

Open Elective courses of 6th Semester

S.NO	Department	Open Elective courses
1.	Department of EEE	Solar Energy systems
2.	Department of Mechanical Engineering	Non Destructive Testing
3.	AMET Business School	Organizational Development
4.	Department of Naval Architecture and Offshore Engineering	Basic Principles of Marine Vessel Design
5.	Department of Marine Biotechnology	Marine Pollution and Biological Solutions
6.	Department of Petroleum Engineering	Offshore Oil & Gas Operations
7.	Department of Mining Engineering	Remote Sensing for Natural Resources
8.	Department of Food Processing Technology	Ready to eat Food Processing Technology
9.	Department of Information Technology	Python Programming
10.	Department of Mathematics	Numerical Methods and Statistic
11.	Department of Physics	Introduction to Nano Science
12.	Department of Chemistry	Marine Chemistry

PROGRAM	[•			ed in A BA Sh				-	M, P	E, HE,		
Course Code			arse Na		iiig) a	nu D. I			$\frac{\mathbf{D}\mathbf{A} \mathbf{S}\mathbf{n}}{\mathbf{L}}$	ipping	<u>, В.С.</u> Т	/III., LX	<u>P</u>		С		
UEEE008				ergy Sy	vstems				3		0		0		3		
Year / Semes	ster	III	Year /	VI Ser	nester			Contact hours per week									
Prerequisite of		NII						(3 H		F -		-					
Course categ		Hur	nanities ial Scier		Ma cou	nagem rses	ent	Ì	essiona		Pr	ofession	al El	ective			
		Bas	ic Scie	nce		ineerin cience	g	Open Elective			M	andator	·y				
								\checkmark									
Introduction Introduction to the course Class policies, grades, homework, prerequisites, and other d Power generation Overview of the power industry in the US today Fuels, heat Generation types Wind generation. Course Objective 1. To familiarize with the characteristics of solar radiation, its global distribution conversion methods of solar energy to heat and power. 2. To familiarize with the concepts of control and drives, importance of ember system and implementation of control system for solar energy applications.											at rates on, and						
Course Outco	ome	1. II 2. E 3. D 4. S 5. C	 The Students will be able to 1. Illustrate the overview of solar resources 2. Explain the solar radiation and measurement techniques 3. Demonstrate how to calculate solar radiation at a given location 4. Summarize how to model a solar power system using MATLAB. 5. Outline the principle of operation of solar plants. 6. Apply the concept of solar collectors to renewable energy systems. 														
	POs / COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
-	CO1	3	3	2	-	2	-	-	-	-	-	-	-				
	CO2	2	2	3	-	2	-	-	-	-	-	2	2				
	CO3	2	3	2	3	2	-	-	-	-	-	2	2				
	CO4	3	2	3	3	3	-	-	-	-	-	2	2				
	CO5	2	3	3	2	3	-	-	-	-	-	2	2				
	CO6	3	3	3	3	3	-	-	-	-	-	2	3				
	AVERAGE	2.5	2.7	2.7	2.8	2.5	-	-	-	-	-	2	2				
	CORF	RELATIO	ON LEVI	ELS		1. SL	IGHT (L	OW)	2. N	AODERA	ATE (ME	DIUM)					

-	Document Approved in "Academic council" held on				
Date: <u>24.04.2018</u>	Date: <u>31.05.2018</u>				
Controlled Cop	y Rev 00/01.10.2012				

UNIT I: ENERGY RESOURCES AND SOLAR SPECTRUM

World energy resources - Indian energy scenario - Environmental aspects of energy utilization. Renewable energy resources and their importance - Global solar resources. Solar spectrum – Electromagnetic spectrum, basic laws of radiation. Physics of the Sun - Energy balance of the earth, energy flux, solar constant for earth, greenhouse effect.

UNIT II : SOLAR ELECTRICAL ENERGY CONVERSION

Solar photovoltaic energy conversion - Principles - Physics and operation of solar cells. Classification of solar PV systems, Solar cell energy conversion efficiency, I-V characteristics, effect of variation of solar insolation and temperature, losses. Solar PV power plants.

UNIT III : MODEL REPRESENTATION

Introduction to MATLAB, matrix operation, different graphical output, integration and solution to differential equation. Types of error - Convergence and stability. Models of electro - mechanical system – Thermo - fluid systems, solar photo voltaic cell and DC motor. Transient and steady state response of system. Simulation of model using MATLAB.

UNIT IV : CONTROL OF SOLAR PLANTS

Basic and Advanced control of solar plants - basic control algorithms, adaptive and optimal controls. Model based predictive control strategies, frequency domain control and robust optimal control.

UNIT V : APPLICATIONS OF SOLAR COLLECTORS

Application of non-concentrating collectors in low temperature solar thermal plants for space heating and cooling, drying, seawater desalination. Use of concentrating collectors for process heat production and power generation- Mini project of solar PV and its applications

TEXT BOOKS :

- 1. Eduardo F. Camacho, Manuel Berenguel, Francisco R. Rubio, Diego Martinez, "Control of Solar Energy Systems", Springer, 2012.
- 2. Kai Velten., "Mathematical Modeling and Simulation", 1st ed., Wiley-VCH, 2009
- 3. Artur V.Kilian, "Solar Collectors: Energy Conservation, Design and Applications", Nova Science Publishers Incorporated, 2009

REFERENCES:

- 1. Garg .H.P, Prakash .J, "Solar Energy Fundamentals and Applications", TataMcGraw-Hill, 2005.
- 2. Kalogirou .S, "Solar Energy Engineering", Processes and Systems, Elsevier, 2009.
- 3. Tiwari .G.N, "Solar energy: Fundamentals, Design, Modeling & Applications", CRC Press Inc., 2002.

-	Document Approved in "Academic council" held on
Date: <u>24.04.2018</u>	Date: <u>31.05.2018</u>
	D 00/01 10 0010

9 Hrs

9 Hrs

TOTAL: 45 PERIODS

9 Hrs

9 Hrs

9 Hrs

DEPARTMENT OF MECHANICAL ENGINEERING CBCS CURRICULUM (2017-2018) (Regulation D)

Course Code	Cou	ırse Name		L	Т	Р	С				
UDMCO05	NO	N DESTRUCTIVE T	ESTING	3	0	0	3				
(Common to All Engineering Courses)											
Year and Sem	III/	VI	Course Type	Open El	ective Cou	urse					
Prerequisite			Contact Hours	3							
Course			per Week								
	1	To learn about NDET	To learn about NDET and surface NDT techniques								
	2	To understand about	radio graphic testi	ng							
Course	3	To learn about eddy current testing and ultrasonic testing									
Objective	4	To understand the concept of special/emerging testing									
	5	To learn about the de	fects in materials								

	1	After completing this course, the students will be able to understand the NDT techniques for various products.
	2	They will be able to know skills needed for selection of appropriate NDT
Course	-	technique(s) for new inspection jobs
Outcome	3	The students will be able to acquire sound knowledge of established NDE
		techniques and basic familiarity of emerging NDE techniques.
	4	They will be able to know the use of standards and codes in the area of NDET
	5	They will be able to identify the defects in materials

UNIT I INTRODUCTION TO NDET AND SURFACE NDT TECHNIQUES

Introduction to non-destructive testing and evaluation, visual examination, liquid penetrant testing and magnetic particle testing. Advantages and limitations of each of these techniques.

UNIT II RADIOGRAPHIC TESTING

Radiography principle, electromagnetic radiation sources, X-ray films, exposure, penetrameter, radiographic imaging, inspection standards and techniques, neutron radiography. Radiography applications, limitations and safety.

Document Prepared in "Board of Studies" held on	Document Approved in "Academic Council" held on
Date :15.05.2018	Date :

DEPARTMENT OF MECHANICAL ENGINEERING CBCS CURRICULUM (2017-2018) (Regulation D) EDDY CURRENT TESTING AND ULTRASONIC TESTING

Eddy current principle, depth of penetration, eddy current response, eddy current instrumentation, probe configuration, applications and limitations. Properties of sound beam, ultrasonic transducers, inspection methods, flaw characterization technique, immersion testing.

UNIT IV SPECIAL/EMERGING TECHNIQUES

Leak testing, Acoustic Emission testing, Holography, Thermography, Magnetic Resonance Imaging, Magnetic Barkhausen Effect. In-situ metallography.

UNIT VDEFECTS IN MATERIALS / PRODUCTS AND SELECTION OF NDETMETHODS

Study of defects in castings, weldments, forgings, rolled products etc. and defects arising during service. Selection of NDET methods to evaluate them. Standards and codes.

Text Books

UNIT III

1. Baldevraj, Jayakumar T., Thavasimuthu M., (2008) "Practical Non-Destructive Testing", 3rd edition, Narosa Publishers.

Reference Books

- 1. American Society for Metals, "Non-Destructive Evaluation and Quality Control": Metals Hand Book: 1992, Vol. 17, 9th Ed, Metals Park, OH.
- 2. Paul E Mix, "Introduction to nondestructive testing: a training guide", Wiley, 2nd edition New Jersey, 2005.
- 3. Ravi Prakash, "Nondestructive Testing Techniques", New Age International Publishers, 1st rev. edition, 2010.

Document Prepared in "Board of Studies" held on	Document Approved in "Academic Council" held on
Date :15.05.2018	Date : 31.05.2018
Controll	ad Carry Bay 00/01 10 2012

PROGRA	M	-	ABS UG	G – OPE	N ELEC	CTIVE										
Course C	ode	Course	Name :				L		Т		P	С				
UDBSO0'	7	Organi	zational	Develo	pment		3		0		0	3				
Year and			III (VI S	emester)			tact hour	s per we	ek						
Semester							(3Hrs)									
Prerequis	ite		NIL													
course			• •				D									
Course			anities Social		agemen	t	Profess	ional Co	ore		fessiona	I				
category			nces	c	ourses					E.	lective					
		Stit	inces													
Basic Science Engineering Open Elective Mandatory Science Science Science Science Science											7					
		I. To learn the basics of organizational development														
Course																
Objective			To study							nent						
		3. To understand the innovative changes for organizations														
			 To study about change management To study about change management for effective organizational management, 													
										8-	,					
Course		The Stu	dents wi	ll be abl	e to											
Outcome			1. N	lake us	se of a	character	ristics o	of Orga	nization	al deve	lopment	as				
			managers. 2 Examine the theories and models of Organizational change													
		 Examine the theories and models of Organizational change . Adapt ethical values in resolving ethical dilemma. 														
		 Adapt ethical values in resolving ethical dilemma. Explain the process and challenges of human resource intervention. 														
		5. Evaluate the future scope of organizational development in the														
		globalized environment.														
		 Appraise the theories and models in the business context 														
Pos/ COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4					
CO1	2	1	2	2	2	3	3	3	2	2	3					
CO2	-	-	3	3	3	-	2	3	-	3	2					
CO3	2	3	3	3	3	2	3	3	2	3	3					
CO4	3	3	3	3	3	-	3	3	2	3	3					
CO5	2	2	2	3	3	3	3	3	2	3	3					
CO6	3	2	3	3	3	2	3	3	3	3	3					
Average	2.4	2.2	2.67	3	2.83	2.5	2.83	3	2.2	2.83	2.83					
Correlati Levels		1. 5	Slight (L	ow)		Modera Medium			3. Su (High	bstantial 1)						

Unit 1:Organisational development

An introduction: Organisational Development – Meaning and Definition, History of OD, Relevance of Organisational Development for Managers, Characteristics of OD, Assumptions of OD

Unit 2:Change Process and Models

Organisational Change, Strategies for Change, Theories of Planned Change (Lewin's change model, Action research model, the positive model), Action Research as a Process, Resistance to Change

Unit 3 : Values and Ethics in OD

Professional Values, Value Conflict and Dilemma, OD Values and Changing Themes over Time, Ethics in OD, Ethical Dilemmas in Practicing OD, Factors that Influence Ethical Judgment

Unit 4 : Human Resource Interventions

HRM Interventions, Goal Setting, Performance Appraisal, Reward Systems, Career Planning and Development, Managing Workforce Diversity, Employee Wellness

Unit 5 : Future of OD

Organisational Development and Globalization, Emerging Trends in OD - Expanding the use of OD, Combining traditional "hard" business competencies and OD, Creating whole system change, Using OD to facilitate partnerships and alliances, Enhancing constant learning, Trends within the Organization

TEXT BOOK :

Organisational development and change, 10th edition, by <u>Thomas G. Cummings</u> (Author), <u>Christopher</u> <u>G. Worley</u> (Author)

Reference book:

Organisational Development and Intervention Strategies (English, Paperback, S. B. Sharan) 2015

9 hours

9 hours

9 hours

9 hours

9 hours

Total 45 hours

DEPARTMENT OF NAVAL ARCHITECTURE AND OFFSHORE ENGINEERING

PROGRAM						Offsh	ore En	gineer						
Course Code:				IPLES			L		Τ	Р			С	
UDNAO01	MA	RINE	VES	SEL I	DESIC	δN	3		0	0			3	
Year and	III	Year (sem	ester '	VI)		Cont	act h	ours p	er wee	k			
Semester					,		(3H		1					
Prerequisite	NIL							,						
course														
Course		nanitie		Man	agem	ent	Profe	essiona	l Core	Pro	fession	al Elect	tive	
category	and Scie	Social nces		cour	ses									
	Bas	ic		Fngi	neerin	σ	Onen Elective			Mai	ndatory	T		
	Scie			Scien		5	Open Elective		IVI al	luatory				
							\checkmark							
1. To understand the various steps involved in ship design.														
Course				-				<u> </u>		marin	e envi	ronme	nt.	
Objective		3. To provide the idea about the ship hull												
								rine v	rehicle	s.				
	1.U	nders	tand]	Marin	e Env	viron	ment							
Course										essel I	Design			
Outcome							floating structure							
							nd pov							
									desig					
											losopł			
POS/COS PO1 CO1 2	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 2 CO2 2	2	22	-	1	-	-	1	1	2	2 2	1	1	2	2
CO2 2 CO3 2	2	2	-	1	-	-	1	1 2	2	2	1	1	2	2
CO4 2	2	2	-	1	-	-	1	2	2	2	1	1	2	2
CO5 2	2	2	_	1	_	1_	1	2	2	2	1	1	2	2
CO6 2	2	1	-	1	_	_	1	2	2	2	1	1	2	2
AVERAGE 2	2	1.8	-	1	-	-	1	1.7	2	2	1	1	2	2
CORRELATION L	_	W)		1.SLIG	HT(LC) 2	.MODE		(MEDIU	_	-	-	AL(HIGI	_

UNIT I - MARINE ENVIRONMENT

Ocean Waves, Regular waves, Irregular waves, Beaufort scale, Sea state conditions – Ocean data collection

UNIT II – DESIGN PROCESS

Market Study, Mission requirement, , Identifying the customer needs, System design, System Integration, Design process, Design spiral, Design Stages, Vehicle parameter estimation

UNIT III – STABILITY OF MARINE VESSELS

Hydrostatics, Intact stability, Initial stability, Stability at large angles, Trim, Damage Stability UNIT IV – HYDRODYNAMIC DESIGN

Ship Resistance components, Estimation of ship resistance, Propulsion characteristics, Ship powering, model tests, Ship Motions, Ship maneuvering, Hullform design

UNIT V - STRUCTURAL DESIGN

Ship building materials, Ship structural components and scantlings, Midship section design, Longitudinal strength, Typical midship sections of bulk carrier, oiltanker and container ships **TEXT BOOKS**

- 1. Ship Design Methodologies of Preliminary Design by ApostolosPapanikolaou
- 2. Practical Ship Design by D.G.M Watson
- 3. Ship Design for Efficiency and EconomybyH. Schneekluth and V. Bertram
- 4. Ship Design and Construction by R.Taggart

REFERENCES

- 1. Basic Ship Theory, Vol.1 & 2 by K.J.Rawson and E.C.Tupper
- 2. Principles of Naval Architecture, Vol. 1,2&3 by Ed.V. Lewis

Designed by "Department of Naval Architecture & Offshore Engineering"

Department of Marine Biotechnology

Open Elective Courses – Even Semester 2020

PROGRA			n/BBA/I	BCom												
Course Co		se Nan						L		Γ	Р		С			
PFBTO05	Mar	ine pol	lution a	and bio	logical	solution	S	3	()	0		3			
			THE G				0									
Year and	III ye	ear and	VII Sei	nester				Contact hours per week								
Semester	1. A				::41. E			(3Hrs)								
Prerequisi		under g ground		e degree	e with E	ngineeri	ng	7 5 5								
course			ties and		Mana	aomont		Professional Core Professional Electi								
			ciences		Management courses			1101	essional	Core	11	01055101				
Course			ciences		cou	11 505										
category		Basic S	cience		Engir	neering		Or	en Elec	tive		Mano	latory			
8.1						ence		open Elective					<i>.</i>			
	•	To u	nderstar	nd the r	nost cor	nplex p	roblems	s of Ma	rine pol	lution.	There ca	an be se	veral caus			
Course		• To understand the most complex problems of Marine pollution. There can be several causes of ocean pollution, but the leading causes include sewage, toxic chemicals from industries														
Objective		nuclear waste, thermal pollution, plastics, acid rain, and oil spillage.														
Objective	•	 This course would provide insight into various types of marine pollution and how t managed by biological solutions. 														
		At the end of the course the student will be able to :														
		1. List out the types and sources of marine pollution.														
Course		2. Explain about the causes and impacts of marine pollution.														
Outcome		3. Classify the bioindicators used for environmental monitoring.														
		4. To extend the knowledge for disposal of marine pollutants.														
	-	5. Outline the importance of living organisms in the management of marine pollution.														
	6.	Out	tline the	e impao	et of ma	arine po	ollutior	n in ma	nageme	ent aspe	ects.					
			-					_								
	POS/	PO	РО	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO				
	COS	1	2	3	4	5	6	7	1	2	3	4				
	CO1	1	2	2	2	1	2	1	-	-	-	-				
	CO2	2	2	1	2	1	2	1	-	-	-	-				
	CO3	1	1	1	1	1	1	1	-	-	-	-				
	CO4	1	1	2	2	1	2	1	-	-	-	-				
	C05	2	2	1	2	2	2	2	-	-	_	-				
	CO5	1	1	2	2	2	1	1	-	-	-					
									-	-	-	-				
	Average	1.3	1.5	1.5	1.8	1.3	1.7	1.2	-	-	-	-				
	CORR	ELATIC VELS)N	1	. SLIGH (LOW)			NODER		3. Sl	JBSTAN					
								(MEDIUM), (HI				liGH)				

Department of Marine Biotechnology

Open Elective Courses - Even Semester 2020

Unit - I- Types of Marine Pollution

Marine Pollution-definition- role of GESAMP- major pollutant- sources, transport path, dynamics. Toxicology- lethal and sub lethal effects of pollutants to marine organisms- bioconcentration, bioaccumulation and biomagnifications- methods of toxicity testing factors influencing toxicity- synergistic and antagonistic effects- role of microcosms and mesocosms.

Unit-II- Causes and impacts of Marine Pollution

Analysis and presentation of physical, chemical and biological impacts of aquaculture activities in the coastal environment. Economic impacts of pollution, Global warming and ocean acidification, Marine animal diseases, Marine plant and coral disease's impact on the marine environment. Plastics and Litter source and impact in the marine environment.

Unit - III- Bioindicators of marine pollution

Environmental monitoring- Diversity of bioindicators used for environmental monitoring- biomarkers of marine contamination- Microbial Bioindicators.

Unit - IV- Coastal Zone Management

Knowledge of the precautions - prevent pollution of the marine environment- Knowledge of the use and operation of anti-pollution equipment Knowledge of the approved methods for disposal of marine pollutants.

Unit - V -Management of Marine Pollution with living organisms and their products/processes

Enrichment and isolation of crude oil degrading marine bacteria- Isolation of biosurfactant producing microorganisms-Isolation of selenite/tellurite resistant marine-derived bacteria/fungi for application in bioremediation.

TEXT BOOKS

- 1. Clark, R.B., 2001. Marine Pollution, Oxford University Press
- 2. Johnston, R. (ed), 1976. Marine Pollution, Academic Press, London
- 3. Belkin, S and Cowell, R. R., Ocean & Health: Pathogens of the Marine Environment, Springer Publishers.
- 4. Satyanarayana, T., Johri, B. and Anil, T., Microorganisms in Environmental Management, Springer Publishers.
- 5. Reddy, S. M., Charya, M. A. S. and Girisham, S., Microbial Diversity: Exploration and Bioprospecting, Scientific blishers.

PROGRAM	B.E. Petroleum E	Ingineerii	ıg									
Course Code	Course Name :]	Ĺ	Т	Р	С					
UDPEO05	Offshore Oil & O Operations	fas		3	0	0	3					
Year and	III Year & VI Se	mester	Contact hours per week									
Semester			(3)	Hrs)								
Prerequisite course	NIL											
	Humanities and Social Sciences	Manage nt cour		Pro	ofessional Core		ssional ctive					
Course category												
	Basic Science	erin ce	Ope	en Electiv	e Mandat	Mandatory						
					\checkmark							
Course	1. To understand the basics of offshore structures											
Objective	2. Types and classification of offshore structures											
	3. Installing offshore structures											
	4. Understanding drilling and production											
	5. Estimating the	oil resou	rces									
Course	At the end of the	course, t	he St	udent	ts will be	able to						
Outcome	1 Explain the Offshore oil and gas operations											
	2 Classification	on, proper	ties o	of ma	rine sedir	nents						

			3	Descri	ibe a	about	t the	Dril	ing.	Samp	ling	techni	ques		
			4	Analy	ze o	ffsho	ore s	truct	ures						
			5	Explai	in dı	rillin	g co	mpor	nents	espec	cially	for of	fsho	re	
			6	Illustr	ate a	about	t the	Offs	hore	soil n	nech	anics			
PO S/ CO S	PO 1	PO2	P O 3	РО 4	P O 5	Р О 6	P O 7	P O 8	P O 9	PO 10	P O 1 1	PO1 2	P S O 1	PSO 2	P S O 3
CO 1	3	3	3	3									3	2	
CO 2	3	2	3	3									2	2	
CO 3	2	2	2	2									2	3	3
CO 4	1	2	2	1									3	2	1
CO 5	1	1	1	1									1	1	
CO 6	1	1	1	1									1	1	
Av era ge	1.8 33 33	1.833 33	3 2	1.8 33 33									2	1.83 333	2
Corr	elatio	on Lev	els	1.Sl	ight	(Low	7)	2.M um)		ate(M	[edi	3.Sut	ostan	tial(Hi	gh)

KL-Knowledge Level:K1-Remember,K2--Understand,K3-Apply,K4-Analyse,K5-Evaluate,K6-Create : PO-Programe Outcome: CO-Course **Outcome : PSO-Programe Specific Outcome**

UNIT-I Introduction Hrs)

Introduction to offshore oil and gas operations. Sea States and Weather, Offshore Fixed and mobile Units, Offshore Drilling, Difference in drilling from land, from fixed platform, jack up, ships and semi submersibles. Offshore Well Completion, Offshore Production systems, Deep-water technology, Divers and Safety, Offshore Environment.

UNIT-II Properties of marine sediments Hrs)

Introduction; classification, properties of marine sediments. Consolidation and shear strength characteristics of marine sediments. Planning and site exploration.

UNIT-III Sampling techniques

Hrs)

Drilling. Sampling techniques. Laboratory testing, In situ testing methods and geophysical methods. Current design practices of pile supported and gravity offshore structures.

UNIT-IV Dynamic analysis of offshore structures Hrs)

Dynamic analysis of offshore structures. Centrifugal modeling. Anchor design. Break out resistance analysis and geotechnical aspects of offshore pipeline and cable design. Field instrumentation and performance observation.

UNIT-V **Offshore soil mechanics**

Offshore soil mechanics; Offshore pile foundations and caissons; Design of breakwaters; Buoy design and mooring systems; Offshore drilling systems and types of platforms; Ocean mining and energy systems. ROV. Onshore drilling-on shore oil rigs, onshore drilling equipments-onshore rig structures-hydraulics applied in onshore rigs.

Total

Hours: 45 **Text Book**

1. Mohamed El-Reedy, Offshore Structures Design, Construction and Maintenance, 2012, Gulf Publishers.

1. Sahay.B, Wellsite Geological Techniques for petroleum Exploration

(9

(9

(9

(9

(9Hrs)

1998,Oxford & IBH Publishing Company Reference Books
1. BencGerwick Jr.: Construction of Marine and offshore structures, IDT ONGC Dehradun, drilling operations manual,2007
Designed by "Department of Petroleum Engineering"

SYLLABUS FOR UNDER GRADUATE IN ENGINEERING AND TECHNOLOGY B.E – MINING ENGINEERING ACADEMIC YEAR 2019-2023 (BATCH - IV)

PROGRAM			BE-	Mining Engi	neering		
Course Code:	COURSE NAME:			L	Т	Р	С
UDMNO08	REMOTE SE	NSING F	OR	3	0	0	3
	NATURAL RESO	DURCES					
Year and	III Year (VI	SEMESTER)			Contac	t hours per week	
Semester						(3Hrs)	
Prerequisite	N	IL					
course							
Course category	Humanities and	Managemen	nt	Profession	al Core	Professional	Elective
	Social Sciences	courses					
							
	Basic Science	Engineering Science	3	Open El	ective	Mandat	ory
		berenee					
	1. To provide	exposure to stude	ents i	n gaining kno	wledge on	concepts and applic	ations leading
Course		of earth resourc					0
Objective						ning and developm	
5					hyper spec	tral, thermal and LiI	DAR scanning
		, modeling and					
						information system	
	5. To elaborate	ely study about p	lanni	ing in transpo	rtation.		
	At the end of the co	irse the student	will h	e able to:			
Course Outcome					cations of I	Remote Sensing Tec	chnology.
Course Outcome		candidates for N					
						ling while using Re	mote Sensing
	Technology	-		-			-
						leadership qualities.	
		ing Information			lity		
	6. Explain Tra	nsport planning	using	GPS			

POS/ COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2		3		1				1	1	3		2
CO2	2	2		2		1		2		1			3		
CO3	2		1		3				1			2	3		2
CO4	2			2							1		3		
CO5	3				3				1			1	3		2

SYLLABUS FOR UNDER GRADUATE IN ENGINEERING AND TECHNOLOGY

B.E – MINING ENGINEERING

ACADEMIC YEAR 2019-2023 (BATCH - IV)

CO6															
Aver															
age	2.00	0.50	0.50	0.67	1.50	0.17	0.17	0.33	0.33	0.17	0.33	0.67	2.50	0.00	1.00
Correl	ation L	evels		1.Slig	ht(Low	/)		2.Mo	derate	(Mediui	n) 3.	Substant	ial(Higl	n)	
					—Unders utcome ;I					5-Evaluat ne	e, K6-Cr	eate ;			
UNIT	I: Intr	oducti	ion											(9	Hrs)
Introdu	uction t	to Rem	ote Se	nsing,	Minera	l , stru	ctural,	geomo	orphic	Anomal	ly Map	ping, Res	source E	Estimati	on
	II: Su	•												(9 Hrs)	
		0	•		-	0	ine Mo	onitorii	ng, Ide	ntificati	on of Il	legal mi	ning and	l Minin	g
			ping a	nd mor	itoring.										
	III : G										_			(9 Hrs	/
		U	-						lysis tł	nru GIS	softwa	re. Syste	matic re	etrieval,	
1					ne plans	s and s	ection	s.							
	IV: M									~				(9 Hrs)
	0		•			ty, intr	oducti	on to N	Aineral	Corrid	or.			(0 TT	
	V:Tr	-			0									(9 Hrs))
-		0			-		•	•			0	formation			
comm	unicatio	on syst	ems; I	CT Lii	iking of	t vario	us intra	a and 1	nter m	ining co	mpanie	es, centra	l reposi	tory sys	stem
												r	Fotal : (45 Hrs)
														,	
TEXT	BOOK	S													
1.	Sathee	sh Gop			imar, N				Surve	ying, To	otal Stat	ion GPS	and Ren	note Ser	nsing –

- Pearson education , 2007 ISBN: 978-81317 00679 52.
- 2. Alfred Leick, GPS satellite surveying, John Wiley & Sons Inc., 3rd Edition, 2004.
- 3. Jie Shan and Charles K. Toth, Topographic Laser Ranging and Scanning Principles and Processing, CRC Press, Taylor & Francis Group, 2009.

REFERENCES:

- 1. Rueger, J.M. Electronic Distance Measurement, Springer-Verlag, Berlin, 1996.
- 2. Michael Renslow, Manual of Airborne Topographic LiDAR, The American Society for Photogrammetry and Remote Sensing, 2013.
- 3. R.Subramanian, Surveying and Levelling, Oxford University Press, Second Edition, 2012.

PROGRAM CODE:UGA						B. Tech	d Proc	essing	Techn	ology						
Course Cod		Read	v to	Eat	Food	Processi	ing	L		Т	Р			С		
UDFPO08			nology				8.	3		0	0			3		
Year Semester Prerequisite course	and	III Y NIL	fear (6 th	Seme	ester)			Conta (3Hrs		rs per w	veek					
Course cate	egory		anities Il Scien		Mana cours	agement ses		Profe	ssional	l Core	Pro	Professional Elective				
		Basic	: Scienc	ce	Engi Scien	neering		Open	Electi	ve	Ma	ndator	у			
Course Out	come	3. 4. After 1. 2. 3. 4. 5. 6.	Comple A E L L A	tion conclusion conclu	over the c of the c e vario e on v RTE 1 d defin e the S	ourse, the ourse, the us RTE f arious pro- products of the RTI OP's of F ality stand	e stu coods oces of ce E pro RTE	dents v availa sing as creals oducts o foods	<u>TE fo</u> vill be ble. pects in	able to nvolved			ls.			
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO	
CO1	3	2	1	2	1	2	3	-	-	-	-	1	-	-	-	
CO2	-	2	1	-	2	3	-	1	-	-	-	-	-	-	-	
CO3	1	-	2	3	-	2	-	-	2	-	-	-	-	-	-	
CO4	2	-	2	-	2	2	1	-	-	-	-	-	-	-	-	
CO5	-	3	2	-	1	2	-	3	-	-	-	-	-	-	-	
CO6	3	2	-	2	2	-	1	-	-	-	-	2	-	-	-	
AVERAGE	2.6	2.2	1.6	2.3	2.3	2.5	1.6	2	-	-	-	1.5	-	-	-	
CORRELA	TION LE	EVELS			1.SLIGH	T(LOW)		2.MOD	ERATE(MEDIUN	4)	3.SU	BSTAN	TIAL(HIC	GH)	
UNITI Introduction Introduction – definition – need in market. source of contamination- Mic contamination – physical contamination					icrobia						Έ – re		TE foo			

UNIT II Fruis And Vegetables	(9 Hours)
Ready to eat fruits and vegetable products – dehydr	rated fruits and vegetables, pickle, salads, chutney,
sauce, ketcup, concentrated curry, dried fruits and vegetable	s – steaks and chips, cured fruits and vegetables.
UNIT III Cereals	(9 Hours)
Ready to eat cereal products – breakfast cereals from	n corn, wheat, rice, oats and millets - flaked cereal,
puffed cereal, shredded cereal, extruded expanded cereal -	noodles, pasta, etc
UNIT IV Milk Products	(9 Hours)
Ready to eat milk products - gulabjammun, peda,	ice cream, yogurt, whey drinks, paneer and dairy
based sweets.	
UNIT V Meat Products	(9 Hours)
Ready to eat meat products – pepperoni – sausages	- meat balls – frankfurters- meat pickles.

Text Book

- 1. Chakraverty, A. 1988. Postharvest Technology of Cereals, Pulses and oilseeds. Oxford and IBH, New Delhi.
- Kent, N.L. 1983. Technology of Cereals. 3rd Edn. Pergamon Press, Oxford, UK. Mathews, R.H. Ed. 1989. Legumes: Chemistry, Technology and Human Nutrition. Marcel Dekker, New York.

REFERENCES

- 1. Blanshard J.M.V., Frazier, P.J. and Galliard, T. Ed. 1986. Chemistry and Physics of Baking. Royal Society of Chemistry, London
- 2. Dauthy, M.E. 1997. Fruit and Vegetable Processing. International Book Distributing Co. Lucknow, India.
- 3. Jagtiani J., Chan, H.T. and Sakal, W.S. Ed. 1988. Tropical Fruit Processing Academic Press, London.
- 4. Kadar, A.A. 1992. Postharvest Technology of Horticultural Crops. 2nd Ed. University of California.
- 5. Lai, G., Siddappa, G. and Tondon G.L. 1986. Preservation of Fruits and Vegetables, Indian Council of Agril. Research, New Delhi
- 6. Kader, A.A. 1992. Postharvest Technology of Horticultural Crops, 2nd Ed. University of California, Division of Agriculture and National Resources, California.
- 7. Salunkhe, D.K. and Kadam, S.S. Ed. 1998. Handbook of Vegetable Science and Technology. Marcel Dekker, New York, USA

PROGR	AM	Comr	non to	Engine	eering,	Manag	gement	and C	omme	rce					
Course C	ode	Cours	se Nam	ie:				L	1	Τ		Р		C	1
UDITO	08	PYTH	HON P	ROGR	AMM	ING		3		0		0		3	
Year ar Semest Prerequi course	er site	Prog		ear (se		: VI) m Solv	ving			Conta	ct hour (3H	rs per v rs)	veek		
Course cat	egory		nanities ial Scier			nagem courses		Prof	essional	Core		Profes	sional H	Elective	
		Bas	ic Scie	nce		gineerii Science	ıg	Ор	oen Elec	tive		N	landato	ry	
Objecti	Course 1. Understand the Preliminary Concepts of Programming Language & sy Semantics methods Objective 1. Understand the Preliminary Concepts of Programming Language & sy Semantics methods 2. Understand the Strings, Lists, Functions and Methods 3. Write the Sub Python Scripts and the Simple File Programs 4. Handle the Errors &Exceptions 5. Comprehend the OOPs concepts After completion of the course, the students will be able to 1. Write a simple Python program following the basic syntactical structure of Language. 2. Develop an application to perform string manipulation 3. Use the built-in function and function objects in the Program														
		4. 5. 6.	Impl	ement	file har	ndling	in prog	rammi	ng env	g mech rironme oblems	ent	5			
POS/COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	1	1	-	-	-	-	-	-	-	-	-	-	-
CO2	3	2	2	2	1	-	-	-	-	-	-	-	-	-	-
CO3	2	1	3	3	2	-	-	-	-	-	-	-	-	-	-
CO4	3	2	2	2	1	-	-	-	-	-	-	-	-	-	-
CO5	3	2	2	2	1	-	-	-	-	-	-	-	-	-	-
CO6	2	1	3	3	2	-	-	-	-	-	-	-	-	-	-
AVERAGE	2.5	1.8	2.1	2.1	1.4	-	-	-	-	-	-	-	-	-	-

UNIT I **INTRODUCTION TO PYTHON**

HoursIntroduction to Python Interpreter and Interactive Mode - Values and Types:Int, Float, Boolean, String and List - Variables - Operators - Expressions - Statements - Comments

UNIT II CONTROL FLOW, FUNCTIONS AND STRINGS

Conditionals: Conditional (If), Alternative (If-Else), Chained Conditional (If-Elif-Else) - Iteration: While, For, Break, Continue, Pass - Functions: Fruitful Functions, Return Values, Parameters, Local and Global Scope, Function Composition and Recursion - Strings: String Slices, Immutability, String Functions and Methods

UNIT III LISTS, TUPLES AND DICTIONARIES

Lists: List Operations, List Slices, List Methods, List Loop, Mutability, Aliasing, Cloning Lists, List Parameters, List Comprehension - Tuples: Tuple Assignment, Tuple as Return Value - Dictionaries: Operations and Methods; Applications: Permutations using list - Telephone directory using dictionary

UNIT IV FILES, EXCEPTION, MODULES AND PACKAGES 9 Hours

Files and Exception: Text Files, Reading and Writing Files, Format Operator and Command Line Arguments - Exception: Errors and Exceptions, Handling Exceptions - Modules -Packages; Applications: Raise an exception if number not quadratic in quadratic equation

UNIT V **OOPS CONCEPTS**

Class - Objects - methods - Instance - Constructor and Destructor - Friend function - Function Overloading, - Inheritance; Applications: Bank account creation with deposit and withdraw using class

TOTAL HOURS: 45

TEXT BOOKS:

- 1. John C. Lusth, "The Art and Craft of Programming in Python", The University of Alabama, 2016
- 2. PovelSolin, Martin Novak, "Introduction to Python Programming", NCLab Public Computing, 2013

REFERENCES:

- 1. Mark Lutz, Learning Python, O'Reilly, Fifth Edition, 2013
- 2. Jacob Fredslund, Introduction to Python Programming, , 2007
- 3. Introduction to Python, DaveKuhlman, 2014

9

9 Hours

9 Hours

9 Hours

DDOCDUN												
PROGRAM		DEC for		ter-IV				L	Т		Р	C
Course Code	1.1	Course N		•		•		3	0		0	3
UDCMO06		Jumeric				ICS			<u>_</u>			
Year and Semest			III (V	I Semes	ster)		- Conta	act hour	s per we	ek(3 Hou	urs)	
Frerequisite cour				NIL								
		lumanitie	es and So ences	cial	Manag			Professio	onal Core		Professio	onal Elective
Course categor		301	ences		cour	562						
course categor		asic Scie				~ Colonco		Onen	Elective		М	andatory
		asic scie	ence	Er	ngineerin	g Science		Open				
Course Objective	e	1	Taw	donator	v d than	orcontic	n of the	e nower	ofnum	erical m	ethods	
		2	. To u	dorstan	d numor	icelly di	fforent k	inds of	nroblem	s occurri	ng in eng	gineering and
		2	techn	ology	u numei	ically u			procrem		0	
		3	. To ur	derstand	d the bas	sics of at	proxima	ation, int	egration	and diffe	erentiatio	on.
		4	Тош	nderstar	nd how	to desig	n exner	iments	and sur	veys for	efficien	cy.
		5	To ki	how the	concer	ots of SC)C					-
Course Outcome	1	The Stuc				10 01 00	<u> </u>					
						c know	edge or	n solutio	on of po	lynomia	ls.	
		2	Use i	nternol	ation an	d appro	ximatic	n to sol	ve engi	neering	problem	
									tegratio			
		4				eriments			-			
			. Appl	•	-				-			
									umerica	al metho	ds.	
POS\COS	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO11	PO 12
CO1	2	1	-	-	-	-	-	-	-	-	-	-
CO2	2	2	-	-			-	-	-	-	-	-
CO3	1	1	-	-	-	-	-	-	-	-	-	-
CO4	2	2	-	-	-	-	-	-	-	-	-	-
CO5	2	2	-	-	-	-	-	-	-	-	-	-
CO6	1	1	-	-	-	-	-	-	-	-	-	-
AVERAGE	1.67	1.5	-	-	-	-	-	-	-	-	-	-
Correlati	on leve	el	1.Sligh	t (Low)		2.Moder	ate(Me	dium)		3. Subs	tantial (H	High)

UNIT I Solution of Equations

9 Hours

Solution of algebraic equations: Fixed point iteration method - Newton Raphson method - Solution of linear system of equations: Iterative methods of Gauss Jacobi and Gauss Seidel.

UNITII Interpolation And Approximation

Interpolation with equal intervals: Newton's forward and backward difference formulae. 9 hours Interpolation with unequal intervals: Lagrange's interpolation – Newton's divided difference.

UNIT III Numerical Differentiation and Integration Approximation of derivation

Approximation of derivatives using interpolation polynomials - Numerical integration using Trapezoidal, Simpson's 1/3 rule Simpson's 3/8 rule – Romberg's method.

UNIT IV: Design of Experiments

Analysis of variance – One way classification – Completely randomized design – Two way classifications- Randomized Block design – Latin square

UNIT V: Statistical Quality Control

9 hours

Control charts for measurements (X and R charts) – Control charts for attributes (p, c and np Charts) – Tolerance limits - Acceptance sampling.

TEXT BOOKS:

1. Grewal. B.S., and Grewal. J.S." Numerical methods in Engineering and Science", Khanna Publishers, 9th Edition, New Delhi, 2007.

2. Gerald. C. F., and Wheatley. P. O., "Applied Numerical Analysis", Pearson Education, Asia, 6 th Edition, New Delhi, 2006.

REFERENCES:

- Chapra. S.C., and Canale.R.P., "Numerical Methods for Engineers, Tata McGraw Hill, 5 th Edition, New Delhi, 2007.
- Brian Bradie. "A friendly introduction to Numerical analysis", Pearson Education, Asia, New Delhi, 2007.
- Sankara Rao. K., "Numerical methods for Scientists and Engineers", Prentice Hall India Private, 3rd Edition, New Delhi, 2007.
- M.R.Spiegel, J.Schiller and R. Alu Srinivasan R, "Schaum"s Outlines Probability and Statistics", Tata McGraw-Hill Publishing Company Ltd. New Delhi, 2007.

9 hours

PROGRAM	В. Е., В.ТЕСН.					
Course Code:		TO NANOSCIENCE	L	т	Р	С
UEPHO02	INTRODUCTION	TO NANOSCIENCE	3	0	0	3
Year and Semester		3, VI				
Prerequisite course	Fundar	nentals of Physics		(COURSE [3 HRS]	
Course category	Humanities and Social Sciences	Management courses	Professiona	l Core	Professio	onal Elective
	Basic Science	Engineering Science	Open Electi	ve	Ma	ndatory
Course Objective	 To explain di To illustrate To demonstr 	Nanoscience to eng ifferent nanomateria nano materials and ate about various na about various applic	lls synthesis r their interestin nomaterial ch	nethods ng propertie naracterizatio		
	After completion o	f the course, the stuc	lents will be at	ole to ,		
Course Outcome	1. To understand t	ne basic concepts of r	nanomaterials.			
	2.To discuss the na	nomaterial synthesis	techniques			
	3.To analyze the pr	operties of nanomat	erials and thei	r utility.		
	4. To apply the too	ls for nanomaterials s	study.			
	5. To apply Nanosc	ience for various app	lications			
	6. To apply the bas	ic understanding of N	lanoscience in	fabrication o	f engineering dev	ices

Pre- requisite : Higher Secondary School Education; Fundamental concepts of Physics

Knowledge Levels as per Bloom Taxonomy:

K1- Remember; K2- Understand; K3- Apply; K4- Analyse; K5- Evaluate; K6- Create

Mapping of CO vs POs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1			3							3
CO ₂	3	2		1		2						2
CO ₃	2	2			1							3
CO ₄	2	1		2		3	2					2
CO ₅	1	3		3	2	1						1
CO ₆	1	1		1	1	1	3					3
CO ₇	3	2		2	2	3	1					2

Unit I Introduction to Nanoscience:(9 Hours)

Scientific Revolution-Atomic Structure and atomic size, emergence and challenges of nanoscience and nanotechnology, influence of nano over micro/macro, size effects, large surface to volume ratio, surface effects on the properties, functional Materials, Composite materials.

Unit II Synthesis of nanomaterials:

(9 Hours)

Chemical Routes for Synthesis of Nanomaterials: Chemical precipitation and coprecipitation; Metal nanocrystals by reduction, Sol-gel synthesis; Sono chemical synthesis; Electrochemical synthesis, Process of self-assembly,

Fabrication of Nanomaterials by Physical Methods, Arc discharge, Ion sputtering, Laser ablation, Ball Milling, Molecular beam epitaxy, Chemical vapour deposition method nanolithography, E beam lithography

Unit III Properties of nanomaterials:(9 Hours)

Nanostructures: Zero-, One-, Two- and Three- dimensional structure, Size control of semiconductor, metal, polymer Nanoparticles and their properties: Optical, Electronic, Magnetic properties; Surface plasmon Resonance, Change of bandgap.

Unit IV Characterization techniques:(9 Hours)

X-ray diffraction, Optical Microscope and their description, Scanning Electron Microscopy (SEM), TEM, DLS and EDAX analysis, UV-VIS-IR Spectrophotometers-band gap measurement, FTIR-ATR, TGA, DTA (Principle and Applications).

Unit V Nanomaterial Applications:(9 Hours)

Applications of nanomaterials in Environment, energy, medical & health care, electronics & communication and other Industrial applications.

Total : 45 Hours

Text Books

1. Textbook of Nanoscience and Nanotechnology, Murty, B.S., Shankar, P., Raj, B., Rath, B.B., Murday, J. Springer Berlin Heidelberg, 2013, Pgs 1-223.

2. Textbook of Nanoscience and Nanotechnology, T. Pradeep, 2012McGraw Hill Education (India) Private Limited, 1-445.

3. Basic Principles of Nanotechnology1st Edition, Wesley C. Sanders, CRC Press, 2018, Pgs 178.

References

1. Introduction to Nanoscience and Nanomaterials, , <u>Dinesh C Agrawal</u>, World Scientific Publishing Co Pte Ltd, 2013, Pgs 572

2. Essentials in Nanoscience and Nanotechnology, <u>Narendra Kumar</u>, <u>Sunita Kumbhat</u>, John Wiley & Sons, Inc., 2016, Pgs 472

PROGRAM		All	UG Progra	mmes		
Course Code:			L	Т	Р	С
UDCCO07	Course Name : MA	ARINE CHEMISTRY	3			3
Year and Semester Prerequisite course	N	IL			urs per week Hrs	
Course category	General	Foundation	Core / F	Professional	Elec	tive
					Yes	
Course Objective Course Outcome	 gases in se By the en- processes By the en- pharmacol By the en- elements (By the en- elements (By the en- the estuary List the concentration Demonstration Analyse and Integrate an nutrients end Reflect on 	d of this lesson, the in affecting oceanic nd of this lesson, ogical properties of d of this lesson, the N, P, Si) in seawate d of this lesson, the <u>7.</u> various dissolved on. te knowledge of cor d evaluate biomedia nd apply the knowl	student will carbonate s the student bioactive s e student w r. student will gases in neepts and p cal aspects of edge of stor metals in es	Il be able to pre system. will be able ubstances in ma ill be able to de be able to ider sea water and orinciples of ou of marine natura ichiometry of u	edict the role of to describe cl arine organism determine m ntify dissolved d factors aff cean acidificat al products. uptake and reg	of biological hemical and is. icro-nutrient l elements in ecting their ion. generation of

Total Hours: 45 Hrs

9 hrs

Dissolved gases in seawater

Dissolution of gases in seawater and their solubility; classification of dissolved gases and factors affecting their concentration in seawater; distribution of dissolved oxygen in seawater and affecting factors, AOU and oxygen minimum zone formation in the ocean, origin and consequences of ocean hypoxia.

Unit 2

Unit 1

9 hrs

Carbonate systems in the ocean

Acid base equilibria in seawater carbon dioxide system; parameters of carbonate systems and their distribution in the ocean; role of biological processes in affecting oceanic carbonate system; precipitation and dissolution of calcium carbonate in seawater, lysocline and carbonate compensation depth; Ocean acidification.

Chemistry of marine natural products

Biomedical Aspects; chemical and pharmacological properties of bioactive substances in marine organisms, carbohydrates and their derivatives in red and brown algae, aliphatic acids and their derivatives in marine organisms, steroids and their use as biomarkers, nitrogenous compounds in invertebrates, nucleosides from sponges, biopolymer.

Micronutrients in seawater Micro-nutrient elements (N, P, Si) in seawater, their forms, distribution and seasonal variation in the ocean. Stoichiometry of uptake and regeneration of nutrients elements and AOU.

Micronutrients and primary productivity. Unit 5 9 hrs

Estuarine chemistry

Behavior of dissolved and particulate material during estuarine mixing, interaction among them and speciation of dissolved elements in the estuary; physico-chemical characteristic of estuarine sediment, anoxic sediments and pore water; heavy metals in estuaries and the processes affecting its distribution.

Reference books

- 1. Introduction to Marine Chemistry, 1971 Riley, J.P. and Chester, R., Academic Press.
- 2. Chemical Oceanography (Vol.1, 2, 3 & 8), 1975 Riley, J.P. & Skirrow, G., Academic Press.
- 3. Marine Chemistry, 1969 Horne, R.A., Wiley-Interscience
- 4. Seawater: Its composition, properties & behaviour, 1989, 1995, 2004 The Open University.
- 5. Marine Chemistry (Vol.2), 1970 Martin, D.F., Marcel Dekker, NY.
- 6. Tracers in the Sea, 1982 Broecker and Peng., Lamont-Doherty Geological Observatory, NY.
- 7. Marine Geochemistry, 1990, 2000 Chester, R., Blackwell Science.
- 8. Chemical Oceanography, 1992 Millero, F. J. and Sohn, M.L., CRC Press.
- 9. Dynamic processes in the chemistry of the upper ocean, 1986 Burton et al., Plenum Press.
- 10. The chemistry of the Atmosphere and Oceans, 1978 Holland, H.D., Wiley.

Unit 4

Unit 3

9 hrs

9 hrs