek-Brown, empirical criteria and their field of applications - Strength of pillars, barrier and shaft pillar design - load estimation, factor of safety, various formulae, rock burst and bumps - phenomena, causes, prediction, monitoring and control, gas outbursts.

UNIT IV DESIGN OF UNDERGROUND WORKINGS

Stress distribution in underground workings including bord and pillar and longwall workings – rock load assessment – introduction to numerical methods of geomechanics – scaled model studies – principles of modelling.

UNIT V STOWING

Selection and preparation of stowing materials - principal methods of stowing - collection - fields of application and limitations – preparation and transport of materials – surface, underground and face arrangements - design of stowing plants.

TEXT BOOKS:

1. Obert, L. and Duvall, W.I., Rock Mechanics and Design of Structure in Rock John Wiley and Sons Inc., New York, 1967.

2. Vutukuri, V.S. and Lama, R.D., Handbook on Mechanical Properties of Rocks, Vol.I, II, III and IV, Transtech Publication Berlin, 1974/78.

REFERENCES:

- 1. Brady, B.H.G. and Brown, S.T., Rock Mechanics, Wiley Interscience, 1985.
- Hoek, E and Brown, E.T., Underground Excavations in Rocks, 2. Institute of Mining Metallurgy, London, 1980.
- Peng, S.S. Ground Control, Wiley Interscience, New York, 1987. 3. Jumkis, A.R. Rock Mechanics, Transtech Publications, Berlin,

Designed By: Department of Mining Engineering

(10 Hrs)

(10 Hrs)

(10 Hrs)

(Total: 50 Hrs)

PROGRAM			BE-	Mining Engin	eering							
Course Code:				L	Т	Р	С					
UBMN602	COUR	SE NAME:		3	1	0	3					
	SURFA	CE MINE PLA	NNING AND DESIGN									
Year and Semester]	II Year (VI	SEMESTER)		Contac	t hours per week						
Prerequisite course		N	IL			(4Hrs)						
Course category	Hun	nanities and	Management courses	Profession	al Core	Professional	Elective					
	Soci	al Sciences										
	D		En standard Catanaa			Mars Ja4						
	Bas	sic Science	Engineering Science	Open El	ective	Mandato	ory					
Course Objective	1	To un donatoria	the planning of openeous	t la un donomou	ndminaa							
Course Objective	1.	To understand	the fundamental princip	las of mina nl	nu nines	losian						
	2.	To study abor	t affective equipment uti	lization		iesigii.						
	3. 4	To study pro	ect implementation and r	nonitoring								
	5	To enhance k	nowledge on designing of	f high wall wa	aste dumn a	nd haul roads						
	5.		iowiedge on designing of	i iligii wali, wa	iste dump u	ia naul rouds.						
	At the e	nd of the cours	e the student will be able	to:								
Course Outcome	1.	Describe the	steps involved in min	ing								
	2.	Discuss the e	estimation of ore in a g	iven location								
	3.	Design a lay	out for mining.									
	4.	4. Describe the production projection of a mine										
	5.	5. Discuss the facilities required to fasten the project										
	6.	Explain the	parameters involved in	planning a m	nine							

POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2		3		1				1	1	1	3	2
CO2	2	2		2		1		2		1			2	2	
CO3	2		1		3				1			2	1	3	2
CO4	2			2							1		1	2	
CO5	3				3				1			1	2	3	2
CO6	2	1	1		2		1		1		2		1	2	1
Averag															
e	2.33	0.67	0.67	0.67	1.83	0.17	0.33	0.33	0.50	0.17	7 0.67	0.6	7 1.33	3 2.50	0 1.17
Correlat	ion Leve	ls		1.Slight	(Low)			2.Moder	rate(Med	lium)		3.Subst	antial(Hi	gh)	

KL-Knowledge Level:K1-Remember, K2—Understand ,K3-Apply, K4-Analyse, K5-Evaluate, K6-Create ; PO-Programme Outcome; CO-Course Outcome ;PSO-Programme Specific Outcome

UNIT I INTRODUCTION

(12 Hrs)

Stages of mine life – Preliminary evaluation of surface mining prospects – Mine planning and its importance – Mining revenues and costs and their estimation – Mine planning components – Planning steps and planning inputs.

(Under Section 3 of UGC Act 1956) SYLLABUS FOR UNDER GRADUATE IN ENGINEERING AND TECHNOLOGY **B.E – MINING ENGINEERING** ACADEMIC YEAR 2016-2020 (BATCH - I)

UNIT II ORE RESERVE ESTIMATION

Ore zone and bench compositing - Objectives and principles of ore reserve estimation - Estimation of grade at unknown point -Methods of ore reserve estimation - vertical cross section method, horizontal cross section method and 3-D geological block method - Stripping ratio - Concept of stripping ratio - Types of stripping ratios and their significance - Choice between surface and underground mining.

UNIT III GEOMETRICAL CONSIDERATIONS AND PIT PLANNING

Basic bench geometry – Ore access – pit slope geometry – addition of haul road on pit plan – pit layouts – Pit Planning – Development of economic block model - Pit Cut-off grade and its estimation - Ultimate pit configuration and its determination hand method, floating cone technique, Lerchs-Grossmann algorithm and computer assisted hand method.

UNIT IV PRODUCTION PLANNING

Determination of optimum mine size and Taylor's mine life rule - Sequencing by nested pits - Cash flow calculations - Mine and mill plant sizing – Lanes algorithm for estimation of optimum mill cut of grade – Introduction to production scheduling.

UNIT V DESIGN OF HIGHWALL SLOPES, WASTE DUMPS AND HAUL ROADS

Influence of pit slope on mine economics – Highwall slope stability analysis and design methodology – Stability analysis and design methodology for waste dumps – Design of road cross section – Design of road width, curves and gradient – Haul road safety features and their design.

Text Books:

1. Jayanth Bhattacharya, Principles of Mine Planning-Allied Publishers, Delhi 2003.

2. Hustrulid, W. and Kuchta, M., (eds), Fundamentals of Open pit Mine Planning and Design, Elsevier, 1995.

REFERENCES

- 1. Ehrenburger, V and Fajkos, A., Mining Modelling, Elsevier, 1995.
- Bawden, W.F., and Archibald., J.F., Innovative Mine Design for the 21st Century 2.
- 3. Christoper J. Bise, Mining Engineering Analysis, 2nd Edition, Society for Mining, Metallurgy, and Exploration, 2003.
- 4. Pazdziora, J., Design of Underground Hard Coal Mines, Elsevier, 1988.
- 5. Swilski, and Richards, Underground Hard Coal Mines, Elsevier, 1986.
- 6. Singh, B. and Pal Roy, P., Blasting in Underground excavations and mines, CMRS Dhanbad, 1993.
- 7. Peng, S.S. and Chaing, H.S., Longwall Mining, John Wiley & Sons, New York, 1984.

Designed by" Department of Mining Engineering"

(Total: 60 Hrs)

(12 Hrs)

(12 Hrs)

(12 Hrs)

ACADEMY OF ION AND TRAINING DEEMED TO BE UNIVERSITY

(12 Hrs)

PRO	GRAM	I		BE - M	ining E	ngineer	ring								
Cour	se Code	e		Course	Name :				Ι	4	Т		Р		C
UBM	IN606			MATEI	RIAL H	ANDL	ING		3		0		0		3
Year Seme Prere cours Cours	ester quisite quisite urse ca urse ca urse of e Outc	ategory	and the 1. Exp 2. Des 3. Ex 4. Sur 5. Des 6 Exr	III Year III Year NIL Humand Sc Basic Student 1 D 2 D 3 D 4 E 5 D 6 II end of of plain the or cribe tl plain the or th	c (VI Secondaria (VI Secondaria) c (VI Secondaria) c Science <pc p="" s="" science<=""> c Sci</pc>	Ma emester Ma e En e able t e able t e vario the tra he vario the tra he vario the variothe va	anagem courses courses <u>so</u> <u>so</u> <u>so</u> <u>so</u> <u>so</u> <u>so</u> <u>so</u> <u>so</u>	cess in 1 cess in 1 cess in 1 cess in 1 cess of correquire pes of correquire pes of correquire pes of correquire then t will the to roccused in d in excav	Conta (3 Hi) Profess Open handlin ore for nveyor onveyer d in min materia l be ab ock exca the cu cavatio vation p	ional Construction process	s per wo	eek Profe	ssional] //andate n n nd trans	Elective	
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2		3		1	1	1		1	1	3		2
CO2	2	2		2		1		2		1			3		
CO3	2	1	1		3		1	1	1	1	1	2	3	1	2
CO4	2			2							1		3		
CO5	3				3				1			1	3		2
CO6	2		1		1	2	2		1	2	1	2		1	
Avera															
ge	2.3	3 0.50	0.6	0.67	1.67	0.5	0 0.5	0 0.3	3 0.5	0 0.5	0.5	0 1.0	0 2.5	0 0.1	7 1.00
Corre	lation I	Levels		1.Slig	nt(Low)		2.Mo	derate(Mediur	n)	3.Sub	stantia	(High)	
KL-Kn PO-Pro	owledge gramme	Level:K1	l-Remen e; CO-C	nber, K2- Course Ou	—Unders utcome ;I	stand ,K SO-Pro	3-Apply ogramm	, K4-An e Specifi	alyse, K c Outcor	5-Evaluat ne	te, K6-C	reate ;			

(Under Section 3 of UGC Act 1956) SYLLABUS FOR UNDER GRADUATE IN ENGINEERING AND TECHNOLOGY **B.E – MINING ENGINEERING** ACADEMIC YEAR 2016-2020 (BATCH - I)

DEEMED TO BE UNIVERSITY

ION AND TRAINING

ACADEMY OF N

UNIT-I INTRODUCTION

Basic principles in material handling exclusive to mining industry and its benefits. Classification of material handling equipments. Current state of art of bulk handling materials in mining in the world and Indian scenario; Selection of suitable types of systems for application. Stacking, blending, reclaiming and wagon loading, machinery and systems used at the stack yards; stock piles, silos, bunkers – their design, reclamation from them, various types of weigh bridges. Segregation - size wise and grade wise, Railway sidings.

UNIT II CONVEYORS HAULAGE SYSTEMS

Roller conveyor, overhead conveyor, screw conveyor, auger conveyor, apron feeder, bucket elevators, scraper haulage, conveyors in steep gradient, Armoured face conveyor, Off-highway Trucks, haul roads, In-pit crushers and modular conveyors, electric trolley assisted haulage, shuttle cars, skip hoist, winders, pneumatic conveying, hydraulic transport.

UNIT III ROPE HAULAGE SYSTEM

Rail track and tubs - gauge, layout, curves, turnouts and cross-over - track maintenance - main features of rolling stock like tubs, mine cars, man riding cars and tripplers – Types of rope haulages – merits, demerits and fields of application, constructional features, safety appliances and rope haulage

UNIT IV AERIAL ROPEWAY SYSTEMS

Curved conveyors, cable belts, pipe conveyors, rock belts – mine-run-rock conveyor, steel belt conveyors, steel slot conveyor, chain belt conveyors, etc., and other new developments, stackers and reclaimers, High Angle Conveyors (HAC); New inventions in HAC, Mobile or fixed installations; Woven wire belts, En Masse conveyor, Vibrating conveyor, gravity bucket conveyor.

UNIT V MATERIAL HANDLING IN MINES, PLANTS AND WORKSHOPS (10 Hrs)

Locomotives - diesel, trolley-wire, battery locomotives, constructional features and safety devices and comparison of different types – underground and surface battery charging stations and safety measures – locomotive calculations – shuttle cars, underground trucks, load-haul dumpers, SDL vehicles, aerial rope ways, gravity transport, principles of hydraulic & pneumatic transportation and their field of application, electric layouts, man-riding systems.

TEXT BOOKS:

Allegri (Sr.), T.H., Material Handling – Principles and Practices, CBS Publishers and Distributors, Delhi, 1. 1987.

2 Hustrulid, W., and Kuchta, M. Open Pit Mine Planning & Design, Vol. 1, Fundamentals, Balkema, Rotterdam, 1998.

REFERENCES:

Kennedy, B.A., Surface Mining - 2nd Edition, SME, New York, 1990. 1.

2. Deshmukh, D.J., Elements of Mining Technology, Vol.I, II and III, EMDEE Publishers, Nagpur, 1979.

3. Peng, S.S., and Chiang, H.S., Longwall Mining, John Wiley and Sons, New York, 1984.

Designed by "Department of Mining Engineering"

(10 Hrs)

(10 Hrs)

(10 Hrs)

(Total: 50 Hrs)

PROGRA	М							BE- M	ining Er	ngineeri	ng				
Course Co	ode:								L		Т]	Р		С
UBMN60	3	C	OURSE N	VAME	:				4		0		0		3
		M	INING MA	CHINE	RY I										
Year and	Semeste	er	III Y	ear (V	I SEI	MEST	ER)				Contact	hours p	er week		
Prerequisi	ite cours	se		<u> </u>			/					(4Hrs)			
Course ca	ategory		Humanitie	s and	Ma	nageme	ent cou	ses	Profess	sional (Core	Pr	ofessiona	l Electiv	ve
			Social Sci	ences											
			D • G •				a •		<u> </u>	<u></u>					
			Basic Sci	ence	En	gineeri	ng Sciei	nce	Open	n Electr	ve		Manda	atory	
			1 Illust	rate the	auxili	arv equ	inment'	s in Miı	ning						
Course C	hiective	_	2. Desci	ibe the	transi	ortation	1 of ore	bv wire	line mo	des					
Course O	ojective	_	3. To st	udy the	vario	us mode	es of trai	nsport n	neans an	nd elect	rical circu	iits.			
			4. To st	udy the	types	of pum	ps, insta	llations	and des	sign cal	culations				
			5. To ur	Iderstan	d the	electric	al layou	ts and p	ower di	stributi	on in min	e			
		At	the end of t	he cour	se the	student	will be	able to:							
Course Or	utcome		1	. Exp	olain	the aux	iliary e	quipme	ent's in	Minin	g				
				2. Dis	cuss	the tra	nsporta	tion of	ore by	wireli	ne mode	S			
			3	. Exp	olain t	the loco	omotive	es used	in min	ing					
			2	. Des	cribe	the va	rious ty	pes of	drives	used in	mine op	peration			
			5	. Exp	olain t	the min	e comr	nunicat	tion sys	stem					
			6	5. Sur	nmari	ize the	mechar	nical &	electri	cal ma	chineries	involve	d in mini	ng	
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1		2			3				1			3	1	2
CO2		2			2			3			2		2		1
CO3	1		2		2		1		2		3		3		1
CO4		1								2			2	2	1
CO5			2		2		1		3				3		1
CO6		2			2		2	2	2			2		1	
Average	0.33	0 .	.83 1.00	0.00	1.33	0.50	0.67	0.83	1.17	0.5	0.0	33 0.3	3 2.1	0.6	7 1.00
Correlatio	n Level	s		1.Slig	ht(L	ow)		2.Moc	lerate(Mediu	m) 3.	Substan	tial(Hig	h)	
KL-Knowled PO-Progran	dge Level nme Outc	:K1-Re ome; C	emember, K O-Course (2—Und Dutcome	erstan ;PSO	nd ,K3-A)-Progra	apply, Ka mme Sp	4-Analys ecific O	se, K5-E utcome	valuate	K6-Crea	te ;			

UNIT I INTRODUCTION

Compressed air – transmission and distribution in mines – compressed air drills – Elements of the transport system – Classification and techno-economic indices – Wire ropes - classification, construction, fields of application, rope capping and splicing, deterioration of rope in use and its prevention.

UNIT II ROPE HAULAGE

Rail track and tubs – gauge, layout, curves, turnouts and cross-over – track maintenance – main features of rolling stock like tubs, mine cars, man riding cars and tripplers – Types of rope haulages – merits, demerits and fields of application, constructional features, safety appliances and rope haulage calculations.

UNIT III TRANSPORT SYSTEMS

Locomotives – diesel, trolley-wire, battery locomotives, constructional features and safety devices and comparison of different types – underground and surface battery charging stations and safety measures– locomotive calculations – shuttle cars, underground trucks, load-haul dumpers, SDL vehicles, aerial rope ways, gravity transport, principles of hydraulic & pneumatic transportation and their field of application, electric layouts, man-riding systems.

UNIT IV PUMPING & CONVEYING

Different types of drives – installation and maintenance of pumps and pipes in shafts and roadways, electrical layouts, various sources of water in mines, design of sumps – Face haulage and conveyors – Various types of conveyors – Scraper chain conveyors, AFCs, belt conveyor, cable belt conveyor, shaking and vibrating conveyors, armoured flexible conveyors, high angle conveying, electrical layouts.

UNIT V MINE ELECTRICAL ENGINEERING

Distribution of electrical power in mines – types of mine cables and their fields of applications – mining switch gears and their installation in hazardous atmosphere, flame proof enclosures, intrinsically safe circuits, safety aspects and signalling – Mine telephone system and latest development in mine communications.

(Total: 60 Hrs)

TEXT BOOKS

- 1. Cherkassky, B.M., Pumps, Fans, Compressors, MIR Publishers, 1980.
- 2. Walker, S.C., Mine Winding and Transport, Elsevier, 1988.

REFERENCES:

1. Karelin N.T., Mine Transport, Orient Longmans, N. Delhi. Mining, Vol. I, II, III and IV, Caxton Eastern Agencies, Calcutta

(12 Hrs)

(12 Hrs)

(12 Hrs)

(12 Hrs)

(12 Hrs)

PROG	RAM							BE-Mi	ning Eng	gineering	g				
Course	e Code	:	COUI	RSE N	AME:				L		Γ	Р		(С
UBMI	N604								4	()	0			3
			MINE	LEGISI	LATIO	N AND S	SAFETY				-				_
			•					•			•			•	
Year a	nd Ser	nester	II	I Yea	r (VI	SEMES	STER)			Co	ntact h	ours pe	er week	2	
Prereo	uisite d	course			NI	L	,				(4	4Hrs)			
Course	e categ	gory	Hun	nanities al Scier	and	Man	agement urses	t I	Professio	onal Co	re	Prof	essiona	l Electiv	'e
											\backslash				
			Ba	sic Scier	nce	Engineer	ring Scie	ence	Open	Elective			Manda	tory	
						8	0							v	
			1.	To st	udy va	arious a	cts, rul	es and	regula	tions re	elating	to the	minera	l indus	try
Course	e Obje	ctive	2.	To st	udy in	-depth	about r	nine le	gislatio	on.	0				5
	5		3.	To st	udy in	particu	ılar abo	out the	laws a	pplicat	ble to m	nining.			
			4.	To st	udy at	bout acc	cidents	and di	seases			0			
			5.	To le	arn ab	out mir	ne safet	v.							
			At the	end of th	ne cours	se the stu	dent wil	l be able	e to:						
Course	e Outco	ome	1.	Brief	ly exp	lain the	e laws i	mpose	d by go	overnm	nent on	mining	3		
			2.	Discu	uss the	e acts pa	assed to	owards	coal &	amp; i	metal n	nining			
			3.	Expl	ain the	laws w	which p	assed t	oward	s the be	enefits	of wor	kers		
			4.	Desc	ribe th	e possi	bilities	of acc	idents	&	diseas	es caus	sed to r	nining	
				work	ers.										
			5.	Desc	ribe th	e safet	y proce	dure fo	or safe	mining	g Illustr	ate the	legal a	&	safety
				aspec	cts in r	nining	operati	on							
			6.	Expla	in the	role of r	nine saf	ety.							
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2		3		1				1	1	1	3	2
CO2	2	2		2		1		2		1			2	2	
CO3	2		1		3				1		1	2	1	3	2
CO4 CO5	2			Z	3				1		1	1	$\frac{1}{2}$	2	2
CO5	2		2	1	5	2	1	2	1	1	2	2	1	1	1
Avera			—	-		-	-			-	F		-	-	-
ge	2 33	0.50	0.83	0.83	1 50	0.50	0 33	0.67	0 33	033	0.67	1.00	1 3 3	2 2 3 3	1 1 7
o- Correl	ation I	evels	0.05	1 Slipt	1.50	7 <u>0.50</u> 7)	2. Mod	erate(N	Mediun	<u>1 0.07</u> n)	3 Subs	tantial	<u>1 2.52</u> (High)	1.1/	
KL-Kno	wledge l	Level:K1	-Remem	ber, K2-	-Under	stand .K.	3-Apply.	K4-Ana	lyse, K5-	Evaluat	e, K6-Cr	eate :		(11611)	
PO-Pro	gramme	Outcome	e; CO-Co	ourse Ou	tcome;	PSO-Pro	gramme	Specific	Outcom	e	,	,			

UNIT I INTRODUCTION

General principles of mining laws- development of mining legislation of India – Enactment of various statues and by- laws

UNIT II MINE LIGISLATION

The Mines Act, 1952 – The Coal Mines Regulations, 1957 – The Metalliferous Mines Regulations, 1961 – The Mine Rules, 1955

UNIT III LAWS APPLICABLE TO MINING

Indian electricity rules – coal mines conservation and development act – Workman's compensation act – General provisions of Mines and Mineral Regulation and Development Act – Mineral Concession rules – Vocational training rules – Creche rules – Maternity benefit Act – Payment of Wages Act – Gratuity and P.F. Rules – Explosives act – Rescue Rules – Factories Act.

UNIT IV ACCIDENTS AND DISEASES

Accidents – classification, causes and prevention – Statistics of fatal and serious accidents – Frequency and severity rates of accidents – Place-wise and Cause-wise analysis – Investigations into accidents and accident reports – Cost of accidents - Occupational hazards of mining and miner's diseases and their social effects.

UNIT V MINE SAFETY

Role of management – labour and government – Safety audit – Instrumentation – Safety management system – Risk identification and management – Organisation for disaster Management in mines Safety measures.

TEXT BOOKS:

- 1. Coal Mines Regulations, 1961, Lovely Prakashan, Dhanbad, 1995.
- 2. Metal Mines Regulations, 1961, Lovely Prakashan, Dhanbad, 1995.

REFERENCES

- 1. Mines Act 1952, Lovely Prakashan, Dhanbad, 1995.
- 2. DGMS Circulars, By National Council of Safety in Mines, Dhanbad, 1995.
- 3. Mines rules, 1955, Lovely Prakashan, Dhanbad, 1995.
- 4. The Mines Rescue Rules, 1986, Lovely Prakashan, Dhanbad, 1995.
- 5. The Indian Electricity Rules, 1995, Lovely Prakashan, Dhanbad, 1995.
- 6. The Payment of Wages Act, 1936, Ram Narain Lal Beni Prasad, 1995.
- 7. Vocational Training Rules, Lovely Prakashan, Dhanbad, 1995.
- 8. The Workmen's compensation Act, 1923, Ram Narainlal Beni Prasad, Allahabad, 1995.

Designed by: Department of Mining Engineering

(**10 Hr**c)

(10 Hrs)

(10 Hr)

(10 Hrs)

(10 Hrs)

(10 Hr)

PROGRAM				BE-Mining Engineering												
Course Code:			CC	COURSE NAME:						L	Τ		Р		(
UBMN605										3	0)	0			
			ADVANCED POCK BLASTING													
			TE	TECHNOLOGY												
									•							
Year a	und S	Semest	ter	III Year (VI SEMESTER)						Contact hours per week						
Prereq	uisi	te cou	rse	NIL						(3Hrs)						
Course category			7	Humanities and Manage Social Sciences				nt courses Professional Co		onal Core	e	Professional Elective				
											\checkmark					
				Basic	Science	Eng	gineerir	ng Scien	ce	Open l	Elective			Mandato	ry	
			1	Deceri	-	41 d										
Course	• 0	hiectiv		Describ	be the fo	ols em	s and g	rowin Lin evo	III FOCI	x excav	ation sy	stems				
Course	ojectiv	2.1 3 T	2. Describe the tools employed in excavation process													
			4.U	Indesta	and rock	x excay	vation	by cutt	ing act	tion	ution p	100055				
			5.U	Jnderst	tand the	Rock	cutting	g tool r	nateria	ls						
			At	the end	d of the	course	the st	udent v	will be	able to):					
Course	e Ot	itcome	•	1. Ez	xplain tl	ne met	hods a	nd grov	wth in	rock ex	cavatio	n syster	ms			
				2. D	escribe	the pro	operties	s relate	ed to re	ock exca	avation	process				
				3. Bi	riefly ex	xplain †	the var	ious m	ethods	s used i	n the cu	tting of	rocks			
				4. Ez	xplain tl	ne tool	s empl	oyed in	n exca	vation p	process					
				5. D	escribe	the too	ols emp	oloyed	in exca	avation	process	5				
				6. Ez	xplain th	ne Roc	k cutti	ng too	l mater	nals.						
,																
PO	1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSC	
	3	1	2		3		1				1	1	3		2	
,	2	2		2		1		2		1			3			
,	2		1		3				1			2	3		2	
,	2			2							1		3			
	3				3				1			1	3		2	
2			1		1	2	2		1	2	1	2		1		
ane																
age	2.33	0.50	0.67	0.67	1.67	0.50	0.50	0.33	0.50	0.5	0 0.50	0 1.0	2.5	0.1	.7	
elation L	level	s		1.Slight	t(Low)			2.Mode	erate(Me	edium)	3.5	Substantia	al(High)			
Knowlee	dge l	Level:K	1-Rem	ember,	K2 - Un	derstan	d ,K3-A	Apply, H	K4-Ana	lyse, K5	-Evaluat	e, K6-Cr	reate ;			
rogran	nme	Outcon	ne; CO	-Course	e Outcon	ne ;PSO	-Progra	amme S	pecific	Outcom	e					

DEEMED TO BE UNIVERSITY (Under Section 3 of UGC Act 1956) SYLLABUS FOR UNDER GRADUATE IN ENGINEERING AND TECHNOLOGY **B.E – MINING ENGINEERING**

ACADEMIC YEAR 2016-2020 (BATCH - I)

UNIT I EXPLOSIVES AND ACCESSORIES

Emerging trends in explosives, initiating system and blasting techniques; Bulk Blasting agents & Mode of Bulk Delivery S Performance testing of explosives and accessories; Scattering in Delay timing of delay detonator.

UNIT II TRENDS IN SURFACE AND UNDERGROUND BLASTING TECHNIQUES (10 Hrs) Theories of rock breaka Mechanics of rock fragmentation due to blasting; Recent advances in blasting techniques in both underground and surface min Cast blasting for improved mine economics; Blast optimization in surface mines. Blasting in opencast coal mines of developed galleries. Economic evaluation of blasting operations. Tunnel blast designs, Tunnel breakthrough under water.

UNIT III INSTRUMENTATION FOR BLAST PERFORMANCE MONITORING

Fragmentation prediction and assessment, Instrumentation and software application for design of blast round, Deep hole blasti Hot hole blasting. Instrumentation in Blasting - V.O.D probe, Laser Profiler, Vibration monitoring, High speed video ca Stemming plug etc.

UNIT IV ENVIRONMENTAL CONTROL AND SAFETY IN BLASTING

Blasting damages – Micro and macro level damages due to blasting; Ground vibrations, flyrock and air over pressure. Influe Blasting on surface structures and underground workings; Safety during blasting

UNIT V EMERGING BLASTING TECHNIQUES

Special Blasting techniques – Road Construction, Dimension stone blasting, Underwater Blasting; Air-Decking & Babytechniques; Novel Blasting Techniques in Surface and underground construction; Demolition blasting; Shaft sinking in Popula (City), Underground storage construction. Intelligent blast design, blast economics, computer applications in blasting.

(TOTAL: 50 Hrs)

TEXT BOOKS:

Pal Roy, Piyush,(2015), Rock Blasting: Effects and Operations, CRC Press, 380p, 3rd Edition, 1 2015.

Johansen, John and Mathiesen, C.F., (2000), Modern Trends in Tunnelling and Blast Design, AA Balkema, 154p, 2000 2.

REFERENCES:

- William A, Hustrulid, (1999), Blasting Principles for Open pit mining, A.A.Balkema. 1.
- Bhandari S., (1997), Engineering Rock Blasting Operations, AA Balkema Rotterdam, Netherlands, p.375. 2.
- Per-Anders Persson, Roger Holmberg, Jaimin Lee, (1993), Rock blasting and explosives Engineering, CRC Press, p.560. 3.
- Ghose, A.K and Joshi, A (Ed), (2013), Blasting in Mining New Trends, CRC Press, 2013. 4

(10 Hrs)

(10 Hrs)

(10 Hrs)

PROC	GRAM	[BE-Mi	ning En	gineerin	g			
Course	e Code	:]	L	Τ		Р	
UBMN	1607			COU	RSE F	'ILE:				,	3	0		0	
				FUNE	DAMEN	TALS	OF DR	ILLIN	G						
				TECH	INOLO	GY									
Year a	Ind Sei	nester			II Y	ear (IV	' Seme	ster)			C	Contact	hours	per we	ek
Prereq	uisite	course				N	L						(3 Hrs	s)	
Course	e cate	gory		Hun	nanities	and	Ma	nagem	ent	Pro	fessiona	al Core]	Professi	onal Elec
				Soci	ial Scier	nces		courses							
				Ba	sic Sciei	nce	En	gineeri	ng	0	pen Ele	ective		Ma	ndatory
								Science				Y			
												-			
C				1	Evel	in the	abraia	landa	hamiaa	1	ntion of	water			
Course	e Obje	ective		1.	Desc	iiii iiie ribe the	physica types	of well	s and it	a prope	tions	water			
				2.	Illust	rate the	rock n	roperti	es obtai	s minua ined fro	m core	sample	26		
				5. 4	Disci	iss the	method	ls used	to prod	luce oil	from w	/ sampro vell	23		
				5	Expl	in the	non-tec	hnical	operati	ons per	formed	in well	1		
				5. 6.	Desc	ribe the	explor	ation a	nd expl	loitation	of pet	roleum	reserve	2	
				At the	end of t	he cours	se the st	udent w	ill be ab	ole to:	<u>i oi per</u>		1000111	-	
Course	e Outc	ome		1.	Descr	ibe abou	ıt Minin	g indus	try						
Course		onic		2.	Expla	in about	t Surfac	e minin	g						
				3.	Sumn	narize a	bout Un	dergrou	nd mini	ng					
				4.	Illustr	ate abou	ıt machi	nes use	d in min	ing indu	stry				
				5.	Ident	ify the	potentia	al envir	onment	tal impa	icts				
				6	Toin	an ant ha		manah	mairra 1	morrila	las sho	ut tha t		faata	.f
				0.	Petro	leumEi	asic, co	ingrene		liowiet	ige abo	ut the v	arious	Tacets C	л
					1000	Icumbi	ignicei								
POS/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	P01	P01	PSO	PSO	PSO
	2	1		2		3		1		2	1	2	1	2	3
	1	1	2	2	2	5	3	2		2	1	5	3	2	3
CO2	1	2	-	3	2		1	-	2		3	2	1	-	3
C03	2	-	3	5	2		3		2	+	3	-	2	2	$\left \begin{array}{c} \\ \end{array} \right $
C04	1	2	5	3	-	2		2		3		2	3	-	2
C05	2	-	1		3	-		2		3		2	2	2	
Aver	2	1.6	2	2.6	2.2	2.5	2.3	2.3	2	2.5	2.3	2.2	2.2	2	+
age															
Correla	ation Lev	vels		1.Sligh	nt(Low)			2.Mod	erate(Me	edium)		3.Subs	stantial(H	ligh)	
KL-Kı	nowledg	e Level:	K1-Rem	ember, k	K2Unde	erstand,l	K3-Appl	y,K4-Ar	nalyse,K	5-Evalua	ite,K6-C	reate : 1	PO-Prog	grame	
Outcon	me:	tooma	DGO D-	00000000	Smaaift	Outcom									
10.0	ourse Oi	ncome :	r 50-Pr	ograme	specific	Jutcom	e								
L															

UNIT I INTRODUCTION

Chemistry of petroleum. Structure of petroleum compounds. Types – alkanes, Naphthenes, paraffi aromatics. Physical and chemical properties of oil, gas and formation water.

UNIT II DRILLING A WELL

Drilling – History, types of drilling –cable tool, rotary, drilling rigs and components. Types of well: exploratory, delineation, development wells. Vertical, deviated, inclined, horizontal and ERD wells. Drilling flui casing and cementation. Planning - GTO.

UNIT III FORMATION EVALUATION (10 Hrs) Formation Evaluation – cutting, cores, mud logging unit. logging, types of well logs their use. Sub surface correlation.

and

UNIT IV WELL ACTIVATION

(10 Hrs)

Well Testing, perforation, testing methods, well completion production. Stimulation methods, recovery methods, Material balance, reserves estimation

UNIT V WELL SITE OPERATIONS (10 Hrs) Wellsite operations, roles of drilling, reservoir and production hazards, environmental concerns, transportation of oil and gas, oil pollution and control, petroleum economics. (TOTAL: 50 Hrs)

TEXT BOOKS:

- 1. Geology of Petroleum - Leverson, A.L
- 2. Formation Evaluation – Lynch
- 3. Drilling Manual - ONGC
- 4. Principles of oil Production – T.E.W. Wind

REFERENCES

1. Introduction to Petroleum Engineering – Geltin

Designed by " Department of Petroleum Engineering"

(10 Hrs)

PROGR	AM		BE - M	lining E	nginee	ring									٦
Course C	ode		Course	Name :				L	4	Т		Р		С	
UBMN6	08		MARI	NE GEC	LOG	Y		3	5	0		()	3	
Year Semester	ito	and	III Yea	r (VI Se	emeste	er)		Conta (3 Hr	nct hour s)	rs per v	veek				
course	site		INIL												
Course c	ategory	7	Humani Social S	ties and ciences	Ν	Iana cou	gement rses	Prof	essiona	l Core		Profe	essional E	lective	
			Basic S	cience	Engi	neeri	ng Science	Op	oen Ele	ctive]	Mandato	ry	
Course O	onal	1. U 2. U 3. U 4. U 5. I asp	Jndersta Jndersta Jndersta Jndersta Describe ects in r Students	and the l and the l and the l and the j the saft nining of s will be 1. Brie 2. Des 3. Diso 4. Des 5. Exp 6. Illus	aws i acts p laws v possib ety pr operat able t able t cribe t cribe t lain th strate t	mpos assective vhich olitie oced ion a o plain he phase tec he sective he m	sed by go d towards h passed t es of accid lure for sa at sea the ocean hysical & o tonic active dimentatione e of sea in arine envi	vernm coal & coward dents & dents & de	ent on camp; s the b camp; ing III entolog al prop c sea flo eess of e e chang it and b	minin metal enefits diseas ustrate y & ph erties o oor ocean ge bathyma	g in so minin s of wo es cau e the lo sysical f sea v	ea g at se orkers used to egal & param vater	ea s at sea o mining camp; sa neters of s	worke fety sea	rs.
POS/ COS	PO1	PO2	PO3	PO4	PO 5	PO	6 PO7	PO8	PO9	PO1	PO 11	PO 12	PSO1	PSO 2	PS
CO1	2	1		22	1								1	2	22
CO2	1		2		3								2	3	11
Year Semester and III Year (VI Semester) Contact hours per week (3 Hrs) Prerequisite course NIL Course category Humanities and Social Sciences Management courses Professional Core Professional E Basic Science Engineering Science Open Elective Mandato Course Outcome At the end of the course the student will be able to: 1. Understand the laws imposed by government on mining in sea 2. Understand the laws imposed to wards coal & amp; metal mining at sea 3. Understand the laws which passed towards the befits of workers at sea 4. Understand the possibilities of accidents & amp; diseases caused to mining 5. Describe the safety procedure for safe mining Illustrate the legal & amp; sa aspects in mining operation at sea Students will be able to 1. Briefly explain the ocean sedimentology & physical parameters of s 2. Describe the safety procedure for safe mining Illustrate the legal & amp; sa aspects in mining operation at sea Students will be able to 1. Briefly explain the ocean sedimentology & physical parameters of s 4. Describe the sedimentation process of ocean 5. Explain the role of sea in climate change 6. Illustrate the marine environment and bathymetry POS/ COS PO1 PO2 PO3 PO4 PO PO7 PO8 PO9 PO1<						2	33								
Course Code UBMN608 Course Name : MARINE GEOLOGY L I P Year and III Year (VI Semester) 3 0 0 Year and III Year (VI Semester) Contact hours per week (3 Hrs) Contact hours per week (3 Hrs) Prerequisite course NIL Professional Core Professional Social Sciences Professional Core Professional Course Course Second Se							2	3	22						
CO5	2		3		2			2					3	1	22
CO6	1	1	2	2						2		3	2	2	22
Average	1.5	1.5	2	2.2	2	2	3	2		2		3	1.8	2.1	
Correlatio	n Levels			1.Sligh	t(Low))	2.Moderat	te(Medi	um)		3.Su	bstantia	l(High)		

KL-Knowledge Level:K1-Remember,K2--Understand,K3-Apply,K4-Analyse,K5-Evaluate,K6-Create : PO-Programe Outcome: CO-Course Outcome :PSO-Programe Specific Outcome

UNIT I INTRODUCTION

Overview of physical ocean environment, geotechnical aspect – sea floor marine soils - Sea Level, Near-sh Processes.

UNIT II PROPERTIES OF MARINE ENVIRONMENT

(10 Hrs)

(Under Section 3 of UGC Act 1956) SYLLABUS FOR UNDER GRADUATE IN ENGINEERING AND TECHNOLOGY B.E – MINING ENGINEERING ACADEMIC YEAR 2016-2020 (BATCH - I)

Physical and chemical properties of seawater – overview of marine mineral deposits – deep-sea bed mineral resou – polymetallic nodules – sulphate nodules – chemicals from the ocean – dissolved and undissolved mineral deposite sea water as resource and beach placers.

UNIT III OCEAN BASIN MORPHOLOGY

Continental drift – Sea floor Spreading – plate tectonics – tectonic history of oceans - Oceanic Lithosph Mid-Ocean Ridges - Passive Continental Margins - Active Continental Margins - Continental Shelves.

UNIT IV MARINE SEDIMENTS

Global Cycle of Elements - Sediment Classification, Oceanic Circulation - Seawater Chemistry -Biochemical Processes in Seawater - Biogenic Oceanic Sediments - Biogenic Sediments, CCD -Terrigenous Sediments - Turbidites, Submarine Fans.

UNIT V OCEANOGRAPHY

Paleoceanography - Climate Change - Cenozoic Paleoceanography - Orbital Forcing - Deep Sea Cl Authigenic Sediments - Deep Biosphere, Methane Hydrates.

(TOTAL: 50 Hrs)

(10 Hrs)

TEXT BOOKS:

- 1. Parbin Singh. Geology for Engineers, IBH Publications, N. Delhi. 1991.
- 2. Arthur Holemess, Principles of Physical Geology, Thomas Nelson and Sons, USA, 1964.

REFERENCES:

1. Blyth F.G.H. and de Freitas M.H. Geology for Engineers, 7th edition, Elsevier Publications, 2006.

2. Bell F.G. Engineering Geology, Elsevier Publications, 2007.

3. Ford, W.E. Dana's Textbook of Minerology (4th edition), Wiley Eastern Ltd., N. Delhi,

1989.

4. Winter, J.D. An Introduction to Igneous and Metamorphic Petrology, Prentice Hall, N. Delhi, 2001.

5. Billings, M.P. Structural Geology, Prentice Hall Ino., N. Jersey, USA, 1972.

Krishnan M.S. Geology of India and Burma, 3rd Edition, IBH Publishers, N. Delhi, 1984.

Designed by "Department of Mining Engineering"

(10 Hrs)

PROG	RAM							BE-	Mining	Enginee	ring				
Course	Code:								L		Т		Р		С
UBMIO1	0		REMO NATU	TE RAL I	SEI RESOU	NSING JRCES	т .)	FOR	3		0		0		3
Year an	d Sem	ester	Γ	II Yea	ur (VI S	SEMES	TER)				Contac	t hours i	oer weel	k	
Prerequ	isite co	ourse			NI	L						(3Hrs)		
Course	catego	ory	Hum Socia	anities al Scien	and I ices	Manage	ment co	urses	Profe	essional	Core	P	rofession	al Electi	ve
			Bas	ic Scien	ice	Enginee	ering Sci	ience	Ор	en Elect	ive		Mand	latory	
Course	Objec	me	1. 2. 3. 4. 5. At the er 1. 2. 3. 4. 5. 6.	To pro modelin To acqu To acqu To elab nd of the Discus Prepar Explai Techno Discus Explai	wide exp ng of ear uire skill uire skill g, mode uire know oorately s course s the co e the ca in hand ology s theEn in Mini in Tran	posure t th resources s in stori lls in ad ling and wledge a study about the study oncepts, ndidates ling inst apowers ing Info sport p	to stude rces man ing, man lvance t monitor bout mi bout plant ent will b method s for Na trument s the can prmatic lanning	nts in nageme aging o echniqu ing. neral co ning in be able lologie ational s, tools ndidate on syst	gaining nt using digital da ues such orridor a transpor to: es and aj and Glo s, techn e with co	knowled Remote Remote ta for pl as hypo nd minin tation.	dge on o Sensing anning a er spectr ng inform ons of R ployabi nd mode ce and le lity	concepts a nd develop al, therma ation syste emote Se lity ling while eadership	and appli oment. al and Li em. nsing Te e using F qualities	cations DAR sca echnolog Remote S	leading to anning for gy. Sensing
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2		3		1				1	1	3		2
CO2	2	2		2		1		2		1			3		
CO3	2		1		3				1			2	3		2
CO4	2			2							1		3		
CO5	3				3				1			1	3		2
CO6															
Averag			1												
e	2.00	0.5	0 0.50	0.67	1.5	0 0.17	0.17	0.3	3 0.33	0.1	7 0.3	3 0.6	7 2.50	0.0	0 1.00
Correla	tion Le	evels		1.Slig	ht(Low	/)		2.Mo	derate(Mediur	n) 3.	Substant	ial(High	1)	
KL-Knov PO-Progi	vledge L ramme (evel:K1 Dutcom	l-Remem e; CO-Co	ber, K2- ourse Ou	—Unde rs itcome ;F	stand ,K3 PSO-Prog	3-Apply, gramme	K4-Ana Specific	alyse, K5 2 Outcom	-Evaluat e	e, K6-Cre	eate ;			

UNIT I: Introduction	(9 Hrs)
Introduction to Remote Sensing, Mineral, structural, geomorphic Anomaly Mappir	ng, Resource Estimation
UNIT II: Survey of mines Remote Sensing survey for Mine planning, Mine Monitoring, Identification of Illeg environmental Mapping and monitoring.	(9 Hrs) gal mining and Mining
UNIT III : GIS Creation of Mining maps thru GIS, creation of resource analysis thru GIS software. updation and Modification of mine plans and sections.	(9 Hrs) Systematic retrieval,
UNIT IV : Mineral Corridor Mining Information system and its utility, introduction to Mineral Corridor.	(9 Hrs)
UNIT V : Transportation Planning Transport planning, effective mine productivity MIS system creation through infor systems; ICT Linking of various intra and inter mining companies, central repositor	(9 Hrs) mation and communication ry system
	Total :(45 Hrs)
TEXT BOOKS	

- 1. Satheesh Gopi, Rasathishkumar, N.Madhu, Advanced Surveying, Total Station GPS and Remote Sensing Pearson education, 2007 ISBN: 978-81317 00679 52.
- 2. Alfred Leick, GPS satellite surveying, John Wiley & Sons Inc., 3rd Edition, 2004.
- Jie Shan and Charles K. Toth, Topographic Laser Ranging and Scanning Principles and Processing, CRC Press, Taylor & Francis Group, 2009.

REFERENCES:

- 1. Rueger, J.M. Electronic Distance Measurement, Springer-Verlag, Berlin, 1996.
- 2. Michael Renslow, Manual of Airborne Topographic LiDAR, The American Society for Photogrammetry and Remote Sensing , 2013.
- 3. R.Subramanian, Surveying and Levelling, Oxford University Press, Second Edition, 2012.

PROG	RAM						BE	-MINI	NG En	gineeri	ng				
Course UBMN	e Code: N6PA		COURS	SE NAN	ME:			Co Ho	ntact urs	Γ		Р			С
			DOCK	MECH			TT		2	0)	2			1
			RUCK	MECH	ANICS	SLAD-	11								
Year a	nd		III	Year	(VI SE	MESTI	ER)			Со	ntact h	ours pe	r week		
Semest	ter										()	2Hrs)			
Prereq	uisite				NIL										
Course	e cateo	orv	Humar	nities a	nd	Manac	rement	Pr	ofessio	nal Co	re	Profe	essiona	l Flecti	Ve
Course	caleg	ory	Social	Scienc	es	COU	rses		0105510			11010	c551011a	I LACCO	
													\checkmark		
			Basic	Scienc	e	Engin Scie	eering ence		Open F	Elective			Manda	tory	
C				1.	Explai	n the pl	hysical	and che	emical	propert	ies of v	vater			
Object	ive			2. 3	Descri Illustra	be the t	cypes of or cock pro-	wells a	and its i	limitati ed from	ons 1 core s	amnles			
object	110		At the e	nd of tl	he cou	rse the s	student	will be	able to):		umpies			
Course	e Outco	me	1.	Explain	the the	ne prop	erties of	f rock							
			2.	Illustrat	te you	ng's mo	odulus a	and poi	sson's i	ratio					
			3.	Describ	be the t	ypes of	wells a	nd its l	imitatio	ons					
			4.	Explain	inter	al frict	ion and	-axiai s ·le	trength						
			6.	Describ	be the	ground	control	instru	nents.						
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO1	2	1		2	1								1	2	2
CO2	1	2	2	2	3	2	2						2	3	1
CO3	1	2	3	3		2	2						1	2	3
C04	2	2	3	2	2		5	2					3	1	2
CO6	1	1	2	2						2		3	2	2	2
Aver	1.5	1.5	2	2.2	2	2	3	2		2		3	1.8	2.1	2
age Correl:	ation Lev	vels		1 Slive	nt(Low)			2 Mod	erate(Me	edium)		3 Subs	tantial(F	ligh)	
KL-K	nowledg	e Leve	el:K1-Ren	nember,l	K2Un	derstand	,K3-App	oly,K4-A	nalyse,	K5-Eval	uate,K6	-Create	: PO-Pr	ograme	
Outco	me:		• .DCO D-		S- asif:	• Ot • • •	•••								
0-0	ourse O	utcom	e :F50-FI	ograme	Specific	COulcon	ne								
List of	f Exper	imen	its:	<i>.</i> .	C 1										
1.	Time c	lepen	aent prot	herties (nt rock	c									
· · ·	Drilla	hility	index of	rocks	JI IOCK	5									

- 4. Young's Modulus of Elasticity and Poisson's ratio.
- 5. Rock anchorage capacity of a rock bolt
- 6. Roof convergence and other ground control instruments
- 7. Post Failure Behaviour of Rocks
- 8. Angle of Internal Friction
- 9. Measurement of vibration generated by blasting and operation of machines
- 10. Stowing/ shrinkage Characteristics
- 11. Study of flat Jack.
- 12. Study of creep of rocks.
- 13. Study of strata monitoring instruments.
- 14. Determination of shear strength of soil
- Determination of tri-axial strength of soil

TEXT BOOKS:

Geology of Petroleum – Leverson, A. Formation Evaluation – Lynch Drilling Manual – ONGC Principles of oil Production – T.E.W. Wind

REFERENCES:

1. Vutukuri, V.S., and Lama, R.D., Handbook on Mechanical Properties of Rocks, Vol. I, II, III and IV, Transtech Publication, Berlin, 1974/78.

2. Peng, S.S., Ground Control, Wiley Interscience, New York, 1987.

3. Hoek, E ., Underground Excavations in Rocks, Institute of Mining Metallurgy, London, 1980 **Designed by**" Department of Mining Engineering"

PROGRAM		BE-	Mining Engine	eering		
Course Code:	COURSE NAME:		L	Т	Р	С
UBMN6PB			0	0	2	1
	MINING MACH	INERY LAB-1				
Year and Semester	III Year (V)	SEMESTER)		Contact	t hours per week	
Prerequisite course	1	JIL			(2Hrs)	
Course category	Humanities and Social Sciences	Management courses	Profession	al Core	Professiona	l Elective
			\checkmark	/		
	Basic Science	Engineering Science	Open Ele	ective	Manda	itory
	1. Explain vari	ous types of wire ropes				
Course Objective	2. Illustrate ty	bes of gear				
j	3. Describe the	e safety procedure in mi	ning			
	4. Learn about	the power consumption	n & distributi	on in minir	ig industry	
	5. Study rope	ways used in transportat	tion of minera	als		
	6. Learn about	the safety devices impl	anted in trans	sportation e	equipment	
	At the end of the cours	se the student will be able	to:			
Course Outcome	1. Explain van	ious types of wire ropes	3			
	2. Explain Illu	strate types of gear				
	3. Explain the	safety procedure in min	ning			
	4. Explain the	power consumption & c	distribution ir	n mining in	dustry	
	5. Explain ro	pe ways used in transpo	rtation of min	nerals		
	6. Explain the	safety devices implante	d in transpor	tation equip	oment	

POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1		2			3				1			3	1	2
CO2		2			2			3			2		2		1
CO3	1		2		2		1		2		3		3		1
CO4		1								2			2	2	1
CO5			2		2		1		3				3		1
CO6		2			2		2	2	2			2		1	
Averag															
e	0.33	0.83	3 1.00	0.00	1.33	0.50	0.67	0.83	1.17	0.50	0.83	0.33	2.17	0.67	1.00
Correlat	tion Le	evels	·	1.Sligh	nt(Low)			2.Mod	lerate(]	Medium	i) 3.S	ubstanti	al(High)	
TZT TZ	1. J T	1-TZ 1	Dame area'	han V2	I In dama	and V2	A	VA Amai	June VE	Englande	V(Cmar	4.0.4			

KL-Knowledge Level:K1-Remember, K2—Understand ,K3-Apply, K4-Analyse, K5-Evaluate, K6-Create ; PO-Programme Outcome; CO-Course Outcome ;PSO-Programme Specific Outcome

OF EXPERIMENTS

Study and construction of different types of wire ropes and types of rope carpels used for rope haulages& winding, safety hooks used in winding.

Construction of compressed air operated drill

Tensioning arrangement in endless haulage and different types of haulage clips and other means

achment of tubs to the rope.

Study of haulage track, curves, diamond crossing, construction of mine tubs and cars along with couplings.

Study of safety devices provided on rope haulage roads and locomotives, roadways. Exhaust conditioner and flame traps & underground battery charging station layout. Electrical power distribution in mines, electrical layout for rope haulages and pumps,

rical and hydraulic layouts for longwall faces.

Study of aerial rope ways – driving/tensioning/loading/unloading and angle stations carriages and tightness.

Study of various types of head gear, fleet angle, study of shaft fittings, suspension gear Safety dogs and protective roofing, study of arrangements.

Text Books:

Jayanth Bhattacharya, Principles of Mine Planning-Allied Publishers, Delhi 2003.
 Hustrulid, W. and Kuchta, M., (eds)., Fundamentals of Open pit Mine Planning and Design, Elsevier, 1995.

Designed by" Department of Mining Engineering"

PROGRAM							BE-N	IININ	G Engi	neerin	g				
Course Code UBMN6PC	:	COUR	RSE NA	ME:				Conta Hour	act s	Т			Р		С
		MINE	DESIG	N PRA	CTICA	٩L			2	0			2		1
Year and		Ι	II Yea	r (VI S	EMES	STEI	R)			Cor	ntact h	ours p	er week	[
Semester											(2Hrs))		
Prerequisite				NI	Ĺ										
course															
Course categ	gory	Huma	nities	and	Mai	nage	ment	Prof	essiona	al Cor	e	Pro	fessiona	al Elec	tive
		Socia	l Scien	ces	С	ours	ses			,					
										\bigvee					
		Basi	c Scien	ice	Enş S	ginee Scien	ering .ce	Op	oen Ele	ective			Mand	atory	
Course Objective		1. sche	Unde eme	rstand	ding t	he r	nathem	atical	and c	lesigr	i part	s of r	nining	planni	ng and
Course Outco	ome	At the	end of . Uno 2. Un 3. Pr 4. Ap 5. Un 6. Ap	the co derstand repare the pply the inderstance pplying	urse the ding the nding re- he min e know nd and the co	ne stu ne min reserv e pla vledgo prep oncep	ident wi ning reso ve estima nning sch e to prep are the pi t of cash	I be at irce est ion by eme are the t design flow ca	ole to: imation 3-D ge design n layour ilculatio	n ologica of was t on and	al bloc te slop profits	k meth e	od		
POS/ COS	PO1	PO2	PO3	PO4	PO 5	PO	6 PO7	PO 8	PO9	PO1 0	PO 11	PO 12	PSO1	PSO 2	PSO3
CO1	2	1		2	1								1	2	2
CO2	1		2		3								2	3	1
CO3		2	2						1	2	3				
CO4		3						2	3	2					
CO5	2		3		2			2					3	1	2
CO6	1	1	2	2						2		3	2	2	2
Average	1.5	1.5	2	2.2	2	2	3	2		2		3	1.8	2.1	2
Correlation Lev	rels			1.Slig	nt(Low)	2.Modera	te(Med	ium)		3.Sut	ostantia	l(High)		
KL-Knowledge Outcome:	e Level:	:K1-Ren	nember,	K2Un	derstai	nd,K3	3-Apply,K	4-Anal	yse,K5-	Evalua	te,K6-(Create	: PO-Pro	ograme	

CO-Course Outcome :PSO-Programe Specific Outcome

LIST OF EXPERIMENTS

- 1. Vertical cross section method of ore reserve estimation
- 2. Ore reserve estimation by 3-D geological block method
- 3. Development of economic block model
- 4. Design of Pit layout
- 5. Cash flow calculations

- 6. Design of road width
- 7. Design of drainage system in surface mines
- 8. Design of waste dumps storage

(Total: 24 Hrs)

Reference books:

- 1. Walker, S.C., Mine Winding and Transport, Elsevier, 1988.
- 2. Statham, I.C.F., Coal Mining, Vol. I, II, III and IV, Caxton Eastern Agencies, Calcutta.
- 3. Deshmukh, D.J., Elements of Mining Technology, Vol. I, II and III, EMDEEE Publishers, Nagpur, 1979.

Designed by "Department of Mining Engineering"

Course Code UBMN701 Year an Semester Prerequisite course Course category Learning outcome Mapping c instructional Objectives with learning Outcome Aim / Purpose of the course Instructional objective of th course	C N E N N f f	ourse I IINE NGINI V Year IIL Gen 1-5	Name : EN EERIN (VII So heral - b	VIR(G emest	ONMI er) Found	lation	L ((I Cont (3 Hi (2 Pr	act ho rs) Core /	T 0 urs per onal	week	P 0 Elect	ive	C 3				
UBMN701 Year an Semester Prerequisite course Course category Learning outcome Mapping c instructional Objectives with learning Outcome Aim / Purpose of the course Instructional objective of th course	M E N N f f	IINE NGIN V Year IIL Gen 1-5	ERIN EERIN (VII So heral - b	emest	Found	lation	L ((Cont (3 Hi (2 Pr	act ho rs) Core /	0 urs per onal	week	0 Elect	ive	3				
Year an Semester Prerequisite course Course category Learning outcome Mapping of instructional Objectives with learning Outcome Aim / Purpose of the course Instructional objective of th course for the course Cour	f T S	V Year IIL Gen 1-5 o study	· (VII Someral	emest	er) Found	lation - d	e	Cont (3 Hi (3 Pr	act ho rs) Core / ofessi	urs per onal	week	Elect	ive					
Year an Semester Prerequisite course Course Course category Learning outcome Mapping constructional Objectives with learning Outcome Aim / Purpose of the course Instructional objective of th course Course	I IV N I I I I I I I I I I I I I I I I I I	V Year IIL Gen 1-5 o study	reral - b	emest	er) Found	lation - d	e	Cont (3 Hi (Pr	act ho rs) Core / ofessio	urs per onal	week	Elect	ive					
Semester Prerequisite course Course Course category Learning outcome Mapping Outcome Aim / Purpose of the course Instructional objective of th course POS/	N f T st S	a 1-5 o study	neral - b	c	Found	lation - d	((3 Hi (3 Pr	rs) Core / ofessio	onal		Elect	ive					
Prerequisite course Course category Learning outcome Mapping instructional Objectives with learning Outcome Aim / Purpose of the course Instructional objective of th course	N I I I I I I I I I I I I I I I I I I I	a 1-5 o study	neral - b	c	Found	lation - d	e	(Pr	Core /	onal		Elect	ive					
course Course category Learning outcome Mapping c instructional Objectives with learning Outcome Aim / Purpose of the course Instructional objective of th course	f T st	Gen a 1-5 o study	neral - b	c	Found	lation - d	e	(Pr	Core / ofession	onal		Elect	ive					
Course category Learning outcome Mapping co instructional Objectives with learning Outcome Aim / Purpose of the course Instructional objective of th course	f T st S	a 1-5 o study	- b	c	Found	- d	e	Pr	ore /	onal		Elect	lve					
Learning outcome Mapping c instructional Objectives with learning Outcome Aim / Purpose of the course Instructional objective of th course	f T st	a 1-5 o study	- b	c		- d	e	11		onai								
Learning outcome Mapping c instructional Objectives with learning Outcome Aim / Purpose of the course Instructional objective of th course	f T st	a 1-5 o study	b	c		d r	Learning a b c d e f g H i j											
outcome Mapping or instructional Objectives with learning Outcome Aim / Purpose of the course Instructional objective of th course	f T st	1-5 o study				outcome												
Mapping c instructional Objectives with learning Outcome Aim / Purpose of the course Instructional objective of th course	f T st	1-5								8			5					
instructional Objectives with learning Outcome Aim / Purpose of the course Instructional objective of th course	T st	1-5																
Objectives with learning Outcome Aim / Purpose of the course Instructional objective of th course	T st S	1-5 o study																
learning Outcome Aim / Purpose of the course Instructional objective of th course	T st	o study		learning														
Aim / Purpose of the course Instructional objective of th course	T st	o study																
of the course Instructional objective of th course	st			anont		a haat	ina	mina	finas	inundo	tion and	aveloci	000.00	dta				
Instructional objective of th course	S	udv ah	y about	spon ne res	aneou cue fi	s neat rst aic	ling, i 1 and	inne illini	minati	, munua on	tion and	explosi	ons an	u to				
objective of th course	_	tudents	s will be	e able	to	ist an	<u>a una</u>	* 11101	minuti	.011.								
course	e 1	1 D	escribe	the an	reas pi	one to	o fire	e and	its pr	eventive	measu	res						
POS/		2 D:	iscuss t	he exp	plosio	ns in a	a min	ne an	d its r	eport								
205/		3 Ill	lustrate	the w	vater st	toring	struc	cture	s in m	ines								
208/	4	4 Ez	xplain t	he res	scue e	quipm	ents	used	l durin	g emerg	gency si	tuations						
POS/		5 D	escribe	the li	ghtnin	g sou	rce ir	n unc	lergro	und mir	nes							
	(b Ex	xplain t	he fire	e prev	entior	n met	thods	s in mi	ining in	dustry							
COS PO1 PC	2	PO3	PO4	PO5	PO6	PO7	PO	08	PO9	PO10	PO11	PO12	PSO1		PSO2	PS		
CO1 3 3		3	3										3		2	-		
CO2 2 3		2	3										2	r	3	1		
CO3 2 2		2	2			1							3		3	2		
CO4 1 1		2	1			1							3		2	3		
CO5 1 1		1	3										2		2			
CO6 1 1		1	1	1	İ	1							2		1	1		
Average 1.66 1.8	3	1.83	2.16										2.5		2.16	2.5		
Correlation Levels		•	1.Slig	ght(Lo	ow)	-	2.	.Mo	derate	e(Mediu	ım)	3.Sul	ostanti	al(High))			
KL-Knowledge Level:K1-J PO-Programme Outcome;	Rem CO-	ember, I •Course	K2—Un Outcom	dersta ne ;PSC	nd ,K 3 -)-Prog	Apply ramme	, K4- e Spec	Analy cific C	zse, K5- Outcom	-Evaluate e	e, K6-Cre	eate ;						

Mine fires - Causes and classification of mine fires - Spontaneous combustion - mechanism, stages of

(Under Section 3 of UGC Act 1956) SYLLABUS FOR UNDER GRADUATE IN ENGINEERING AND TECHNOLOGY B.E – MINING ENGINEERING ACADEMIC YEAR 2016-2020 (BATCH - I)

spontaneous combustion – susceptibility indices – factors affecting spontaneous combustion – detection and prevention of spontaneous heating and accidental fires – dealing with mine fires – direct and indirect methods, fire stopping – Re-opening of sealed-off areas – Fires in quarries – Coal stacks and waste dumps.

UNIT II MINE EXPLOSIONS

Fire damp and coal dust explosions – causes and prevention, explosive limits – Stone- dust and water barriers – Explosion in quarries over developed pillars – Investigation after an explosion.

UNIT III INUNDATION

Causes and prevention – Precautions and techniques of approaching old workings – Dewatering of waterlogged working – safety boring apparatus – pattern of holes – Design and construction of water dams and barriers.

UNIT IV RESCUE AND RECOVERY

Rescue equipment and their uses - Classification of rescue apparatus - Resuscitation

- Rescue stations and rescue rooms - Organization of rescue work - Emergency preparedness and response system.

UNIT V – ILLUMINATION

Cap lamps – Layout and organization of lamp rooms – Standards of illumination – Photometry and illumination survey – Lighting from main and other sources.

TEXT BOOKS:

1. Kaku L.C., Fires in Coal Mines, Oriental Publishers, II Edition, 1985.

2. Ramlu, M.A., Mine Disasters and Mine Rescue, Oxford and IBH Publishers, 1991.

REFERENCES:

1. Ramlu, M.A., Mines Fires, Explosion, Rescue, Recovery and Inundations, Mukhertu Publishers, Kharagpur, 1989

2. Misra, G.B., Mine Environment and Ventilation, Oxford University Press, 1993.

- 3. McPherson, M.J., Subsurface Ventilation and Environmental Engineering, Chapman & Hall
- 4. Publication, London, 1993.

5. Sarkar, S.K. and Sarkar, S., State of Environment and Development in Indian Coalfields, Oxford and IBH, 1996.

6. Classified Circulars by D.G.M.S., Dhanbad.

Designed by "Department of Mining Engineering"

(10 Hrs)

(10 Hrs)

(10 Hrs)

(TOTAL: 50 Hrs)

PRO	GRAM		BE	- Min	ing En	gineerii	ng									
Cours	e Code		Cou	rse N	ame :	0	0			L		Т			С	
UBM	N702		MIN	VING	MAC	HINER	Y II	Ī		3		1	()	4	
			•											•		
Year		a	nd IV	Year (VII Se	mester)		Co	ntact h	ours pe	r week				
Semes	ster								(4	Hrs)						
Prerec	quisite		MIN	VING	MAC	HINER	ΥI									
Cours	e															
Cours	e categ	ory		Gene	eral	F	oundatio	n		Core	/]	Elective	•	
	_]	Profess	sional					
					-		-			C-26)			-		
Learn	ing		a		b	c	d	e		f	g	h	Ι		k	
outcon	me															
Mapp	ing		of													
instru	ctional															
Objec	tives	wi	th 1-	5				1-5					1-5	5		
learni	ng															
Outco	me															
Aim	/ Purp	ose	Tou	under	stand the	ne funct	ioning o	f win	ding	g engin	es, win	ding ac	cessorie	es, surfa	ice and	
of the	course	9	pit t	ottor	n layou	its, vari	ous coal	tace 1	mac	hinery,	, design	and co	nstructi	on deta	ils of	
T (Exc	avatıı	<u>1g & tr</u>	ansport	ing equip	oment	t use	ed in su	irface n	nines.				
InstructionalStudents will be able toobjective ofthe1Describe the various types of engines used in mining																
object	objective of Coursethe1Describe the various types of engines used in mining 2Discuss the auxiliary equipment used in engines															
Cours	Course 2Discuss the auxiliary equipment used in engines 3Explain the machineries involved in coal mining															
			-4De	scribe	e the w	orking 1	principle	and c	ner	ation of	f variou	is types	ofexca	vators		
			-5Di	scuss	the tra	nsporta	tion equi	pmen	it ne	eded in	n minin	g indus	trv			
			6 E	xplair	the m	achiner	ies & au	xiliary	y equ	uipmer	nt used	in mini	ng			
				1					<u> </u>	•			U			
POS											PO1	PO1	PO1	PSO	PSO	PSO
/	PO1	PO2	PO3	PO ₂	4 PO	5 PO	6 PO7	PC)8	PO9	0	1	2	1	2	3
	2	1		2		2		2				1		2		1
	2	1	2	2	1	2		2			1	1	2	2	2	1
C02	2	2	2	3	1	1	2	2		2	1		2	2	2	2
CO_4	2	2	3	5	2	1	2	-		2	5	1	2	2	2	2
C04	1		3		2		2	+		1	2	1	2		2	~
CO5	1	2	5	1	2	3	2			2	2	2	2	3	2	2
Aver	16	17	26	2	1.6	27	2	2		<u>-</u> 16	2	13	2	23	2	- <u>-</u> 1.8
age	1.0	1./	2.0	2	1.0	2.2	~			1.0	2	1.5	-	2.5	2	1.0
Correl	ation Le	vels	I	1.Sl	ight(Lo	w)	1	2.1	Mode	erate(M	edium)	1	3.Sub	stantial()	High)	1
KL-K	nowled	ge Level	:K1-Re	mem	ber,K2	-Under	stand.K3	-Appl	ly,K	4-Anal	vse,K5-	Evaluat	e,K6-C	reate :	PO-Pro	grame
Outco	me:				, –		,	I. I.	• / -		• • •		,		-	
CO-C	ourse O	outcome	:PSO-I	Progra	ame Sp	ecific O	utcome									

UNIT I INTRODUCTION

Winding Engines – Winding systems – drum winders – drives – mechanical braking of winders – safety devices in winding – overwind and overspeed protection – Koepe and multi-rope friction winding – electrical layouts – Duty cycles of drum winders of different drum cross-sections – Special problems of deep shaft winding.

UNIT II WINDING ACCESSORIES AND LAYOUTS

Head gear and its design – head sheave – cages and skips – suspension gear – shaft fittings and appliances – guides - keps – signalling systems – winding calculations relating to rope size & numbers – capacity & power requirement for cages, skips, drum and Koepe winding systems

UNIT III COAL FACE MACHINERY

Construction – salient electrical and mechanical features and operations of coal drills and their control panels – coal cutters – different types of mechanical loaders – coal ploughs, cutter loaders, continuous miners – development road headers in face mechanization – longwall mining equipment – electrical and hydraulic layouts – modern concepts in underground mine mechanization.

UNIT IV EXCAVATION AND LOADING MACHINERY IN SURFACE MINES (10 Hrs)

Classification – hydraulic system diagram – under carriage – design and constructional details of front end loaders – hydraulic excavators and electric rope shovel – backhoe – dragline – bucket wheel excavator – bucket chain excavator and surface miners.

UNIT V OTHER MACHINERY IN SURFACE MINES

Classification of transport equipments – Understanding of construction and technical specifications of dumpers of different types including multi-axial dumpers – Tractors – trailers – dump trucks – rippers – motor graders – bull dozers – rock breakers – road compactors – water tankers.

TEXT BOOKS:

- 1. Amitosh Dey, Heavy Earth Moving Machinery, Lovely Prakashan Publications, Dhanbad, 2000.
- 2. Walker, S.C., Mine Winding and Transport, Elsevier, 1988.
- 3. Ramlu, M.A. Mine Hoisting, CRC Press, 1996

REFERENCES:

Hartman, H. L. (Editor), SME Mining Engineering Handbook, 3rd edition, Vol I & II, Society of Mining 1. Engineers, New York, 2011.

Cherkassy, B.M., Pumps, Fans, Compressors, MIR Publishers, 1980.

SYLLABUS FOR UNDER GRADUATE IN ENGINEERING AND TECHNOLOGY **B.E – MINING ENGINEERING** ACADEMIC YEAR 2016-2020 (BATCH - I)

(10 Hrs)

(10 Hrs)

(10 Hrs)

(10 Hrs)

(TOTAL: 50 Hrs)

PROGRAM	BE - 1	Mining Engineering L T P C SEA MINERAL 3 1 0 4 LORATION 3 1 0 4 ear (VII Semester) Contact hours per week (4 Hrs) Contact hours per week General Foundation Core / Professional Elective Professional - - E-11 b c d e f g h i j k Image: second													
Course Code	Cours	e Name :					L	Γ	1	Р		С			
UBMN704	SUBS	EA		MINER	RAL		3	1		0		4			
	EXPL	ORATIC	N												
Veer and	IV Vo	or (VII S	omosto	r)		Co	ntact h	oure per	wook						
Semester	10 10		emester	.)		(4)	Hrs)	ours per	WCCK						
Prerequisite	NIL														
course															
Course category	G	eneral	F	Foundatio	on		Core	/		Eleo	ctive				
							Profess	sional							
. .		-		-			-		1	E-	•11	1			
Learning	a	b	С	d	e		Ť	g	h	1	J	K			
outcome	\checkmark				\checkmark					✓					
Mapping of															
Objectives with	15				1 5					1.5					
learning	1-5				1-5	,				1-5					
Outcome															
Aim / Purpose	To int	roduce th	e marin	e geolog	v, ex	ploit	tation to	echnique	es and e	equipmer	nt's invo	lved in			
of the course	marin	e explora	tion.	0 0		•		1		1 1					
Instructional	Stude	nts will be	e able to)											
objective of the	1	Define th	e types	of marin	e env	viron	ment								
course	2	Discuss the	he statu	s of subs	ea mi	ining	g in Ind	lia							
	3	Different	iate the	physical	and c	chen	nical pr	roperties	of seav	water					
	4	Describe	the rese	rve estin	natior	n of	marine	sedimer	nts						
	5	Discuss t	he techr	nologies	used	to u	nearth t	the marii	ne mine	erals					
	6	Explain t	he estim	nation &	produ	uctio	on of m	inerals f	rom oc	ean envi	ronment	t			

UNIT 1 INTRODUCTION

Marine Environment – Bathymetry, isobaths – Marine sediments – terrigenous, pelagic – Lithogenous, Biogenous, Hydrogenous, Cosmogenous.

UNIT II STATUS OF INDIAN MARINE RESOURCES

Development and status of ocean resources of mining in India and other parts of the world – Ocean profile – ocean floor topography – economic exclusive zone – fundamentals of law of the sea – coastal zone & its characteristics.

UNIT III MARINE GEOLOGY AND RESOURCES

Physical and chemical properties of seawater – overview of marine mineral deposits – deep-sea bed mineral resources – polymetallic nodules – sulphate nodules – chemicals from the ocean – dissolved and undissolved mineral deposits – sea water as resource and beach placers.

UNIT IV EXPLORATION OF MARINE DEPOSITS

Shallow and deep sea bed – Oceanographic instruments – ocean bottom samplers – ocean bathymetry – temperature measurement systems – water samplers - ocean dynamic analysis – beach placer

(**10 Hrs**)

(10 Hrs)

(10 Hrs)

mining – underwater photographs.

UNIT V EXPLOITATION OF MARINE DEPOSITS

(10 Hrs)

Deep sea drilling methods – drag buckets – grab buckets – coring systems – beach placer mining – vehicles and transportation – offshore oil platform.

(TOTAL: 50 Hrs)

TEXT BOOKS:

1) Chatterjee, S.K., An Introduction to Mineral Resources, Wiley Eastern Ltd., 1983.

REFERENCES

- 1) Shepherd, F.P., Sub-marine Geology, Harper and Row, New York, 1963.
- 2) Graff, W.J., Introduction to Offshore Structures: Design, Fabrication and Installation, Gulf Publishing Company, London, 1961.
- 3) Herbich, J.B., Coastal and Deep Ocean Dredging, Gulf Publishing Co. Houston, 1975.
- 4) Murthy, T.K.S., Mining the Ocean, CSIR Golden Jubilee Series, CSIR Publications, New Delhi, 1995.

Designed by "Department of Mining Engineering"

PROGRAM	BE - M	lining Er	gineeri	ng							
Course Code	Course	Name :				L]	Γ	Р		С
UBMN705	MININ	G ECO	NOMIC	S		3	()	0		3
Year an	d IV Yea	r (VII S	emester	;)		Contact h	ours per	week			
Semester						(3 Hrs)					
Prerequisite	NIL										
course								T			
~	Ge	enera	-			~	,		-		
Course category		I	F	oundatio	n	Core	/		Elec	etive	
			_			Profess	sional				
Learning		-		-		C-25	1	<u> </u>	-		V
Learning	a	D	С	a	e	1	g	n	1	J	ĸ
outcome	 ✓ 				✓				✓		
Mapping (IC										
Objectives	h 15				1 5	·			15		
learning	III 1-5				1	, 			1-5		
Outcome											
Aim / Purnose	Study o	of financ	e and ac	countin	σest	imation and	l 1 valuati	on of n	nineral de	nosits :	and
of the course	project	appraisa	l and at	counting	5, 050	induition un	a varaati		interar ac	posits	lina
Instructional	Student	ts will be	e able to)							
objective of the	1Desc	ribe the	role of 1	minerals	in de	eveloping In	ndian ec	onomy			
course	2Discu	uss the sa	ampling	method	s and	reserve est	imation	proced	ure		
	3 Illust	rate the	project i	is viable	or no	ot by using	economi	c calcu	lations		
	- 4Desc	ribe the	cash flo	w in mi	ning	industry					
	- 5Disci	uss the s	ource of	fund to	deve	lop a minin	g				
	6 Expla	ain the fi	nance n	nanagem	ent i	n mining in	dustry				

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PS O1	PS O2	PSO3
CO 1	1							1				3			
CO 2			1				1				2				
CO 3		1					1			1		3			
CO 4			1					1			3				
CO 5			1								3				
CO 6												3			
Avg.	1.0 0	1.0 0	1.0 0	0	0	0	1.0 0	1.0 0	0	1.0 0	2.6 7	3.0 0	0	0	0

UNIT I INTRODUCTION

Mineral Economics – Special features of mineral and mining industry – statistics of important and strategic minerals of India – Grading and pricing of coal, limestone, bauxite and iron ore – Pricing of metals – concentrates and ores – Conservation of minerals – National mineral policy – Global mineral marketing.

UNIT II SAMPLING AND ESTIMATION OF RESERVES

Methods of sampling during exploration – mining and dispatch – Records and analysis of core sampling data – Tenor, grade and specification – Classification of reserves – Estimation of reserves – Applications of geostatistics.

UNIT III ECONOMIC EVALUATION

Break-even analysis- Economic appraisal of capital investments by NPV and IRR methods-Comparison of investment alternatives- Feasibility studies- Critical variables, price forecasting and sensitivity analysis.

UNIT IV ORGANISATIONAL AND FINANCIAL MANAGEMENT

Forms of business organizations- Sources of finance- Winding up of companies- Wage systems and incentives- Cost accounting and budgetary control.

UNIT V FINANCE AND ACCOUNTING

Source of mine funds – shares, debentures, fixed deposits, sinking fund, capital gearing, P&L account, balance sheet, typical case studies of mine feasibility – Cost estimation of individual mining operations and overall mining cost – cost control methods.

(Total: 50 Hrs)

TEXT BOOKS:

- 1. Deshmukh, R.T., Mineral and Mine Economics, Mira Publications, Nagpur, 1986.
- 2. Arogyaswamy, R.N.P. Courses in Mining Geology, Oxford and IBH Publishing Co., 1994.

(10 Hrs)

(**10 Hrs**)

(10 Hrs)

(10 Hrs)

REFERENCES

- 1) Sloan, D.A., Mine Management, Chapman and Hall, London, 1983.
- 2) Chatterjee, K.K., Mineral economics, Wiley Eastern, 1992.
- 3) Park, R.J., Examination and Valuation of mineral property
- 4) How to read a balance sheet ILO 1992.
- 5) Indian Mining Year Book 1994 MMRD Act and Mineral Concession Rules.

Designed by "Department of Mining Engineering"

PROG	RAM		BE	- Minin	g Engi	neering										
Course	Code		Cou	rse Nar	ne :	0			L		Т	Р		С		
UBMN	1706		UNI	DERGE	ROUNI)	SPAC	СE	3		0	(0	3		
			TEC	HNUL	JUGY											
Year		а	nd III Y	Year (V	/II Sem	ester)		Co	ontact h	ours pe	r week					
Semest	er					,		(3	3 Hrs)	r						
Prerequ	uisite		NIL													
course												1				
Course	catego	ory	Huma Socia	nities a l Scienc	nd N es	Aanager	ment co	urses	Profes	ssional (Core		Profess	sional I	Elective	
		-	Basi	c Scienc	e l	Enginee	ring Sci	ence	Ope	n Electi	ive		Μ	andato	ory	
										\checkmark						
Instruct	tional		1D	afina th	o tuno	ofund	orground	d avaa	votiona							
course	ve or		2D	escribe	various	s metho	ds of tu	nneling	vations v techniq	11165						
course			<u></u> 3E	xplain t	he met	hods of	drilling	and bl	lasting of	of subsu	irface					
			3Explain the methods of drilling and blasting of subsurface 4Discuss the machineries used for convenience of mine workers 5Describe the equipments employed in supporting the tunnels 6 Illustrate the process of subsurface mining and equipment used													
		4Discuss the machineries used for convenience of mine workers 5Describe the equipments employed in supporting the tunnels 6 Illustrate the process of subsurface mining and equipment used														
	4Discuss the machineries used for convenience of mine workers 5Describe the equipments employed in supporting the tunnels 6 Illustrate the process of subsurface mining and equipment used															
		At	the end	of the co	ourse the	e studen	t will be	able to:	:							
Course	Outco	me	1. Ez	xplain	the type	es of un	dergrou	ind exc	avation	S						
			2. D	escribe	various	s metho	ds of tu	nneling	g techni	ques						
			3. Ez	xplain t	he metl	nods of	drilling	and bl	asting o	of subsu	rface					
			4. D	iscuss t	he mac	hineries	s used fo	or conv	venience	e of min	e work	ers				
			5. D	escribe	the equ	ipment	's empl	oyed ir	n suppor	rting the	e tunnel	ls				
			6. llı	istrate t	he proc	cess of s	subsurfa	ace min	ning and	equipr	nent us	ed				
		1	1						Т					1		
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1	3	1	2		3		1				1	1	3		2	
CO2	2	2		2		1		2		1			3			
CO3	2		1		3				1			2	3		2	
CO4	2			2							1		3			
CO5	3				3				1			1	3		2	
CO6			1													
Avera							Ì							Ī		
ge	2.00	0.5	0 0.50	0.67	1.50	0.17	0.17	0.33	3 0.33	0.17	0.33	0.67	2.50	0.00	1.00	

(Under Section 3 of UGC Act 1956) SYLLABUS FOR UNDER GRADUATE IN ENGINEERING AND TECHNOLOGY **B.E – MINING ENGINEERING** ACADEMIC YEAR 2016-2020 (BATCH - I)

DEEMED TO BE UNIVERSITY

ACADEMY OF

1.Slight(Low)

ON AND TRAINING

2.Moderate(Medium)

KL-Knowledge Level:K1-Remember, K2—Understand ,K3-Apply, K4-Analys PO-Programme Outcome; CO-Course Outcome ;PSO-Programme Specific O	se, K5-Evaluate, K6-Create ; utcome
UNIT I INTRODUCTION	
Scope and application - historical development - art of tunneling, tun	nel engineering
(10 Hrs)	
 future tunnelling considerations – Types of underground excav parameters influencing – location, shape and size, geological aspec 	vations – Tunnel, adit, decline, shaft, ets – planning and site investigations.
UNIT II UNDERGROUND EXCAVATIONS	(10 Hrs)
Tunnelling methods – Types and purpose of tunnels – factors aff	tecting choice of excavation technique – soft

ground tunnelling, hard rock tunnelling, shallow tunnelling, deep tunnelling – Shallow tunnels- cut and cover, cover and cut, pipe jacking, jacket box excavation – techniques, method of muck disposal, supporting

problems encountered and remedial measures. UNIT III DRILLING AND BLASTING UNDERGROUND SPACE (10 Hrs)

Drilling – drilling principles, drilling equipment, drill selection, specific drilling, rock drillability factors

- Blasting - explosives, initiators, blasting mechanics, types of cuts- fan, wedge and other - blast design, tunnel blast performance - powder factor, parameters influencing, methods of predictions – mucking and transportation equipment selection.

UNIT IV UNDERGROUND SPACE MECHANISATION

Tunnelling by Roadheaders and impact Hammers – Cutting principle – method of excavation, selections, performance, limitations and problems – Tunnelling by tunnel boring machines – Boring principles, method of excavation, selection, performance, limitation and problems – TBM applications.

UNIT V UNDERGROUND SPACE SERVICES

Supports in tunnels – Principle types of supports and applicability – Ground Treatment in Tunnelling – Adverse ground conditions and its effect on tunnelling – Excavations of large and deep tunnels – cavers - Tunnel Services – Ventilation, drainage and pumping – Tunnelling Hazards.

TEXT BOOKS:

Correlation Levels

- 1) Hudson, J.A., Rock Engineering Systems Theory and practice, Ellis Horwood.
- 2) Clark, G.B., (1987), Principles of Rock Fragmentation, John Wiley and Sons, New York.

REFERENCES:

Legget, R.F., Cities and Geology, McGraw-Hill, NewYork, 624 p., 1973. Designed by" Department of Mining Engineering"

(TOTAL: 50 Hrs)

(10 Hrs)

3.Substantial(High)

PROGRA	AM							BE-	Mining	Enginee	ring				
Course C	Code:									L	Т		Р		С
UBMN7	07									3			0		3
			Advar	nced M	lining '	Techno	ology				0				
Year		and	I	V Yea	r (VII	SEME	STER)			Contac	et hours	per we	ek	
Semester	:											(3Hrs	;)		
Prerequis course	site				NI	L									
Course o	catego	ory	Hum Socia	anities al Scier	and ces	Ma	nageme courses	ent	Prof	essional	Core]	Professio	nal Elect	ive
		_		. ~ .										√	
			Bas	ic Scier	ice	En	gineeri Science	ng	O	pen Elec	tive		Mar	ndatory	
~				1	. Desc	cribe th	e metho	ods and	growth	n in rock	excavat	tion system	ems		
Course				2	. Desc	cribe th	e prop	erties re	elated to	o rock ex	cavatio	n proces	S		
Objective	e			3	. Desc	cribe th	e vario	ous met	hods us	ed in the	e cutting	of rocks	5		
				4	. Des	cribes t	he tool	s emplo	byed in	excavat	ion proc	ess			
				5	. Desc	cribes ti	ne tools	s emplo	yed in	rock exc	avation	process			
			At the e	end of th	ne cours	e the stu	ident wi	ill be ab	le to:						
Course C	Outcon	me	7.	Unde	rstand t	he ecoi	nomic ł	block m	odel in	manual	and con	nputer m	nethods		
			8.	Expla	in abou	it vario	us the g	geotech	nical p	arameter	s role in	slope st	ability		
			9. 10	Desci	ibe the	produc	tion an	id equip	oment p	lanning	opencas	t mines	· · · · · · ·		
			10	. Kean	ze the	import	ance c	or vario	ous exp	nosives,	initiato	rs and	significa	ince of t	initiation
			11	Discu	ince.	nodern	trends	in oper	ncast m	ines					
			Explain	recent	advance	ement in	rock ex	cavatio	n	mes.					
POS/															
COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1			1			1			3						
CO2	1						1								
CO3		1			1			2							
CO4			1				1		2						
CO5		1					1								
CO6															
Aver age	0.1	0.3	0.3	0	0.1	0.1	0.5	0.3	0.8	0	0	0	0	0	0
Correlat	tion I	Levels		1.Slig	ght(Lo	w)		2.1	Aodera	te(Med	ium)	3	S.Substa	ntial(Hig	gh)
KL-Know	vledge	Level:H	K1-Rem	ember,K	2Unde	erstand,H	K3-Appl	y,K4-An	alyse,K	5-Evaluat	e,K6-Crea	ate : PO-	Programe	e Outcome	:
CO-Cour	se Out	come :	PSO-Pro	ograme S	Specific	Outcome	<u> </u>								

UNIT I INTRODUCTION

Concepts, historical developments in rock excavation systems, factors affecting the rock fragmentation, mechanism of rock breakage and fracture; their application to rock fragmentation methods- explosive action, cutting, ripping and impacts.

UNIT II ROCK PROPERTIES

Rock properties related to excavation process; application of compressive, tensile and tri- axial strengths, index tests and abrasivity, anisotropy, elasticity, porosity, laminations, bedding and jointing in rock fragmentation process.

UNIT III ROCK CUTTING TECHNOLOGY (9 Hrs) Mechanism of drilling - rotary, percussive, rotary percussive, mechanics of rock cutting, theory of single tool rock cutting, crack initiation and propagation, breakage pattern, rock excavation by cutting action - picks, discs, roller cutters, water jet cutting, methods of evaluation of drillability and cuttability

index of rocks.

UNIT IV ROCK CUTTING TOOLS

Rock cutting tool materials, different types, relative applications and their choice, tool shape and size, specific energy consumption, tool wear, effect of operational parameters on tool performance, maintenance and replacement of cutting tools of excavating machines.

UNIT V ROCK EXCAVATING MACHINES

Excavating machines, principles, operation, applicability and technical indices of road headers, TBM'S Coal face machines and bucket wheel excavators.

TEXT BOOKS:

- 1. Hartman, H.L., Introductory Mining Engineering, John Wiley and Sons, New York, 1987.
- 2. Clark, G.B., Principles of Rock Fragmentation, John Wiley and Sons, New York, 1987.

REFERENCES

- Hartman, H. L. (Editor), SME Mining Engineering Handbook, 3rd edition, Vol I & II, Society of Mining 1. Engineers, New York, 2011.
- Chugh, C.P., Diamond Drilling, Oxford-IBH, 1984. 2.

Designed by "Department of Mining Engineering"

SYLLABUS FOR UNDER GRADUATE IN ENGINEERING AND TECHNOLOGY **B.E – MINING ENGINEERING** ACADEMIC YEAR 2016-2020 (BATCH - I)

(9 Hrs)

(9 Hrs)

(9 Hrs)

(Total: 45 Hrs)

(9 Hrs)

PROGRAM	BE - N	aning Eng	gineering	g									
Course Code	Course	e Name :)			L]	Γ	Р		С	
UBMN708	Advance	ed Surface N	Aining T	echnolog	У		3	()	0		3	
								-			-		
Year and	IV Yea	ar (VII Ser	nester)			Co	ontact ho	ours per	week				
Semester						(3	Hrs)						
Prerequisite	NIL												
Course													
Course	G	eneral	F	oundatio	n		Core	/		Elect	tive		
category							Profess	sional					
		-		-	1		C-25	5			-		
Learning	а	b	с	d	e		f	g	Н	i	j	k	
outcome													
Mapping of instructional													
Objectives with	1-5				1-5	5				1-5			
learning													
Outcome													
Aim / Purpose	1.	Study abo	out Ore	and eco	nomi	c bl	ock mo	del and	ultimat	e pit limit	calcul	ations.	
of the course	2.	Students	must l	know ab	out	Ore	reserv	e estim	ation t	echniques	s and	different	
		drilling te	chniqu	es during	g exp	lora	ation.						
	3.	Students	should	have bas	sic kr	10W	ledge al	bout bre	eak eve	n analysis	s and e	conomic	
		appraisal	of mini	ng proje	cts di	urin	ig feasit	oility stu	dies.				
	4.	Students	ennanc	e their k	(now		ge on di	ifferent	explosi	ives, initi	ators, 1	initiation	
	5	Pecent de	and Dia	st design	ll Calc	cula	uons. nining n	athods	and the	vir annlige	hility i	n	
	5.	different	scenario	ons are sti	idied	bri	eflv	lictitous		n appner	ionity I	11	
				Jo ure su			011 <i>y</i> .						
	At the er	nd of the co	urse the	student w	ill be	able	e to: odol in m		ndoom	nutor mot	ande		
	1.	Eveloin of	hout was	vious the	DIOCK	. III(lanuar a	na com	long stab	100S		
	2.	Explain a	dout vai	nous the	geole	· ·	ncal para	ameters	role in s	slope stab	mty		
	3.	Describe	the pro	duction a	ind ec	Juip	ment pla	anning o	pencast	mines	c	,. ,.	
	4.	Realize th	le impoi	tance of	vario	ous (explosiv	es, initia	itors and	d significa	ince of	initiation	
Instructional	_	sequence.											
objective of	5.	Discuss th	ne mode	rn trends	s in op	pend	cast min	es.					
the	6.	Students 1	earn ab	out recen	nt adv	anc	ement.						
course													

POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1	PO12	PSO1	PSO2	PSO3		
CO1	2	-	1	-	2	2	3	-	-	2	3		2	2	1	1		
CO2	3	2	2	1	2	-	2	-	-	-	2		1	1	2	1		
CO3	-	-	2	-	-	-	2	-	-	2	2		2	2	2	2		
CO4	-	-	-	-	-	2	2	-	-	-	3		2	2	1	1		
CO5	-	-	2	1	1	1	2	-	-	2	2		2	2	1	1		
CO6	2	1	2	1	2	3	2	-	-	2	3		2	2	2	2		
Average	1.1	1.5	2.25	1	2	2	2.22	-	-	2	2.5		2.1	1.8	1.5	1.3		
Correlatio	on Leve	els		1.Slig	ht(Low)	•		2 Mo	lerate(N	Medium)		35	ubstantial	High)	2 2 1 1 1 1 2 2 8 1.5 1.3 2h)			

KL-Knowledge Level:K1-Remember,K2--Understand,K3-Apply,K4-Analyse,K5-Evaluate,K6-Create : PO-Programe Outcome: CO-Course Outcome :PSO-Programe Specific Outcome

UNIT – I- Surface Mining System

Classification of surface mining equipments vis-à-vis unit operation- main components, layout, function and operations

Unit – II – Equipment Selection

Equipment selection criteria and procedures, application and selection

UNIT – III – Equipments utilization

Types, basic operations, maintenance and capacity utilization, applicability and selections

UNIT – IV – surface blast explosives

Types of explosives for surface blast, explosives properties, explosives performance testing, selection criteria UNIT - V - Production planning in surface mine – Round production

Overview of surface blast design, selection of explosives, primer, booster; Types of initiations, selection;

Initiation sequences; blast production calculation; Production and productivity assessment

TEXT BOOKS :

- 6. W. Hustrulid, M. Kuchta and R. Martin, Open Pit Mine Planning & Design.
- 7. Fundamentals of Open Pit Mine Planning & Design: Hustrulid, W. and Kuchta, M.
- 8. Surface Mining : Kennedy, B.A., 2nd Edition, SME, New York, 1990.
- 9. Surface Mining Technology, : Das, S.K., Lovely Prakashan, Dhanbad, 1994.
- 10. SME Mining Engg. Hand book Vol.I and II: Cummings, A.B. and Given, I.V., New York

REFERENCES:

- 3. SME Mining hand book I,II
- 4. S. k. Das Surface mining technology.

PROG	RAM			BE - 1	Minir	ng Eng	gineeri	ng									
Course	Code			Cours	e Nai	me :		-			L		Г	P		C	
UBMN	17PA			MINI	NG N	MACH	IINER	Y LAE	8 - II		0		0		2	1	
										•							
Year			and	IV Ye	ar (V	VII Se	mester	;)		Con	tact ho	urs per	week				
Semest	er									(2 H	rs)						
Prerequ	uisite			NIL													
course																	
Course	cotog			C	iener:	a	Fo	undati	on		Coro /			Б	loctivo		
Course	catego	Лу			1		I'U	unuan	UII	P	rofessi	onal		Ľ			
					-			-		1	C-30	Jilui			-		
Learnin	ng			а	1	b	с	d	e		f	g	h	i	i	k	
outcom	ne											<u> </u>					
Mappin	ng		of														
instruct	tional																
Objecti	ives	•	with	1-5					1-5	5				1-	5		
learnin	g																
Outcon	ne			m (1 .1				1.					1 1'00			
Aim /	Purp	ose		To stu	idy th	ne vari	ious m	ining r	nachin	eries,	ropes,	conve	yors an	d diffei	rent typ	es of	
Instruc	tional			Studo	nes u	$\frac{1}{11}$	$\frac{1}{2}$ under $\frac{1}{2}$	ground	1 mine	s							
objectiv	ve of		the	1111n	strate	the c		, kins &	their f	itting	and h	akes (of wind	ers & h	aulers		
course			une	2Ex1	lain	the di	fferent	types	of con	vevors	s comp	onents	& safe	etv devi	ices		
course				3Illu	strate	e the c	oal dri	ll and i	ts elect	rical 1	banel/g	ate en	l box				
				4Des	cribe	e the d	ifferer	t types	of loa	ding 1	nachin	es, co	ol plou	gh and	shearer		
				5Exp	lain	the co	ntinuo	us min	er and	road	headers	5.	•	2			
				6	Desig	gn a w	vorking	g mode	l of the	e equi	pment	used in	n minir	ıg			
DOG/																	
COS	PO1	PO2	PC	03 PC	4 P	PO5	PO6	PO7	PO8	PO9	PO10	PC	011 P	012	PSO1	PSO2	PSO3
CO1	-	1	1	-	2	2	2	3	-	-	2	3	2		2	1	1
CO2	3	2	2	1	2	2	-	2	-	-	-	2	3		1	2	1
CO3	-	-	2	-	-		-	2	-	-	2	2	2		2	2	2
CO4	-	-	-	-	-		2	2	-	-	-	3	2		2	1	1
CO5	-	-	2	1	2	2	3	2	-	-	2	2	2		2	1	1
CO6	2	1	2	1	2	2	3	2	-	-	2	3	2		2	2	2
Average	1.1	1.5	2.2	25 1	2	2	2	2.22	-	-	2	2.5	2.	1	1.8	1.5	1.3
Correlatio	on Leve	els		1.5	light	(Low)			2.Mod	lerate(Mediur	n)	3.Sub	stantial(High)		

KL-Knowledge Level:K1-Remember,K2--Understand,K3-Apply,K4-Analyse,K5-Evaluate,K6-Create : PO-Programe Outcome: CO-Course Outcome :PSO-Programe Specific Outcome

LIST OF EXPERIMENTS

- 1) Construction of cages, skips & their fittings and brakes of winders & haulers
- 2) Study of different types of conveyors (components & safety devices) like armoured face conveyors, belt conveyors, gate belt conveyors, shaker & vibrating conveyors, high angle conveyors
- 3) Study of coal drill and its electrical panel/gate end box
- 4) Study of pit top & pit bottom layouts in shaft and inclines.
- 5) Study of different types of loading machines
- 6) Study of cool plough and shearer.
- 7) Study of continuous miner and road headers.

(Total: 24 Periods)

REFERENCES:

- 1) Walker, S.C., Mine Winding and Transport, Elsevier, 1988.
- 2) Statham, I.C.F., Coal Mining, Vol. I, II, III and IV, Caxton Eastern Agencies, Calcutta.
- 3) Deshmukh, D.J., Elements of Mining Technology, Vol. I, II and III, EMDEEE Publishers, Nagpur, 1979.

Designed by "Department of Mining Engineering"

PROGR	AM		BE -	Minir	ng Eng	ineering	g									
Course (Code		Cour	se Na	me :				L		Т		Р		С	
UBMN7	'PB		PRO	JECT	WOR	K PHA	SE-I		0		0		6		3	
Year		and	IV Y	'ear ('	VIII Se	emester)		Contact	t hours	per we	eek				
Semeste	r								(6 Hrs	;)						
Prerequi	site		NIL													
course																
Course c	categor	у		Gener	al	Fo	oundatio	on	Co Profe	ore / essional			Ele	ctive		
÷ .				-			-		<u> </u>	-35				-	1.	
Learning	3		a		b	с	d	E	f	g		h	1	j	k	
outcome	•								_							
Mapping	g .	of														
instruction	onal							1 -								
Objectiv	ves	with	1-5					1-5					1-5			
learning																
Outcome Image: Control of the solution of the mining industry. Aim / Purpose To carry out a study or to solve a problem of the mining industry.																
Alm / I	Aim / Purpose To carry out a study or to solve a problem of the mining industry. of the course To carry out a study or to solve a problem of the mining industry.															
of the course Instructional Students will be able to understand																
objective	onar	tha	Stud		III De a	ho proh	lom	anu								
objective	e or	the	1			the foot	ore infl	uonoin	ait							
course			2	111	scuss	the fact	ors IIII	involu	ig it							
			3		ustrate	the pri	hlom a	alvina	veu rroad	1170						
			4		nlain	the rem	adial m	orving	, proceu	ure						
			5	1.27	plain			lethous	5.							
			6	Di	scuss	the resu	lt of th	e proje	ect	1						
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	.1 P	PO12	PSO1	PSO2	PSO3
-	2	-	1	-	-	2	1	-	-	2	3	2		2	1	1
CO2	1	2	2	1	2	-	2	-	-	-	2	3		1	2	1
CO3	-	-	2	-	-	-	2	-	-	2	2	2		2	2	2
C04 C05	-	-	-	-	1	1	2	-	-	- 2	3	2		2	1	1
CO6	2	- 1	2	1	2	3	2	-	-	2	3	2		2	2	1 2
Average	1.1	1.5	2.25	1	2	2	2.22	-	-	2	2.5	2	.1	1.8	1.5	1.3
Correlatio	on Leve	els		1.Slig	ght(Lov	v)	·	2.Mc	oderate(N	Medium)		3.Sub	stantial(High)	·	·
KL-Know CO-Cours	vledge L se Outc	.evel:K1 ome :PS	-Remen O-Prog	nber,K2 rame S	2Unde pecific (erstand,F Outcome	K3-Apply	y,K4-A1	nalyse,K	5-Evalua	te,K6-(Create	e: PO-P	rograme	Outcome	2:
Designe	d hv		"Den	artmer	f h h	lining F	Inginee	ring"								
	~ vj				10 01 10	ப்பாதா		6								

PROG	RAM							BE	-Mining	Engineer	ring				
Course	Code:		Course	Name:					Ι		Т		Р		С
UBMN	N7PD		Interns	hip-II					()	0		0		1
Year ar	nd		T	V Yea	r (VII	SEME	STER)			Contac	rt hours	ner we	-k	
Semest	er		1	v 100			DILK	,			Contac	(OHrs		OK	
Prerequ	uisite				NI	L						(,		
course															
Course	categ	ory	Hum	anities	and	Ma	nageme	ent	Pro	fessional	Core]	Professio	nal Elect	ive
		-	Soci	al Scier	ices	(courses				/				
		-	Rad	sic Scier	nce	En	gineeri	nσ	0	v nen Elect	ive		Mar	datory	
			Da		icc		Science	ng	U	pen Eleci	110		Wiai	idator y	
					V	Vill lear	rn abou	t the up	ostream	and dov	vnstrean	n related	compan	y works	
Course															
Objecti	ive			1 5	wnlain	the new	hlam								
Course	Outco	me		I. E	xpiants	s the pro	JUIEIII								
Course	Outeo	me		2. D	Discove	r the fa	ctors in	fluenci	ng it						
				3. C	lategori	ze the j	princip	les invo	olved						
				4. I	llustrate	e the pro	oblem s	solving	proced	ure					
						, and bu		,	procee						
				5. E	Explain	the rem	edial n	nethod							
				6 Г	Viceopt	ho moor	lt of th	a nucia							
POS		1	DO	0. L		lile resu		e projec			1				T
	PO1	PO2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO3	2	1		2		3		1		2		3	2		2
	-	-	2	-	2	5	3	2		2	1	5	- 3	2	
CO2	1	2	-	3	2		1	-	2	-	3	2	1	-	2
C03	2	-	3	5	2		3		2		3	-	2	2	
C04	1	2	5	3	2	22	5	2	2	3	5	2	2	2	2
005	1	2	1	5	2	22		2		3		2	2	2	2
CO6		1.6	1	2.5	3	2.7		2		3	2.2	2	2	²	2
Avera ge	2	1.6	2	2.6	2.2	2.5	2.5	2.3	2	2.5	2.5	2.2	2.2	2	2
Correla	ation Le	vels		1.Slig	ht(Low))	1	2	.Modera	ate(Medin	ım)		3.Substa	ntial(Hig	h)
KL-Kr	nowleds	ge Le	vel:K1-	Remem	ber.K2	Under	stand.H	X3-App	ly,K4-A	nalyse.K		ate,K6-C	reate :	PO-F	rograme
Outcor	me:	,			·····			rr	<i>,</i>				•		-9
CO-Co	ourse O	utcom	e :PSO-	Progra	me Spe	cific Ou	tcome								

PROG	RAM			BE - M	ining En	gineerin	g]
Course	e Code			Course	Name :				L	Г]	Р		С	
UBM	N801			MINE N	MANAG	EMENT	Γ		3	C)	0		3	
															_
Year			and	IV Year	: (VIII S	Semester)	C	Contact he	ours per	week				
Semes	ter) III				(3 Hrs)						
Prereq	uisite			NIL											
Course		19 X 7		Ga	noral	Fo	undatio	n	Coro	/		Floo	tivo		-
Course	e calego	n y		Ue		PU	unuario	11	Profess	/ ional		Liet			
					_		_		C-32				-		
Learni	ng			a	b	с	d	е	f	g	h	i	i	k	-
outcor	ne			\checkmark				✓				✓	J		1
Mappi	ng		of												1
instruc	ctional														
Object	ives		with	1-5				1-5				1-5			
learnir	ng														
Outco	me			T 1	1 1			T 1 .							-
Course	o obioo	times		To deve	elop mod	lern cond	cepts of	Industr	hal Mana	gement					
Cours	e objec	uves		Student	a will be	abla to									-
				1	Describ	e the M	anagem	ent theo	ory and s	vstem an	nroach				-
Course	outcom	es		2	Explain	the Oro	anagem	onal ma	nagemen	t process	s				-
Course	outeom	00		3	Infer the	e inform	ation sy	stem ar	nd manag	ement	5				
				4	Explain	the pers	sonal m	anagem	ent and i	ndustria	l relatio	ns			
				5	Describ	be the fir	ancial r	nanage	ment and	its analy	ysis				1
				6	Discuss	s the role	of man	agemei	nt in mini	ing indus	stry				
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO:
CO1	-	-	1	-	-	2	1	-	-	2	-	2	2	1	1
CO2	1	2	2	1	2	-	2	-	-	-	-	2	1	2	1
CO3	-	-	1	-	-	-	2	-	-	2	2	1	2	2	2
CO4 - 1 - 1 1 3								-	-	-	1	3	-	1	1
CO5	-	-	2	1	2	1	2	-	-	2	-	2	2	1	1
CO6	2	1	2	1	2	3	2	-	-	2	3	2	2	2	2
Avera ge	1.1	1.5	2.21	1	2	2	2.22	-	-	2	2.5	2.1	1.8	1.5	1.3
Correla	tion Lev	vels		1.Slig	ht(Low)			2.Mo	derate(Me	edium)		3.Subs	tantial(H	igh)	

(Under Section 3 of UGC Act 1956) SYLLABUS FOR UNDER GRADUATE IN ENGINEERING AND TECHNOLOGY B.E – MINING ENGINEERING ACADEMIC YEAR 2016-2020 (BATCH - I)

KL-Knowledge Level:K1-Remember,K2--Understand,K3-Apply,K4-Analyse,K5-Evaluate,K6-Create : PO-Programe Outcome: CO-Course Outcome :PSO-Programe Specific Outcome

UNIT I INTRODUCTION

Evolution of management theory – Classical theory – Scientific Management Administrative theory – Behavioral approach – Neo classical theory – Modern theory – Systems approach

UNIT II CHARACTERISTICS AND IMPORTANCE OF MANAGEMENT

Meaning of management, Definition of management, Nature of management, Productivity concept of Management, Attaining Objectives

UNIT III MANAGEMENT PROCESS

Planning – Organizing – Directing – Motivating – Controlling – Coordinating and communicating – Staffing – Manpower planning and recruitment – Performance appraisal – Human resource development and planning.

UNIT IV MANAGEMENT PLANNING

Planning process, Types of planning, procedures of planning, programming for planning, advantages of planning, importance of Planning, projet and budjecting, importance of planning

UNIT V SKILLS AND ROLES OF MANAGAMENT PROFESSIONALS (10 Hrs)

Tasks of professionals' managers, managing survival and growth, challenges, building human organization, balance maintaining between creativity and conformity

(10 Hrs)

(10 Hrs)

(TOTAL: 50 Hrs)

TEXT BOOKS

1. Herald Koontz and Heinz Weihrich, 'Essentials of Management', McGraw Hill Publishing Company, Singapore International Edition, 1980.

2. M.Govindarajan and S.Natarajan, Principles of Management, Prentice Hall of India Pvt.Ltd. New Delhi 2007

REFERENCES

1. S.Chandran, Organizational Behaviors, Vikas Publishing House Pvt., Ltd, 1994

2. Ties, AF,Stoner and R.Edward Freeman, 'Management' Prentice Hall of India Pvt. Ltd. New Delhi 110011, 1992

3. Joseph J, Massie, 'Essentials of Management' Prentice Hall of India. Ltd. 1985

Designed by "Department of Mining Engineering"

PROC	GRAM		BE -	Minin	g Engir	neering										
Cours	e Code		Cour	rse Nar	ne :					L		Т		P	С	
UBM	N802		CON	APUTE	ER APP	LICAT	IONS	IN		3		0		0	3	
			MIN	ING						5		0		0	5	
Year		an	d IV Y	'ear (V	III Sen	nester)			Con	itact ho	ours per	week				
Seme	ster								(3F	Hrs)						
Prerec	quisite		NIL													
course	3		_	Comore	1	Ear				Carro	1			Election	-	
Cours	e catego	ory		Genera	.1	гоц	nuatioi	1	D		/			Electiv	e	
									Г	C 33	101141					
Learn	ing		я	-		C	d	P		f	σ	h	i	-	I I	k
	me		u V		,	C	u	<u> </u>		1	δ	- 11	1		5	N.
Mann	ing		of					•					-			
instru	ctional	(/1													
Objec	tives	wit	h 1-5	i				1-5					1-:	5		
learni	ng															
Outco	ome															
Aim	/ Purp	ose	To ii	mpart k	nowled	lge on h	nardwa	re an	d sof	ftware	issues	conceri	ned with	n comp	uters in	l
of the	course	•	mini	ng indı	istry an	d to de	velop a	algori	thms	s and p	orogran	ns on va	arious n	nining 1	elated	
Instructional Students will be able to understand																
Instructional Students will be able to understand objective of the 1 Define the operating systems, servers, MIS and data analysis																
objective of the 1 Define the operating systems, servers, MIS and data analysis																
course	e		2	De	scribe t	he Prog	gramm	ing &	z DB	<u>MS C</u>	oncepts	5				
			3	Ex	plain th	e Mine	plann	ing ar	nd de	esign		M 1	CED			
			4	De	termine		ining P	roble	em us	sing I	DS, FE	M and	CFD			
			5		plain in scribe t	he recen	t trend	$\frac{1}{10}$ m	viinii vina (ng Sol design	tware	omnut	or appli	cations		
POS			0				intages			uesign	using (l			<u>.</u>	
/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO)8	PO9	PO1	PO1	PO1	PSO	PSO	PSO
COS											U	1	2	1	2	3
CO1	2	1		2		3		1			2		3	2		2
CO2	1		2		2		3	2			2	1		3	2	
CO3		2	_	3	2		1	4		22		3	2	1	L	2
CO4	2	-	3		2		3			22		3		2	2	-
CO5	1	2		3		2		2					2	3		2
CO6			1		3			2			3		2	2	2	2
Aver	2	1.6	2	2.6	2.2	2.5	2.3	2.3	3	2	2.5	2.3	2.2	2.2	2	2
age	otion I -	vola		1 61:~	ht(Low)	<u> </u>	I	10	Mode	roto/NA	(dium)		2 6.1	tontial/	Lich)	I
	nowled		·K1 Da	1.511g	$\frac{\Pi(LOW)}{\mathbf{r} \mathbf{K}^2 \mathbf{I}}$	Inderst	and V2	2.N		$\frac{1}{4}$		Fyelue	5.500 to K6 C	rooto	riigii) PO	
Progr	ame Ou	tcome:	.N1-K6	mempe	., n 2(Juerst	anu,NJ	-App	лу, К ′	-+-Alla	1950, N 3'	-rzvalua	ю, л 0-С	reate :	10-	
CO-C	ourse O	utcome	:PSO-I	Program	ne Spec	ific Out	come									
UNI	T I IN	rodu	UCTIO	N	-									(10 H	rs)	
Cont	figuratio	on of co	omputer	rs and s	servers	– Evolu	ition of	f oper	rating	g syste	ems – N	Jetwork	king Co	ncepts	– MIS	

Concepts – Cloud computing / grid computing in mining, Big Data analytics.

UNIT II PROGRAMMING & DBMS CONCEPTS

Algorithm – Flow charts and Programming of mining application like pillar design – blast design – subsidence – Database and Relational database – development of software packages for mining companies – forms, queries and reports – Enterprise resource planning for material managements.

UNIT III COMPUTERISED MINE PLANNING

Introduction of Geostatistics – Reserve Estimation – kriging – block modelling and ore body modelling – Optimization and mine design – mine scheduling.

UNIT IV PROBLEM SOLVING - APPLICATIONS IN MINING

Ventilation network analysis – Support design – Application of CAD in mining – GIS in mining – online and offline monitoring and control – TDS, FEM and CFD concepts and basics of modelling and simulation. UNIT V RECENT TRENDS IN MINING SOFTWARE (10 Hrs)

Artificial intelligence – expert system – neural networks – robotics and its application in mining – Functionalities of mine planning software – fragmentation software and numerical software applicable to mining – Case studies of mining applications.

(TOTAL: 50 Hrs)

TEXT BOOKS:

1. KadriDagdelen, Editor, Computer Applications in the Minerals Industries, Colorado School of Mines, 1999.

2. Ramani R.V., et al. Computers in Mineral Industry, Oxford and IBH Publishers, 1994.

REFERENCES:

1. R.V.Ramani – Editor, APCOM Proceedings Application of Computers and Operations Research in the Mineral Industry, The Society of Mining, Metallurgy and Exploration, Inc., 1996.

Designed by "Department of Mining Engineering

(10 Hrs)

(10 Hrs)

SYLLABUS FOR UNDER GRADUATE IN ENGINEERING AND TECHNOLOGY B.E – MINING ENGINEERING ACADEMIC YEAR 2016-2020 (BATCH - I)

PROG	RAM		BE - M	lining En	gineeri	ng										
Course	e Code		Course	Name :				L		Т	Р		С			
UBMN	N803		MINE	SYSTEM	A ENG	INEERII	NG	3		0	0)	3			
Year		and	IV Yea	r (VIII S	Semeste	er)		Contact hours per week								
Semes	ter							(3 Hrs)								
Prereq	uisite		NIL													
course			C		Б											
Course	e catego	гу	Ge	eneral	FC	oundation		Core / Professional			Elective					
				_		_		C-34			<u>+</u>					
Learni	nσ		а	- h	C	d	e	f	G	h	i	- i	k			
outcome			u v	0	C	u		1			1	J	K			
Manning of						÷										
instructional																
Objectives with		1-5				1-5				1-5						
learning																
Outcon	me															
Aim /	Purpo	se	To kno	w basic o	of syste	m engin	eering	concept a	and anal	lysis and	to stud	y the var	rious			
of the	course		techniq	ues of op	peration	is resear	ch, sir	nulation a	nd netw	ork ana	lysis.					
Instructional Students will be able to																
objecti	ive of	the	1	Explain the basics of system engineering												
course			2	Determine the solution of mining problems using Linear Programming												
			3	Explain the Project Management with DEPT & CDM												
			4	Explain Infor th	n the Pro	oject Ma	inagei	Mining S	PERI (<u>x CPM</u>						
			5	Describe the application of softwares in mining industry												
	1		0													
POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSC	02	PSO3
CO1	1	1	1	-	-	2	1	-	-	2	-	2	2	1		1
CO2	1	2	2	1	2	-	2	-	-	-	2	3	1	2		1
CO3	-	-	1	-	-	-	2	-	-	2	2	1	2	2		2
CO4	-	1	-	-	1	2	2	-	-	-	1	2	-	1		1
CO5	-	-	2	1	2	1	2	-	-	2	2	2	2	1		1
CO6	2	1	2	1	2	3	2	-	-	2	3	2	2	2		2
Avera ge	1.1	1.5	2.21	1	2	2	2.22	-	-	2	2.5	2.1	1.8	1.5		1.3
Correla	tion Lev	rels		1.Slight(Low)2.Moderate(Medium)3.Substantial(High								igh)				
KL-Knowledge Level:K1-Remember,K2Understand,K3-Apply,K4-Analyse,K5-Evaluate,K6-Create : PO-Programe Outcome: CO-Course Outcome :PSO-Programe Specific Outcome																

UNIT I INTRODUCTION

10 Hrs

SYLLABUS FOR UNDER GRADUATE IN ENGINEERING AND TECHNOLOGY B.E – MINING ENGINEERING ACADEMIC YEAR 2016-2020 (BATCH - I)

System Engineering – Concept of system, sub-system and system environment – Classification of system – System analysis – Creative aspects of planning and design – Factors influencing creativity, techniques and alternative solutions.

UNIT II LINEAR PROGRAMMING

Linear Programming models – Assumptions of Linear Programming, Graphical and simple method of solving Linear Programming problems – Basic and Basic feasible solutions, optimal solutions, interpretation of SIMPLEX table. Primal and Dual problem – Application of Linear programming for solutions of mining related problems of production planning, scheduling and blending.

UNIT III TRANSPORTATION AND ASSIGNMENT PROBLEMS

Transportation models – Variations on Classical Transportation models, Solution – Algorithm for Transportation problem – Assignment model, Variations on Classical Assignment model – Solution algorithm for assignment problems – Application to mining problems.

UNIT IV PROJECT MANAGEMENT WITH PERT & CPM

Assignment of PERT & CPM – Methods of drawing network – Redundancy and identification of redundant jobs – Critical path calculation – Criticality index – Statistics related to PERT – Probability of completing a project by a due date – Lowest cost Schedule – Case studies.

UNIT V NETWORK MODELS & SIMULATION

Introduction and concept – shortest route and minimal spannial tree problems – application to mining problems – Simulation – Introduction and concept – scope and limitation – System type versus simulation technique – Generating input data – Monte-Carlo simulation – Simulation of equipment maintenance and inventory systems in mines.

(TOTAL: 50 Hrs)

TEXT BOOKS:

Zambo, J., and Kiado, A., Optimum Location of Mining facilities, Springer Verlag, Budapest, 1968.

REFERENCES

Syal, I.C., and Gupta, B.P., Computer Programming and Engineering Analysis, A.B., Wheeler and Company, Madras 1986.

Designed by "Department of Mining Engineering"

10 Hrs

10 Hrs

10 Hrs

10 Hrs

SYLLABUS FOR UNDER GRADUATE IN ENGINEERING AND TECHNOLOGY B.E – MINING ENGINEERING ACADEMIC YEAR 2016-2020 (BATCH - I)

PROC	GRAM			BE - M	lining En	gineerir	ıg										
Course	e Code			Course	Name :	-	-		L		Τ		Р				
UBMI	N8PA			PROJE COMP VOCE	ECT WOI REHENS	RK & S SIVE	EMINA VI	R VA-	0		0		18				
Year			and	IV Yea	r (VIII S	Semester	r)		Contact hours per week								
Somo	tor					(19 Hrs.)											
Droroc	misita			NII													
course				INIL													
Course	e categ	orv		Ge	eneral	F	oundati	on	Core / Elective								
cours	e cutog	J							Profe	essional		Licetive					
									C-	.35		-					
Learning				a	b	с	d	Е	f	g	h	i	j	k	5		
outcon	ne																
Mapp	ing		of														
instructional																	
Objectives with			1-5				1-5				1-	5					
learning																	
Outco	me																
Aim /	/ Purp	ose		To car	ry out a s	tudy or	to solve	a pro	blem of	the minin	ng indus	try.					
of the	course			Studen	te will be	able to	underst	and									
				1 Define the problem													
				2 Discuss the factors influencing it													
				3 Illustrate the principles involved													
				4	Describe the problem solving procedure												
				5	Explain the remedial methods.												
COURS	SE OU	ГСОМ	ES	6	Discuss the result of the project												
POS/ COS	PO1	PO2	PO	3 PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO:		
C01	2	-	1	-	-	2	1	-	-	2	3	2	2	1	1		
CO2	1	2	2	1	2	-	2	-	-	-	2	3	1	2	1		
CO3	-	-	2	-	-	-	2	-	-	2	2	2	2	2	2		
CO4	-	-	-	-	1	2	2	-	-	-	3	2	2	1	1		
CO5	-	-	2	1	2	1	2	-	-	2	2	2	2	1	1		
CO6	2	1	2	1	2	3	2	-	-	2	3	2	2	2	2		
Aver age	Aver 1.1 1.5 2.25		5 1	2 2 2.22 -			- 2 2.5			2.1 1.8 1.5			1.3				
Correla KL-Kn CO-Co	ation Le lowledge lurse Ou	vels Level:K tcome :F	K1-Ren PSO-Pi	1.Sli nember,K rograme S	1.Slight(Low)2.Moderate(Medium)3.Substantial(High)ember,K2Understand,K3-Apply,K4-Analyse,K5-Evaluate,K6-Create :PO-Programe Outcome:ograme Specific Outcome												
Desig	ned by			"Depart	tment of l	Mining	Enginee	ring"									