AMET

UNIVERSITY

Value Added Course

A Sample Report of the VValue Added Course Titled “Embedded
Systems with 10T” offered for the students of the Department of

Electrical and Electronics Engineering is given below

Filo Qe chami b
on- 112y

2 AMET

‘s 15 FEB 2004 beemeare i tinaoe oo ot oo o 1o Teme ' G AS A
1 o
e o 2075
R R AL LI ROM THE OFFICE OF HOD-EEE
Date: 15.02.2024
v . ¥ A\w\h N
Dr.V.Sridevi o '
Professor and HoD
Dept. of EEE
To

The Registrar
AMET Deemed to be University.

Sir,
Sub: Renewal of Existing MOU’s Reg.

There are 14 MOU’s associated with the Department of Electrical and Electronics Engineering to
support student activities, FDP, Training programs etc. We would like to renew one of the existing MOU’s
namely VI Microsystems Pvt.Ltd since their validity period was over in December 2023. 1 request you to

kindly do the needful.

S : ! : § ‘
Workshop/Value Added Duration Max. batch | No: of Program
S.No i i | batches per .

Programs (In Hours) Size ‘ Yol fee/batch
1| ko, Embedded:and Arduing I 40 1 [INR40,000/-
2| Automation o3 a0 1 [INR40,000- |
L3 | Engmgcrmg. Design and Additive 35 40 | INR 40,000/
.~ | Manufacturing .

4 Ma111l‘§|1allce (Mechanical and 35 40] INR 40,000/
| Electrica) .

e All the above fee is exclusive of GST
Boarding & Lodging for the trainees will be additional, only if required.

[]

e Travel, Boarding and Lodging for the trainers to be borne by the University, for all the training
execution scheduled at the University.

e University will sponsored Rs. 25000/~ for conducting Skill Development or Value Added Training

program per semester and the balance amount will be collected from the students (Rs.1000/student).

Thanking you, «.—_E\m\,q\‘r)arv.\M V%O*(/376‘” U?WA c?v/
(eobr D5y

«,‘.,E; {‘v <A

Dr.V.Sridevi
Professor and HoD ‘@6@ \DJ“ Al }

\)‘0»(A { — 5—1 1
V\"ﬂf&x«f’k e

&, UNIVERSITY

4 4e bet Ubvenndly Lvdis Secter 3 of UOC At 109

Report on
Value Added Course

On

Embedded System with IoT

for
L, II and III Year

Organized By

Department of Electrical and Electronics Engineering

Batch 1: 11-03-2024 to 16-03-2024
Batch 2: 22-03-2024 to 28-03-2024
Batch 3: 1-04-2024 to 06-04-2024

Venue: VI Microsystems Pvt.Ltd, Chennai

Hands-on Value Added Course

Topic : Embedded System with |oT
Duration : 35 - 40 Hours
COURSE OBJECTIVE:

1. Understanding the concept of Embedded system and real time
sensors and Various domains with the hands on session

2. Gaining Advanced knowledge of IoT,

3. Applying the fundamental theories and concepts of Embedded
system with loT

4. Knowledge about Wired and wireless communication

5. experiencing extensive and hands-on in Embedded with loT

concepts

Course Syllabus:

Unit 1: Introduction and Configuration of Embedded system
Board

Introduction to Embedded system - Microprocessor and
Microcontroller Classification : Different between microprocessor
& Microcontroller - Classification based on Architecture-Memory
Classification .

Embedded system board architecture - Identify Embedded
Platform / simulator — Digital 1/O interface, Analog I/O interface —

Interrupts — Timer — PWM - Interface of peripheral device,

Unit 2: Embedded Software Tools and Simulation Tool

About software introduction — Introduction to Different Types of
IDE, Thorny IDE, and Introduction to C and Embedded - Python,
micro Python - about Thonny IDE - Thorny Shell. Online

Embedded wokwi pico micropython Simulation Tool.

Unit 3: Peripherals and Sensors Interfacing

LED blinking task — Buzzer, Relay and switch Interfacing, 7
segment and LCD Interfacing PWM Generation, different types of
Analog and digital sensors are interfacing — LM 35 —Ultrasonic —

LDR- IR —Potentiometer and Accelerometer.

Unit 4: Wired and Wireless Communication Protocols

Wired communication Communication Protocols Serial
Communication: UART - 12C — SPI- wireless communication
Protocols : zigbee , Bluetooth ,RF LoRaWAN Wi-Fi and
loT ,wired and wireless communication application interfacing

systems.
Unit 5: Cloud Platforms for IOT

Introduction to IOT Understanding loT fundamentals 10T
Architecture and protocols Various Platforms for loT Real
time Examples of loT Overview of loT components and loT
Communication Technologies Challenges in IOT ,Cloud
Platforms for IOT , Study of IOT Cloud platforms ThingSpeak
API ,Fire base and Blynk app, Interfacing RP2040 W with Web

services

Course Outcomes:

Students will be able to

1.

Design and develop the embedded system application to

acquire the data from sensors like temperature, pressure,

humidity, flow etc, and communicate collected signals to the
computer through UART, 12C and SPI port.

2.

Develop the embedded system to interface with

accelerometer, ultrasonic sensor, and encoder to acquire the

3.

To study of various loT Protocols

5 -Days hands-on training program in Dual core embedded

controller

Day |FN AN

1 -Introduction to Embedded Hands-on training
systems Raspberry pi Pico

-Difference between
Microprocessor Vs
Microcontroller ,

-Raspberry pi RP 2040 Pico
microcontroller Introduction

Programming overview ,
LED interfacing , Button
Interfacing and different
types of 1O concept with
Example

2 - GPIO, Timer Dual core , Programmable 10
-Introduction to PWM , PWM and State Machine concept
Generation, LED Fading Using | with Hands-on training
PWM,

-V/F Control of Induction Motor

3 - Introduction to sensors, Introduction to ADC and
concept of analog and digital types
sensor , Hands-on training for | Hands-on training for
Different types of digital sensor | Potentiometer interfacing ,
interfacing Temperature sensor

interfacing

4 Introduction to display unit , Hands-on training -

types of display , about LCD and
7 segment display with hands-
on programming

Ultrasonic sensor interfacing ,
Relay interfacing and buzzer
interfacing

Introduction to Wireless
technology , About raspberry pi
rp2040 W and Introduction to

loT cloud , sensor data send to
any cloud service with hands-on

Temperature and Ultrasonic
data send to cloud

Home automation using loT -
project

The following Boards and Industrial projects will be used in this
course.

RP2040 W based Carrier Board

As Raspberry Pi based embedded Controllers become more and
more awareness among students, Vi Micro has designed another
innovative Carrier Board, based on Raspberry RP2040 Processor,
which provides Dual Core Cortex MO+ Microcontroller, 16 GPIO,

ADC, etc. to build many Embedded Applications and Study the
Interfacing of Various Devices to RP2040

Hands on Experiments above Trainer kit used

1. interface a 16*2 LCD Display

2. interface 2*7 Segment Display

3. Interface Various Sensors

4. Acqure ADC Sensor Data and display on a Smart Phone through
WiFi

4

COURSE OUTCOMES:

Students will acquire basics of Embedded system and Real time
loT Application

e Student get knowledge microprocessor and controller .

e Students get the real time sensors working procedure and get
hands-on training Observe surface area and objects on
systematic basis and thereby monitor their changes over time.

e |oT Application (Internet of Things)

e Real time Application.

REFERENCES:

1.RP2040 Assembling language Programming — Stephen
smith
2.Raspberry pi pico Essentials:Program,Build,and Master

Over 50 Projects with micro python

Online Link :

https://www.google.com/search?rlz=1C1JZAP_enIN1029I
N1029&cs=0&q=Raspberry+Pi+Pico+Essentials:+Progr
am,+Build,+and+Master+QOver+50+Projects+with+Micro
Python+and+the+RP2040+Microprocessor+Dogan+lbra
him&stick=H4s|AAAAAAAAAONgVelLVT9c3NCzJMiusS
C4uM-IpKjAyMDFQSMrPzy4-xQiRLTAOKkgzSc-
D8WGq4fy84oLyPAUTR4yLmLgFXv64Jyw1g2nSmpPX
GCcycQn450cXp-
ZUBgXmJJakpoTkCxlysbnmIWSWVAoJSvFzQYwojDfP
LUsyyzUSgQpkm2UnZ6RYFAjMfzCNUSiUizs4tSQk3zc
_JTOtUshNylWL0zc1Nym1qNg_TUiZi8s5PycnNbkkMz9

PSFRKmEtQPxkuoA_2ixJfEKd-
rr5BUkI8sVEBRiYrJgOmpUKjuF2Xpp1jixDc1_7_f6hkklO
UhpYgF5tLfm5iZp4gU_lle7kF7-
21hLk4QhIr8vPycysFpdjuFm37f8JeSZHTpp-7IXD-
W3tBvVpGhdkzxA5IMCswaDAYXr7G_oAt_td-
LQagRU37Vhxi4-

BgF GAwYuJgqGLgWcTaxhiUWFwAdHxRpUJAJhAISyu
4FhenAgMIMafY SiGgKD-
9KDFXR8GpNDMnRUchMS9FwTexuCS1SMG_DEiYG
oCUZAG9V6xQnImSoeCbmVyUH1BZkpGfB1ZckpGqE
BQAjkiwVEFRfnJqcXF-
kYJLfnpinoJnUIFIRmbuBDZGABx6pZsCAgAA&sa=X&v
ed=2ahUKEwjamLKDsNH8AhUx5HMBHeKbDDQQ7fAI 2
egQIABAU

SOFTWARE REQUIREMENT:

e Thonny IDE
e Python and Micro Python Language

e Wokwi simulator Tool (Online Simulation Tool)

HARDWARE REQUIREMENT:

e Processor - ARM Cortex MO (Raspberry pi Pico
RP2040W)

g

RP2040 CARRIER BOARD

User Manual

Versionl.0

TechnicalClarification/Suggestion:
4lS

TechnicalSupport
Division,ViMicrosystemsPvt.

Ltd.,
PlotNo:75,ElectronicsEstate,Perungudi,C
hennai-600096,INDIA.

Ph:91-44-24961842,91-44-24961852
Mail:rnd@vimicrosystems.comwW
eb:www.vimicrosystem.com01/14/
05/10

mailto:rnd@vimicrosystems.com
http://www.vimicrosystem.com/

LCD DISPLAY

INTERFACING LM 35 WITH LCD
SEVEN SEGMENT DISPLAY

POT WITH 7 SEGMENT INTERFACING
ULTRASONIC SENSOR

BUZZER
RELAY WITH SERIAL
SWITH INCREMENT WITH LED

TEMPERATURE SENSOR
ADC
PWM

PROCEDURE IN THINK SPEAK

1. INTRODUCTION TO EMBEDDED SYSTEM

An embedded system is a combination of computer hardware and software designed for
a specific function. Embedded systems may also function within a larger system. The
systems can be programmable or have a fixed functionality. Industrial machines,
consumer electronics, agricultural and processing industry devices, automobiles,
medical equipment, cameras, digital watches, household appliances, airplanes, vending
machines and toys, as well as mobile devices, are possible locations for an embedded
system.

While embedded systems are computing systems, they can range from having no user
interface (Ul) -- for example, on devices designed to perform a single task -- to complex
graphical user interfaces (GUIs), such as in mobile devices. User interfaces can
include buttons, LEDs (light-emitting diodes) and touchscreen sensing. Some systems

use remote user interfaces as well.

Marketability, a business-to-business (B2B) research firm, predicted that the embedded
market will be worth $116.2 billion by 2025. Chip manufacturers for embedded systems
include many well-known technology companies, such as Apple, IBM, Intel and Texas
Instruments. The expected growth is partially due to the continued investment in
artificial intelligence (Al), mobile computing and the need for chips designed for high-

level processing.

Examples of embedded systems

Embedded systems are used in a wide range of technologies across an array of

industries. Some examples include:

. Automobiles. Modern cars commonly consist of many computers (sometimes as
many as 100), or embedded systems, designed to perform different tasks within the
vehicle. Some of these systems perform basic utility functions and others provide

entertainment or user-facing functions. Some embedded systems in consumer

https://www.techtarget.com/searchapparchitecture/definition/user-interface-UI
https://www.techtarget.com/whatis/definition/GUI
https://internetofthingsagenda.techtarget.com/feature/Biometric-IoT-sensors-shape-the-future-of-user-interfaces
https://internetofthingsagenda.techtarget.com/feature/Biometric-IoT-sensors-shape-the-future-of-user-interfaces
https://www.techtarget.com/searchcio/definition/B2B
https://www.techtarget.com/searchcio/answer/What-is-embedded-intelligence-and-how-can-CIOs-prepare-for-it
https://www.techtarget.com/searchmobilecomputing/definition/nomadic-computing

vehicles include cruise control, backup sensors, suspension control, navigation

systems and airbag systems.

. Mobile phones. These consist of many embedded systems, including GUI
software and hardware, operating systems (OSes), cameras, microphones, and USB
(Universal Serial Bus) I/0 (input/output) modules.

. Industrial machines. They can contain embedded systems, like sensors, and
can be embedded systems themselves. Industrial machines often have embedded

automation systems that perform specific monitoring and control functions.

. Medical equipment. These may contain embedded systems like sensors and
control mechanisms. Medical equipment, such as industrial machines, also must be
very user-friendly so that human health isn't jeopardized by preventable machine
mistakes. This means they'll often include a more complex OS and GUI designed for

an appropriate Ul.

How does an embedded system work?

Embedded systems always function as part of a complete device -- that's what's meant
by the term embedded. They are low-cost, low-power-consuming, small computers that
are embedded in other mechanical or electrical systems. Generally, they comprise a
processor, power supply, and memory and communication ports. Embedded systems
use the communication ports to transmit data between the processor and peripheral
devices -- often, other embedded systems -- using a communication protocol. The
processor interprets this data with the help of minimal software stored on the memory.

The software is usually highly specific to the function that the embedded system serves.

The processor may be a microprocessor or microcontroller. Microcontrollers are simply
microprocessors with peripheral interfaces and integrated memory included.
Microprocessors use separate integrated circuits for memory and peripherals instead of
including them on the chip. Both can be used, but microprocessors typically require

more support circuitry than microcontrollers because there is less integrated into the

https://www.techtarget.com/searchenterpriseai/feature/Machine-learning-on-microcontrollers-enables-AI

microprocessor. The term system on a chip (SoC) is often used. SoCs include multiple
processors and interfaces on a single chip. They are often used for high-volume
embedded systems. Some example SoC types are the application-specific integrated

circuit (ASIC) and the field-programmable gate array (FPGA).

Often, embedded systems are used in real-time operating environments and use a real-
time operating system (RTOS)to communicate with the hardware. Near-real-time
approaches are suitable at higher levels of chip capability, defined by designers who
have increasingly decided the systems are generally fast enough and the tasks tolerant
of slight variations in reaction. In these instances, stripped-down versions of
the Linux operating system are commonly deployed, although other OSes have been
pared down to run on embedded systems, including Embedded Java and Windows 0T
(formerly Windows Embedded).

Characteristics of embedded systems

The main characteristic of embedded systems is that they are task-specific.

Additionally, embedded systems can include the following characteristics:

typically, consist of hardware, software and firmware;

. can be embedded in a larger system to perform a specific function, as they are
built for specialized tasks within the system, not various tasks;

. can be either microprocessor-based or micro controller-based -- both are
integrated circuits that give the system compute power;

. are often used for sensing and real-time computing in internet of things (loT)
devices, which are devices that are internet-connected and do not require a user to
operate;

. can vary in complexity and in function, which affects the type of software,
firmware and hardware they use; and

are often required to perform their function under a time constraint to keep the
larger system functioning properly.

Structure of embedded systems
Embedded systems vary in complexity but, generally, consist of three main elements:

https://internetofthingsagenda.techtarget.com/definition/system-on-a-chip-SoC
https://www.techtarget.com/whatis/definition/ASIC-application-specific-integrated-circuit
https://www.techtarget.com/searchdatacenter/definition/real-time-operating-system
https://www.techtarget.com/searchdatacenter/definition/real-time-operating-system
https://www.techtarget.com/searchdatacenter/definition/Linux-operating-system
https://www.theserverside.com/definition/EmbeddedJava
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT

Hardware. The hardware of embedded systems is based around
microprocessors and microcontrollers. Microprocessors are very similar to
microcontrollers and, typically, refer to a CPU (central processing unit) that is
integrated with other basic computing components such as memory chips and digital
signal processors (DSPs). Microcontrollers have those components built into one
chip.

Software and firmware. Software for embedded systems can vary in
complexity. However, industrial-grade microcontrollers and embedded 10T systems

usually run very simple software that requires little memory.

Real-time operating system. These are not always included in embedded
systems, especially smaller-scale systems. RTOSes define how the system works by

supervising the software and setting rules during program execution.

In terms of hardware, a basic embedded system would consist of the following

elements:

Sensors convert physical sense data into an electrical signal.

Analog-to-digital (A-D) converters change an analog electrical signal into a

digital one.
Processors process digital signals and store them in memory.

Digital-to-analog (D-A) converters change the digital data from the processor

into analog data.

Actuators compare actual output to memory-stored output and choose the

correct one.

The sensor reads external inputs, the converters make that input readable to the

processor, and the processor turns that information into useful output for the embedded

system.

https://www.techtarget.com/whatis/definition/digital-signal-processing-DSP

Embedded system structure diagram

Analog- Digital-

Sensor to-digital er?((:l:e:ssl?:r to-analog Actuator
converter converter

Memory

2.RASPBERRY PI PICO RP2040

Designed by Raspberry Pi, RP2040 features a dual-core Arm Cortex-MO+ processor
with 264kB internal RAM and support for up to 16MB of off-chip flash. A wide range of
flexible 1/0 options includes 12C, SPI, and - uniquely - Programmable /O (PIO). These

support endless possible applications for this small and affordable package.

Whether you have a Raspberry Pi Pico or another RP2040-based microcontroller board,
everything you need to get started is here. You'll find support for getting started
with C/C++ or MicroPython on Raspberry Pi Pico, and links to resources for other
boards that use RP2040. There are also links to the technical documentation for both

the Raspberry Pi Pico microcontroller board and our RP2040 microcontroller chip.

RP2040 is the debut microcontroller from Raspberry Pi. It brings our signature values of

high performance, low cost, and ease of use to the microcontroller space.

With a large on-chip memory, symmetric dual-core processor complex, deterministic
bus fabric, and rich peripheral set augmented with our unique Programmable 1/0O (P1O)

subsystem, it provides professional users with unrivalled power and flexibility. With

https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html#technical-specification
https://www.raspberrypi.com/documentation/microcontrollers/c_sdk.html#sdk-setup
https://www.raspberrypi.com/documentation/microcontrollers/micropython.html#what-is-micropython

detailed documentation, a polished MicroPython port, and a UF2 bootloader in ROM, it

has the lowest possible barrier to entry for beginner and hobbyist users.

RP2040 is a stateless device, with support for cached execute-in-place from external
QSPI memory. This design decision allows you to choose the appropriate density of
non-volatile storage for your application, and to benefit from the low pricing of
commodity Flash parts.

RP2040 is manufactured on a modern 40nm process node, delivering high
performance, low dynamic power consumption, and low leakage, with a variety of low-

power modes to support extended-duration operation on battery power
Key features:

Dual ARM Cortex-M0+ @ 133MHz

264kB on-chip SRAM in six independent banks

Support for up to 16MB of off-chip Flash memory via dedicated QSPI bus

DMA controller

Fully-connected AHB crossbar

Interpolator and integer divider peripherals

On-chip programmable LDO to generate core voltage

2 on-chip PLLs to generate USB and core clocks

30 GPIO pins, 4 of which can be used as analogue inputs

Peripherals

2 UARTSs
2 SPI controller

2 12C controllers

16 PWM channels

USB 1.1 controller and PHY, with host and device support

8 PIO state machines

Features of RP2040 Chip — High performance. Low cost. Small package.

The RP2040 features a dual-core Arm Cortex-MO+ processor clocked at 133MHz with
264KB internal SRAM and 2MB internal flash storage and can be programmed in both
C/C++ and the beginner-friendly MicroPython.

RP2040

floor(log2(nonvolatile / 16k))
floor(log2(ram / 16k))
Type of core (e.g. MO+)

Number of cores

Raspberry Pi

(Picture quoted from Raspberry Pi Official)

T I
R 30
E 3

-
o .

Raspberry Pi Pico 2020 ., BOOTSEL g

&

Raspberry pi Pico

9

Raspberry Pi Pico W and Pico WH

Raspberry Pi Pico W adds on-board single-band 2.4GHz wireless interfaces (802.11n)
using the Infineon CYW43439 while retaining the Pico form factor. The on-board
2.4GHz wireless interface has the following features:

Wireless (802.11n), single-band (2.4 GHz)
WPAS3
Soft access point supporting up to four clients

The antenna is an onboard antenna licensed from ABRACON (formerly ProAnt). The

wireless interface is connected via SPI to the RP2040 microcontroller.

Due to pin limitations, some of the wireless interface pins are shared. The CLK is
shared with VSYS monitor, so only when there isn’t an SPI transaction in progress can
VSYS be read via the ADC. The Infineon CYW43439 DIN/DOUT and IRQ all share one
pin on the RP2040. Only when an SPI transaction isn’t in progress is it suitable to check

for IRQs. The interface typically runs at 33MHz.

For best wireless performance, the antenna should be in free space. For instance,
putting metal under or close by the antenna can reduce its performance both in terms of
gain and bandwidth. Adding grounded metal to the sides of the antenna can improve

the antenna’s bandwidth.

10

https://www.raspberrypi.com/documentation/microcontrollers/rp2040.html#welcome-to-rp2040

RP2040

15
UARTO TX § 12C0 SDA GP12 mi

P
25 I I NP

T L 40 H Power
« § 12COSCL § SPI0CSn B GP1_ SFNee o (39 M cround
31 X3 . Bl UART 7 UART (default)
| GP2 B = . B GFIO, PIO, and PWM
B 5 . W acc
n § SPIORX B GP4 QN & . I sPI/SPI (default)
SPIOCSn § GP5 SWESe e . B 12C/12C (default)
= . .
SPID SCK § _GP6___RLiee ® L 32 I Debugging
10 2 o S GR2 |
| GPa_ WIS * X 30
T 2 LR 29 O
|__GND__RERTe siomld GND |
142 LK 27
- -
- -
17 LR 24 IEEEE
18 2 23
1 X LR 22
20 o ® il GP16_§ SPI0RX _J I2C0 SDA § UARTOTX |

RP2040
Microcontrollei

(o

o o

.:'

2
01y
[y et

i

a0
([11]

L]

54
Ot- s

A

)f
g

. ‘.

RP2040 MICROCONTROLLER

11

RP2040 2MB Boot on-Board LED

12MHz Crystal Microcontroller SPI Flash Selection Butten (Gpj025)

20 Pin 1/0

RASPBERRY PI PICO PINOUT FEATURS

m
=4 B Power
ﬁ B Ground
o
bt I UART 7 UART (default)
| UARTO TX § [2C0 SDA § SPIORX bGP0 ¥ e} VBUS | B GPIo, PIO, and PWM
[UARTORX } 12C0SCL § sPiocsn | GP1_) elaml)) VsYs W ~oc
3 eigil GND | B sri / sPI (default)
[12C1SDA § SPloSCK | GP2 [ER®'e X 37 I 12¢ 7 12C (default)
[12c1scL § sPioTx | GP3 [l 2 o' ¥ 3v3(ouT) |
LuART1 TX | 12c0 DA | sPioRx | GP4 NE® = 35 B Debugging
| UARTTRX § 12C0SCL { SPIOCSn | GPS VAT _ eie’§ GP28 | ADCZ |
8 2N UL 33
[12C1 SDA | SPIOSCK | GP6_ JUNSp ® e} GP27 | ADC1 | 12C1SCL|
[12C1SCL § SPIOTX | GP7 _ Qllsp @ § e ill GP26 § ADCO | [2C1SDA |
| UART1 TX | 12COSDA | SPITRX | GP8 Qi@ e o L 30
| UART1 RX | 12C0SCL | SPI1CSn | GP9 JFie @ © o @y CP22 |
[onD el S = 2 T
[12c15DA | spi1sck | GPio_JTie o] cP21 |
[i2ciscL | spiiTx | cpi1 fiiee T e} GP20 |
[UARTOTX § 12COSDA § SPITRX | GP12_R[fp e = erer i GP19] spioTx | I2c1 ScL |
| UARTORX } 12COSCL § SPI1CSn § GP13 Riie ® 2 e'a’§ GP18 | SPI0SCK | 12C1 SDA |
[_GND RIS SIg:l GND |
[121 5DA § spiisck | cpia EilRe 7 e -8 GP17] SPI0CSn | 12C0 SCL J UARTORX |
IS I O s S) o 20 orte | som oo son J ooty

[YTOMS |
ane
01GMS |

= Micro-USB B port for power and data (and for reprogramming the Flash)

12

12MHz Crystal Oscillator with two PLLs provide a system clock up to 133MHz,
and a fixed 48MHz clock for USB or ADC.

Code may be executed directly from 2MB of on-board Flash memorythrough a
dedicated SPI.

Raspberry Pi Pico is a microcontroller board based on the Raspberry Pi RP2040

- 32 bit microcontroller chip

3-pin ARM Serial Wire Debug (SWD) port.

FourRP2040 GPIO pins are used for internal board functions, these are:
GPIO29 IP (ADC3) Used to measure VSYS/3

GPI0O25 OP Connected to onboard LED

GPI0O24 IP VBUS sense - high if VBUS is present, else low

GPIO23 OP Controls the on-board SMPS Power Save pin

13

3.RP2040 MICROCONTROLLER

2 % E >
osPI| |#18/8)5)8 &) 2 2
Ot/ |h|gsh 8
W)\ g g
(=g (K= =0 H=0=] <
56|55(54|53|52 51[50 44 43]
tovop | 1] 42]
GPIOO | 2 41f GPl029/ADC3
GPIO1 | 3 408 GPIO28/ADC2 ADC
GPIOZ | 4 399 GPI027/ADC1
GPIO3 | 5 38%.GPIO26/ADC
GPIO4 | 6 37| GPIO25 '
GPIOS | 7 36| GPIO24
== GND —
GPIOG | 8 35| GPIO23
GPIO7 | 9 34| GPIO22
IovDD |10 33| lovbD
GPIOB |11 32| GPIO21
GPIO9 |12 31| GPIO20
GPIO10D |13 TOP VIEW 30| GPIO19
GPIO11 |14 29| GPIO18
|15[16]17|18[19]|20|21(22|23|24| 25|26 | 27| 28|
Ne s (2= a|lxiofZe ~
HHEREEBEEEHERE
oo E x| o | o % % oo
U T RN TR [N
POWER SUPPLY:

At its simplest, RP2040 requires two different voltage supplies, 3.3V (for the 10)
and 1.1V (for the chip's digital core).

14

Features of Raspberry Pi Pico

Micro - USB for
Program / Power

Test LED

BootSel Button

Debug Pinout

CORTEX-M0 PROCESSOR FEATURES

The ARM Cortex-M0O+ processor brings 32-bit power at an 8-bit Cost.

Has the Smallest Footprint & Lowest Power requirements, consumes just
9UA/MHz on a low-cost 90nm LP process, around one third of the energy of any
8- or 16-bit processor available today, while delivering significantly higher

performance.

The low-power processor is suitable for a wide variety of applications, including

sensors and wearables.
Single-cycle 10 to speed access to GPIO and peripherals.
Improved debug and trace capability and a 2-stage pipeline.

The exceptional code density of Cortex-MO+ significantly reduces memory

requirements, ideal for use in wearables for healthcare, fitness, and more.

With its three highly optimized low-power modes, the processor conserves

energy to match processing demands.

15

4. RP2040 CARRIER BOARD

The Following On board peripherals available in the carrier board
1. RP2040 Microcontroller

. Bush Button

. Seven Segment display

. Potentiometer

. Ultrasonic Sensor

. 16*2 LCD Display

. Buzzer

. Relay

© 00 N O o b~ WD

. USB Connector

10. USB Cable (B-Type)
11. LED

12. Temperature sensor

13. ADC

16

OP3ENZ . spin_mc

-
-
=3
=
-

0P20AD02

LTE343

4N0
vl

BPITLNEY

vis oW

GPTRELAY

17

5. SOFTWARE REQUIRED & PROGRAMMING LANGUAGE

MicroPython

Raspberry Pi Pico Programming — Overview — GPIO Access
The Raspberry Pi Pico accepts programming with the following programming

languages: C/C++, MicroPython, assembly language.

Although the Pico by default is set up for use with the powerful and popular C/C++
language, many beginners find it easier to use MicroPython, which is a version of the

Python programming language developed specifically for microcontrollers.

In this Lab we will learn how to install and use the MicroPython programming language.
We will be using the Thonny text editor which has been developed specifically for

Python programs.

18

How to Install MicroPython on Raspberry Pi Pico?
Download MicroPython Binary

Let us now get started with MicroPython on Raspberry Pico. The easiest and fastest
way to run MicroPython on Raspberry Pi Pico is to download the prebuilt binary from the

official Raspberry Pi Pico’s website.

Go to the documentation page of Raspberry Pi Pico and click on “Getting Started
MicroPython” tab.

Welcome to Raspberry Pi RP2040

Welcome to Raspberry Pi RP2040, a microcontroller designed here at Raspberry Pi

Whether you have a Raspberry Pi Pico or another RP2040-based microcontroller
board, everything you need to get started is here. You'll find support for getting started
with C/C++ or MicroPython on Raspberry Pi Pico, and links to resources for other
boards that use RP2040. There are also links to the technical documentation for both
the Raspberry Pi Pico microcontroller board and our RP2040 microcontroller chip

About . Getting started Getting started

Raspberry Pi Pico MicroPython C/C++

The content below the tab changes according to the selected tab and when you click on
“‘Getting Started MicroPython”, a text related to Getting started with MicroPython
appears along with a small animation on how to install MicroPython on Raspberry Pi

Pico.

19

https://www.raspberrypi.org/documentation/rp2040/getting-started/
https://www.electronicshub.org/wp-content/uploads/2021/02/Installing-MicroPython-1.jpg

Getting started with MicroPython

Drag and drop MicroPython

You can program your
via USB, then dragging
put together a downloada

MicroPython more easily

1. Download the MicroPython UF2 file by clicking the

outton Delow

2. Push and hold the BOOTSEL button and plug y
nto the USB port of your Raspberry Pi or othe
computer. Release the BOOTSEL button after

S connectec

o

it will mount as a Mass Storage Device called RPI-RP2

4. Drag and drop the MicroPython UF2 file onto the RPI-
o v
R

You can access the REPL via USB Serial. Our MicroPython
documentation contains step-by-step Instructions for
connecting to your Pico and programming it in

Read all the information and click on “Download UF2 file” option. A MicroPython
Binary in the form of a .uf2 file will be downloaded.

Home Share View

* L-I & cut x 7 New item ~ M i4 Open
Wi Copy path - . {7 Easy access ~ Edit
Pin to Quick Copy Paste _ Move Copy Delete Rename New Properties ;
Sccess [7] Paste shortcut ¢4 o & folder v &) History
Clipboard Organize New Open
T v oA ‘ > ThisPC » Downloads
Name Date modified Type
3 Quick access -
| | rp2-pico-20210205-unstable-v1.14-8-g1f800cac3.uf2 2/25/2021 4:05 AM UF2 File

g This PC

_J 3D Objects
[l Desktop

4 Downloads
D Music

Pictures

B videos
‘s Local Disk (C:)

w New Volume (D:)

=¥ Network

20

FH setect an

0 Select none
DD Invert selection

Select

Size

486 KB

https://www.electronicshub.org/wp-content/uploads/2021/02/Installing-MicroPython-2.jpg
https://www.electronicshub.org/wp-content/uploads/2021/02/Installing-MicroPython-3.jpg

Install MicroPython on Raspberry Pi Pico

After downloading the MicroPython Binary, we have to upload this firmware in to the
Raspberry Pi Pico. For that, first we have to put the Pico in bootloader mode.

To do that, plug-in a micro-USB cable to micro-USB port of Raspberry Pi Pico. Now,
hold the BOOTSEL button on the Pico and plug-in the other end of the USB cable to a
USB port of the host computer (while holding the BOOTSEL button).

You can release the button after a couple of seconds when the Raspberry Pi Pico
appears as a Mass Storage Device with name “RPI-RP2”. If you open it, you will see a
text file and an HTML file.

&l M = | Manage RPI-RP2 (F:)
Home Share View Drive Tools
,f u & Cut x l 7 New item ~ ;—] : 4 Open FH select an
W Copy path - ﬁ Easy access v Edit 15 Select none
Pinto Quick Copy Paste . Move Copy Delete Rename New Properties A o .
access [1] Paste shortcut to to - folder - &) History 5 Invert selection

Clipboard Organize New Open Select

<« ¥ N wa > ThisPC > RPI-RP2(F)

> 3 Quick access ‘.
INFO_UF2.T
XT

v & This PC INDEX.HT
> ZJ 3D Objects M
> [Desktop
> [£| Documents
> b Downloads
> D Music
> [&=| Pictures
> @ Videos
> ‘i Local Disk (C:)
> New Volume (D:)

I> — RPI-RP2 (F)

> «a RPI-RP2 (F:)

> B Network
Now, go to the downloads folder and drag-and-drop the downloaded MicroPython UF2
file onto RPI-RP2 device. After copying, the Raspberry Pi Pico will restart and run
MicroPython. The mass storage device will disappear after you copy the MicroPython
UF2 file.

21

https://www.electronicshub.org/wp-content/uploads/2021/02/Installing-MicroPython-4.jpg

¥ M < | Downloads

Home Share View

» U & cut il x L‘I‘ 7 New item ~ @ ilopen - FHselectall

W Copy path

fj Easy access v o[Edit 5o Select none
Pinto Quick Copy Paste _ Move Copy Delete Rename New Properties 3 8] 2
access i:] Paste shortcut to to -~ - folder - & History 57 Invert selection
Clipboard Organize New Open Select
« « 4 ¥ > ThisPC > Downloads
Name Date modified Type Size
Quick access
0 rp2-pico-20210205-unstable-v1.14-8-g1f800cac3.uf2 2/25/2021 4:05 AM UF2 File 486 KB
& This PC
¥ 3D Objects
[Desktop

=

=| Documents
& Downloads
Jﬁ Music

&=/ Pictures

B videos

‘i Local Disk (C:)

s New Volume (D2)

s RPI-RP2 (F:)
= RPI-RP2 (F:)

Z‘ Network

Your Raspberry Pi Pico is now running MicroPython. You are now ready to program
Raspberry Pi Pico with MicroPython.

Downloading Thonny

22

https://www.electronicshub.org/wp-content/uploads/2021/02/Installing-MicroPython-5.jpg

@ httpsy//thonny.org

Th Onn k4 Download version 3.3.5 for
y “== Windows ¢ Mac ¢ Linux

Python IDE forbeginners ~ |opyermrpeerse

4 LS il i
new identity and you may receive
a warning dialog from Defender until
it gains more reputation.

Just click "More info” and

"Run anyway".
Thonny - a X
File Edit View Run Tools Help
DBEd O 239 @
factorial.py Vaniables
def fact(n): Name Value
if n == ©:
return 1 fa <function facts
else: a 3

return fact(n-1) * n
n = int(input(“Enter a natural numbet
T -
print("Its factorial is", Fact3)) fact

def fact(n):
if n == @ def fact(n):

fact

retur if n == @:
else: return 1
Fetur else:
Feturn fact(E=d) * n
Shell
>5> 1 Local variables

Local variables

Thonny is a simple Python IDE available for Windows, Mac and Linux. The Raspberry
Pi OS comes with Thonny preinstalled. Since | am using a Windows system, |
downloaded the Windows version of Thonny. An executable called “thonny-3.3.5.exe” is

downloaded.

Double click on the downloaded executable and install Thonny. There is nothing special
with this installation and it is very straight forward. Optionally, you can select to create a

desktop shortcut.
Configuring Thonny

After downloading and installing Thonny IDE, open it. Make sure that Raspberry Pi Pico
is already plugged into the host computer. Thonny IDE is very simple. Its layout can be

divided into four parts: Toolbar, Script Area, Shell, Interpreter.

23

https://www.electronicshub.org/wp-content/uploads/2021/02/Download-Thonny-1.jpg

T& Thonny - <untitled> @ 1:1 - O 4
File Edit View Run Tools Help
I J&SH OF% - I OJ

<untitled>

1

2)

Shell

>>>

>>> @J

(4)

e The Toolbar: Contains icons for saving, running and stopping the programs.

e The Script Area: This is where you write the Python Programs.

e The Shell: The Python Shell is an interactive REPL (Read-Evaluate-Print-Loop)
block where you can give individual commands to the interpreter and it will

execute them.
e The Interpreter: Select the right interpreter from the bottom right of the IDE.

By default, Thonny IDE is configured to interpret Python 3.x.x.

Tk Thonny - <untitled> @ 1:1 - a X
File Edit View Run Tools Help

JSH O#* w

<untitled>

1

Shell

2>>

>3> |

Python 3.7.9

24

Click on Python 3.7.9 (or whatever the version is) and select MicroPython (Raspberry Pi
Pico) interpreter. As soon as you select the MicroPython interpreter, the shell at the
bottom changes to MicroPython.

Tk Thonny - <untitled> @ 1:1 - 0 X
File Edit View Run Tools Help

JSd O#% -
<untitled>

1

Shell

>>>

>>>

MicroPython (Raspberry Pi Pico)

MicroPython (ESP8266)
CircutPython (generic)

Configure interpreter...

Since MicroPython supports interactive REPL, you can enter commands in the shell and
Raspberry Pi Pico will execute them. Let us try this. We will start with Hello World of

programs which is to print Hello World.

Programming Raspberry Pi Pico with MicroPython

In the Shell, type the following next to “>>>" symbol and hit enter.
print(“Hello, World!”)

This is an instruction to the MicroPython Interpreter running on Raspberry Pi Pico. Up
on receiving this command, the MicroPython will respond with the message “Hello,

World!” and prints it on the shell itself.

25

T

| File Edit View Run Tools Help
JZ+Hd O w |

]

‘ <untitled>

1

Shell

Command A

>>>

>>> print("Hello, World!")

Hello, World! N
Response

>>> v
MlcroPython (Raspben'y Pi Plco)

If you remember the layout of the Raspberry Pi Pico, an LED is connected to GPIO 25.
We can try to turn this LED ON and OFF from the shell.

For that, first we have to import a special library called ‘machine’. The machine library in
MicroPython is used to control the hardware of a board, Raspberry Pi Pico in this case.
You can reset the microcontroller, put it to sleep, enable or disable interrupts, wake it

from sleep using machine module.

Some of the classes of machine module are: Pin, Signal, ADC, UART, SPI, 12C, RTC,
Timer, WDT, SD Card and so on.

We will learn about all the modules and their classes as and when we use them. The
MicroPython documentation is good place to begin with if you want to explore further on

MicroPython Libraries.

Since we want to use the GPIO block, we can import the ‘pin’ class from the ‘machine’,

which is used to control the 10 pins of the Raspberry Pi Pico.

from machine import Pin

26

https://www.electronicshub.org/basics-uart-communication/
https://www.electronicshub.org/wp-content/uploads/2021/02/Programming-Raspberry-Pi-Pico-with-MicroPython-1.jpg

Next, we create an object of class Pin and set the GPIO number and its direction i.e.,
Input or Output.

led_gpio25 = Pin(25, Pin.OUT)

To turn ON the LED, we have to set its value to 1.

led_gpio25.value(1)

Type the above lines one after the other in the shell. You can see the LED turned ON.
To turn the LED OFF, set the value of the pin to O.

led_gpio25.value(0)

) Thonny - <untitled> @ 1:1 - a X
File Edit View Run Tools Help

JZHd O -
<untitled>

1

Shell

>>> print("Hello, World!")

Hello, World!

Turn ON LED

>>> from machine import Pin

>>> led_gpio25 = Pin(25, ,Pjef 0UT)

>>> led_gpio25.value(l)

>>> Iled__gpioZS.value(O) Turn OFF LED

>>> v
MicroPython (Raspberry Pi Pico)

Blink an LED
Executing commands from shell is good but what if you want to write a complete Python
program? That is why you have the script area. Let us now see how can we write our

first Python Program for Raspberry Pi Pico and Blink an LED.

In the board, 5mm red LEDs L2 and L3 are connected to GPIO 2 and GPIO 3 of

Raspberry Pi Pico with the help of a 330Q current limiting resistor.

27

R7 12
GP2_LED1) vV T330E N 5mm LED

A2 13
GP3_LED2 Y))—AANRSE
30E P 5mm LED

Now, in the script area type the following program. The code is commented for detailed

explanation on what each line does. You can ignore the comments.

1| from machine import Pin #Import Pin class from machine library to configure GPIO Pins.

2 | import utime #Import utime library to implement delay

3 led_gpio2 = Pin(2, Pin.OUT) #create an object of Pin class and set GPIO Parameters (GPIO Pin, Direction).

4 | while True: #Create an infinite loop. This is similar to while(1) in C.

5 - led_gpio?2.value(l) #Set value to 1 to turn ON LED.

6 . utime.sleep ms(100) #sleep ms function provides delay in milliseconds.

7 . led_gpio2.value(@) #Set value to @ to turn OFF LED.

g . utime.sleep ms(100) #Provide another 10@ms delay to see the LED Blinking.
Raspberry-Pi-Pico-Demo.py hosted with @@ by GitHub view raw

Click on save and select Raspberry Pi Pico, when asked.

28

u" nny <untitied>

File Edit View Run Tools Help

J’nEO ®

<untitled> *

1 from machine import Pin

import utime

led_gpio2 = Pin(2, Pin.OUT)

while True:
led_gpio2.value(1)
utime.sleep_ms(100) T Where to save to? X
led_gpio2.value(@)
utime.sleep _ms(100)

O NOWVMDBWN

This computer

' 21-92-053 Raspberry Pi Pico RP2040
ype "help()" for more informati

>>> print("Hello, World!"™)
Hello, World!

>>> from machine import Pin

>>> led_gpio25 = Pin(25, Pin.OUT)

>>> led_gpio25.value(1)

>>> led_gpio25.value(9)

>>> v

MicroPython (Raspberry Pi Pico)

Give a name as “main.py” to the file and click on OK.

Tk Thonny - Raspberry Pi Pico :: /mainpy @ 9:1 - a X
File Edit View R s Help
[main.py]
1 from machine import Pin
2 import utime
3 led_gpio2 = Pin(2, Pin.OUT)
4 while True:
5 led_gpio2.value(1)
6 utime.sleep_ms(100)
7 led_gpio2.value(9)
8 utime.sleep_ms(100)
9 |

2021-02-05; Raspberry Pi Pi¢ with RP2040
>>> from machine import Pin

>>> led_gpio25 = Pin(25, Pin.OUT)

>>> led_gpio25.value(l)

>>> led_gpio25.value(9)

>

MicroPython (Raspberry Pi Pico)

29

Reason for Naming main.py

When you reset any microcontroller (either power down completely and power it on or
button reset), you expect the microcontroller to execute the program once again. If you
want the same thing to happen in Raspberry Pi Pico, then you have to name the Python
script as ‘main.py’. You can provide any name for the Python program when saving like
‘blinky.py’ but it will not execute if you remove the power and reconnect it. For this, you
have to name the Python Program as ‘main.py’.

Even if you have multiple Python Scripts in Raspberry Pi Pico, if there is a file named
main.py, then MicroPython will execute that.

Instead of setting the value to 1 and 0O, you can use the toggle function to reduce the

code.
1 | from machine import Pin #Import Pin class from machine library to configure GPIO Pins.
2 | import utime #Import utime library to implement delay

3 led gpio2 = Pin(2, Pin.0UT) #create an object of Pin class and set GPIO Parameters (GPIO Pin, Direction).

4 | while True: #Create an infinite loop. This is similar to while(1) in C.

> _ led gpio25.toggle() #Toggle the status of LED.

6 utime.sleep ms(100) #tsleep ms function provides delay in milliseconds.
Raspberry-Pi-Pico-Demo.py hosted with @ by GitHub view raw

Read from Button

We have seen how to set Raspberry Pi Pico’s GPIO Pin as Output and Blink an LED.
Let us now extend this by setting a GPIO Pin as an Input and connecting a Button to the
GPIO Pin. We will read the status of the Button and toggle the state of the LED.

SW PUSHBUTTON +'363V
GPIO ({(———O O— SW PUSHBUT TON
1t
. GPIO {—O
PULL-UP Option — PULL-DOWN Option

In the Board,

30

+3.3V +3.3V
1) o

R9 R10
10K 10K

Swi1 SW3

GP4_SW1 (& O—_I_ GP5_sSwW2 << o0—

GPIO 4 & GPIO 5, can be used as an Input Pin and connected to a simple momentary
push button switch pulled up through a 10K Resistor, as shown above. So, normally the
Pico reads HIGH on the button pin but when the button is pushed, Pico reads LOW on
the button pin.

1| from machine import Pin #Import Pin class from machine library to configure GPIO Pins.

2 | import utime #Import utime library to implement delay

3 - ledPin = Pin(2, Pin.OUT) f#create an object of Pin class and set GPIO Parameters (GPIO Pin, Direction}).
4 - buttonPin = Pin(4, Pin.IN)

. |

while True: #Create an infinite loop. This is similar to while(1) in C.

6 if buttonPin.value() == 1:
7 utime.sleep_ms(20)
8 ledPin.toggle()

Raspberry-Pi-Pico-Read-Button.py hosted with @@ by GitHub view raw

6.PROGRAM
6.1 LED

Light Emitting Diodes are the outputdevice connected with Gpio pin GP2 and GP3 of
RP2040 .

PROGRAM :

from machine import Pin
import utime

led1 =Pin(2,Pin.OUT)
led2 =Pin(3,Pin.OUT)
delay = .50

while True:

led1.value(1)

31

led2.value(0)
print("Led1 On™)
utime.sleep(delay)
led1.value(0)
led2.value(1)
print("Led2 On")
utime.sleep(delay)
led1.value(1)
led2.value(1)
print("Ledl & Led2 On")
utime.sleep(delay)
led1.value(0)
led2.value(0)
print("Ledl & Led2 Off")

utime.sleep(delay)

Carrier Board LED Connection

Output:

32

Shell

>3

Ledl
Led2
Ledl
Ledl
Ledl
Led2
Ledl
Ledl
Ledl
Led2

on
on
& Led2
& Led2
on
on
& Led2
& Led2
on
on

Oon
Off

On
Off

6.2. BUTTON WITH LED

PROGRAM :

from machine import Pin

from utime import sleep_ms

buttonl = Pin(5, Pin.IN, Pin.PULL_UP)#Internal pull-up
button2 = Pin(4, Pin.IN, Pin.PULL_UP)

led1 = Pin(2, Pin.OUT)

led2 = Pin(3, Pin.OUT)

if _name_ ==

while True:

main__"

if buttonl.value() == 0:

else:

led1.value(1)

led1.value(0)

if button2.value() == 0:

else:

led2.value(1)

#0 means that the light is currently off

led2.value(0)
6.3. LCD DISPLAY:

e Add GpioLcd.py library for Icd display
o Must save as Gpiolcd.py in RP2040

PROGRAM:
from machine import Pin
from gpio_lcd import GpioLcd
import time
count=0
Icd = GpioLcd(rs_pin = Pin(8),
enable_pin = Pin(9),
d4_pin = Pin(10),
d5_pin = Pin(11),
d6_pin = Pin(12),
d7_pin = Pin(13))
Icd.move_to(0,0)
lcd.putstr("PERSON COUNTER")
Icd.move_to(0,1)
lcd.putstr("TOTAL COUNT :")
while (1):
count=count+1
Icd.move_to(13,1)
Icd.putstr(str(count))

time.sleep(1)

Output:

AR

. D 4
BONUABNERNDENABEN N

6.4.INTERFACING LM35 WITH LCD DISPLAY

PROGRAM :

from machine import Pin

from gpio_lcd import GpioLcd

import time

import utime

conversion_factor = 3.3/(65536)

adc2 = machine. ADC(27)

Icd = GpioLcd(rs_pin = Pin(8),
enable_pin = Pin(9),
d4_pin =Pin(10),
d5_pin =Pin(11),
d6_pin =Pin(12),
d7_pin = Pin(13))

while True:

val2 = adc2.read_ul6()
temp = (val2 * conversion_factor)*100
templ = int(temp)

temp2 = str(temp1l)

35

print(" == ")
print("temperature: ",temp1l)

Icd.move_to(0,0)

lcd.putstr(‘TEMP in Degree :')

Icd.move_to(0,1)

Icd.putstr(temp?2)

time.sleep(0.8)

Output:

w

000 R

6.5. SEVEN SEGMENT DISPLAY: (connected suing i2c , GP20 and Gp21 SDA ,SCL)
Add library for seven segment ...Must save as pcf8574.py save in RP2040

PROGRAM : (Count digital number 0 to 100)

import pcf8574

from machine import 12C, Pin

36

import time

import array as arr

count=0

mod=0

mod1=0

m = arr.array('i', [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7c,0x07,0x7f,0x67])

i2¢ = 12C(id=0,scl=Pin(21),sda=Pin(20),freq=100000)
pcf = pcf8574.PCF8574(i2¢c, 0x21)
pcf.port =0x00
pcf = pcf8574.PCF8574(i2¢c, 0x20)
pcf.port =0x00
for n in range(11):
pcf.port =m[n]
time.sleep(0.5)
while(1):
if(count<=99):
pcf = pcf8574.PCF8574(i2c, 0x21)
count=count+1
mod = count % 10
mod1 = count / 10
pcf.port =m[int(mod)]
print(count)
if(count==10):
pcf = pcf8574.PCF8574(i2c, 0x20)
pcf.port =m[int(mod1)]
if(count==20):
pcf = pcf8574.PCF8574(i2c, 0x20)
pcf.port =m[int(mod1)]
if(count==30):
pcf = pcf8574.PCF8574(i2c, 0x20)

pcf.port =m[int(mod1)]

37

if(count==40):

pcf = pcf8574.PCF8574(i2c, 0x20)
pcf.port =m[int(mod1)]
if(count==50):

pcf = pcf8574.PCF8574(i2c, 0x20)
pcf.port =m[int(mod1)]
if(count==60):

pcf = pcf8574.PCF8574(i2c, 0x20)
pcf.port =m[int(mod1)]
if(count==70):

pcf = pcf8574.PCF8574(i2c, 0x20)
pcf.port =m[int(mod1)]
if(count==80):

pcf = pcf8574.PCF8574(i2c, 0x20)
pcf.port =m[int(mod1)]
if(count==90):

pcf = pcf8574.PCF8574(i2c, 0x20)
pcf.port =m[int(mod1)]

else:
print(“reach maximum')

time.sleep(1)

Output:

Shell

e]

94

95

Y96

97

93

9%

100

reach maximum
reach maximum

38

6.6. POT WITH SEVEN SEGMENT INTERFACING
PROGRAM :

import pcf8574

from machine import 12C, Pin

import array as arr

import machine

import utime

analog_value = machine. ADC(28)

count=0

mod=0

mod1=0

m = arr.array('i', [0x3f,0x06,0x5h,0x4f,0x66,0x6d,0x7c,0x07,0x7f,0x67])

i2c = 12C(id=0,scl=Pin(21),sda=Pin(20),freq=100000)
pcf = pcf8574.PCF8574(i2c, 0x21)
pcf.port =0x00
pcf = pcf8574.PCF8574(i2c, 0x20)
pcf.port =0x00
while(1):
reading = analog_value.read_ul6()
value_in_digi =((reading/65536)*100)
count= int(value_in_digi)
print(count)
mod = count % 10
mod1 = count / 10
if(count<=99):
pcf = pcf8574.PCF8574(i2¢c, 0x21)
pcf.port =m[int(mod)]

39

if(count>=10)or(count<=19):
pcf = pcf8574.PCF8574(i2c, 0x20)
pcf.port =m[int(mod1)]

if(count>=20)or(count<=29):
pcf = pcf8574.PCF8574(i2c, 0x20)
pcf.port =m[int(mod1)]

if(count>=30)or(count<=39):
pcf = pcf8574.PCF8574(i2c, 0x20)
pcf.port =m[int(mod1)]

if(count>=40)or(count<=49):
pcf = pcf8574.PCF8574(i2¢c, 0x20)
pcf.port =m[int(mod1)]

if(count>=50)or(count<=59):
pcf = pcf8574.PCF8574(i2¢c, 0x20)
pcf.port =m[int(mod1)]

if(count>=60)or(count<=69):
pcf = pcf8574.PCF8574(i2¢c, 0x20)
pcf.port =m[int(mod1)]

if(count>=70)or(count<=79):
pcf = pcf8574.PCF8574(i2¢c, 0x20)

pcf.port =m[int(mod1)]

if(count>=80)or(count<=89):

40

pcf = pcf8574.PCF8574(i2c, 0x20)
pcf.port =m[int(mod1)]
if(count>=90)or(count<=99):
pcf = pcf8574.PCF8574(i2c, 0x20)
pcf.port =m[int(mod1)]

else:
print("'reach maximum®)

utime.sleep(0.5)

Output:

Shell

6.7. ULTRASONIC SENSOR

Download the following library and upload it to Raspberry Pi Pico board with the name
of hcsr04.py under the lib folder.

Must hcsr04.py save as RP2040
Inside the pico Board...
PROGRAM :

from hcsr04 import HCSRO04 # we have to add this library file in the same folder or else it may not work
sometimes

from time import sleep
sensor = HCSRO4(trigger_pin=15, echo_pin=14, echo_timeout_us=10000)

while True:

41

distance = sensor.distance_cm()

print('Distance:’, distance, ‘cm’)

sleep(1)

Output:

Shell
>>>

Distance:
Distance:
Distance:
Distance:
Distance:
Distance:
Distance:
Distance:
Distance:
Distance:
Distance:
Distance:
Distance:

97.439866
96.24742
97.47423
4.0375801
4.57044¢

CIm
CIm
CIm
CIm
CIn

14.0378 cm

24 22681
36.195868
9.140853
97.35395
96.477¢66
96.06529
898.23024

5.8. ULTRASONIC WITH LCD

PROGRAM:

from machine import Pin

from gpio_lcd import GpioLcd

import time

from hcsr04 import HCSR04

CIm
CIm
CIm
CIm
CIm
CIn
CIm

42

import utime
sensor = HCSRO4(trigger_pin=15, echo_pin=14, echo_timeout_us=10000)
Icd = GpioLcd(rs_pin = Pin(8),
enable_pin = Pin(9),
d4_pin = Pin(10),
d5_pin = Pin(11),
d6_pin = Pin(12),
d7_pin = Pin(13))
def countDigits(n):
ans=0
while (n):
ans=ans +1
n=n//10
return ans
while True:
distance = sensor.distance_cm()
distancel = int(distance)
print('Distance:’, distancel)
n=countDigits(distancel)
if(n==1):
Icd.move_to(1,1)

lcd.putstr(* ")

if(n==2):

Icd.move_to(2,1)

lcd.putstr(* "
Icd.move_to(0,0)
Icd.putstr('Distance in Cm ;")
Icd.move_to(0,1)

Icd.putstr(str(distancel))

43

time.sleep(0.5)

Output:

Lhunuubnbhubpuubbhhunn

. ‘q' o

Shell

LFfL O LQlli.T . [L

Distance: 250
Distance: 250
Distance: 250
Distance: 250
Distance: 250
Distance: 250
Distance: 250
Distance: 250
Distance: 250
Distance: 250
Distance: 250
Distance: 250
Distance: 250

—_— —~—

6.8. BUZZER

PROGRAM :

from machine import Pin

import time

buzzer = Pin(6,Pin.OUT)

while True:
buzzer.value(1)
print(" Buzzer ON")

44

time.sleep(0.5)
buzzer.value(0)

print(" Buzzer OFF")

time.sleep(0.5)
Output:
Shell
>0
Buzzer ON
Buzzer QOFF
Buzzer ON
Buzzer OFF
Buzzer ON
Buzzer QOFF

Buzzer ON

6.9. RELAY WITH SERIAL

PROGRAM :

from machine import Pin

import utime

m=0

led=Pin(7,Pin.OUT)

led.low()

while(1):
m=int(input("Enter The Condition :"))
if(m==1):

led.value(1)

print("on")
elif(m==0):

led.value(0)

print("off")
else:

print("unknown charachters")

Output:

Shell

55>

Enter The Condition :1
on

Enter The Condition
off

Enter The Condition

]

6.10.SWITCH INCREMENT WITH LED
PROGRAM :
from machine import Pin
import time
Btn_Pinl=4
Btn_Pin2 =5
counter =0
def setup():
global sw_BtN1

46

global sw_BtN2
global led
sw_BtN1 = Pin(Btn_Pin1,Pin.IN, Pin.PULL_UP)
sw_BtN2 = Pin(Btn_Pin2,Pin.IN, Pin.PULL_UP)
led = Pin(2, Pin.OUT)
def loop():
while True:
global sw_BtN1
global sw_BtN2
global counter
global led
if sw_BtN2.value()==0:
print("Button Pressed2")
led.value(1)
counter+=1
print("Count={}".format(counter))
while(1):
if sw_BtN2.value()==1:
time.sleep(0.1)
break
if sw_BtN1.value()==0:
print("Button Pressed1")
led.value(1)

counter-=1

if(counter<=0):
counter=0
print("Count={}".format(counter))
while(1):
if sw_BtN1.value()==1:

47

time.sleep(0.1)
break

if _name__=='__main__"
setup()
loop()

Output:

Shell
55>

Button Pressed?Z
Count=1
Button Pressedl
Count=0
Button Pressedl
Count=0
Button Pressed?Z
Count=1

6.11. TEMPERATURE SENSOR
PROGRAM :
from machine import Pin
import time
import utime
conversion_factor = 3.3/(65536)
adc2 = machine.ADC(27)
while True:
val2 = adc2.read_u16()
temp = (val2 * conversion_factor)*100

templ = int(temp)

48

temp2 = str(templ)

print(" ====
print("temperature: ",temp1)

time.sleep(0.8)

Output:
ihell
22>
temperature 30
temperature 30
temperature 30
temperature 30
temperature 30
temperature: 30
6.12. ADC
PROGRAM :

import machine

import utime

analog_value = machine. ADC(28)

while True:
reading = analog_value.read ul6()

#value_in_digi ="{:.0f}".format(reading/660)

49

print(reading)

utime.sleep(0.1)

Shell

>22>
POT Value : Bel0
Voltage Value : 0.4335546
POT Value : 10642
Voltage Value : 0.535B8756
POT Value : 9346
Voltage Value : 0.4706158
POT Value : 5137
Voltage Value : 0.2586725
POT Value : 3200
Voltage Value : 0.1611353
POT Value : 4689

Voltage Value : 0.2361135

6.13. PWM

PROGRAM :

from machine import Pin,PWM

from time import sleep

led=PWM(Pin(2))

led.freq(150)

while True:

for duty in range(0,65535):

led.duty ul6(duty)
sleep(0.0001)

for duty in range(65535,0,-1):

led.duty ul6(duty)
sleep(0.0001)

50

7. PROCEDURE IN (THINK SPEAK CLOUD)
STEP 1: GO TO THINK SPEAK CLOUD WEBSITE.
STEP 2: login the account.

CJ IoT Analytics - ThingSpeak Inter: X =+ v - (=] x
<« C @ thingspeak.com % O 2
%2 Apps G Gmail @B YouTube @ Maps @ News @B LAUNCHXL-F28004. *p TMS320F280049 da *p LAUNCHXL-F28004 @ XDS110 @B Lathe Electronic Lea.) GitHub - cloughd2/ »

[JThingSpeak™ channels- Apps~ Devices~ Support~ Commercial Use How to Buy

ThingSpeak for Iol
Projects

-
Data collection in the cloud with advanced da
analysis using MATLAB

Channels ‘ Learn More ,

E £ Type here to search
STEP4: Enter the email ID.

[Sign In - ThingSpeak loT x + v = X
&« c @ thingspeak.com/login?skipSSOCheck=true = v O &
3 oApps & Gmail B YouTube @ Maps @ News @ LAUNCHXL-F28004. & TMS3207280040da.. B LAUNCHXL-F28004.. (B XDS110 @ Lathe Clectronic Lea., () GitHub - clough42/.. »

L,_,.|ThingSpeak*" annels Apps Support~ Commercial Use How to Buy

To use ThingSpeak, you must sign in with your existing MathWorks account or create a new one.

Non-commercial users may use ThingSpeak for free. Free accounts offer limits on certain functionality. Commercial users are eligible for a time-limited free evaluation. To
get full access to the MATLAB analysis features on ThingSpeak, log in to ThingSpeak using the email address associated with your university or organization.

To send data faster to ThingSpeak or to send more data from more devices, consider the paid license options for commercial, academic, home and student usage.

4\ MathWorks

Emall %
|
_

DATA AGGREGATION
AND ANALYTICS

C1ThingSpeak

No account? Create one!
By signing in, you agree te our privacy palicy.

MATLAB

ALGORITHM DEVELOPMENT
SENSOR ANALYTICS

This website uses cookies to improve your user experience, personalize content and ads, and analyze webs

A websits

H L Type here to search

STEP 5 : CREATE NEW CHANNEL =>ENTER THE NAME =>CLICK SAVE

continuing to use this

you consent to our use of cookies. Please see our Pri

Policy to learn more about cockies and how to change your settings

51

[Channels - ThingSpeak loT x + v - b

&« c & thingspeak.com/channels/new = v O & :
Apps G Gmail EB YouTube o Maps @ News @B LAUNCHXL-F28004... *IJ TMS320F280049 da... *) LAUMNCHXL-F28004... @ XDS110 @B Lathe Electronic Lea... O GitHub - clough42/... »

|:| ThingSpeak”‘ Channels ~ Apps ~ Devices~ Support~ Commercial Use How to Buy

New Channel Help

Channels store all the data that a ThingSpeak application collects. Each channel includes

Name | |
eight fields that can hold any type of data, plus three fields for location data and one for
status data. Once you collect data in a channel, you can use ThingSpeak apps to analyze and
Description Ir sensar visualize it.
TEMP_35_SENSOR & .
Channel Settings
Field 1 Field Label 1
* Percentage complete: Calculated based on data entered into the various fields of a
channel. Enter the name, description, location, URL, video, and tags to complete your
Field 2 O channel.
* Channel Name: Enter a unigue name for the ThingSpeak channel
Field3 O
= Description: Enter a description of the ThingSpeak channel.
Field 4 O = Field#: Check the box to enable the field, and enter a field name. Each ThingSpeak
channel can have up to 8 fields.
Field 5 O * Metadata: Enter information about channel data, including JSON, XML, or CSV data.
* Tags: Enter keywords that identify the channel. Separate tags with commas.
Field6 0 = Link to External Site: If you have a website that contains information about your
ThingSpeak channel, specify the URL.
rata s [l

This website uses cookies to improve your user experience, personalize content and ads, and analyze website traffic. By continuing to use this

A website, you consent to our use of cookies. Please see our Privacy Policy to learn more about cookies and how to change your settings

H AL Type here to search

STEP 6: CHANNEL ID CREATED,API KEY CREATED.
1) Github - robert-hh/he711: This i X |) hx711% Move interface instantist X] API Keys - ThingSpeak laT X @ SpartFunLoad Cell Amplifier - - X | € Github - robert-hhihx7 1: This i X |+ -
<« € @ thingspeak.com/channels/2021744/api_keys + o

Apps BB Making Chicken Bu.. @ Arduino - LED - Fad..

ESP32Pinout Refer.. m) RS232 Connector Pi.. € Buida Circuitwith., & Projecs | Computer.. [[[] MicroPython - Pyth.. @ Prejects| Computer.. W W3Schools Tryi: Edi.

Apps - Devices~ HowtoBuy PM

RP2040 W

Channel ID:2021744
Author: mwa0000029018391
Access: Private

PrivateView PublicView ChannelSettings ~ Sharing = APIKeys Datalmport/ Export

Write API Key / Copy APTKey Help

APl keys enablz you towrite data to a channel or read data ‘rom a private chanrel. 4P|

" keys are auto-generated when you crezte anev channel.
el 9X13AJ

APl Keys Sellings

« Write APl Key: Use this key to write data to a channel. If you feel your key has
been compromised, clicx Generate New Write API Key.

= Read API Keys: Usc this key to allow other people to view your private channel

feeds and charts. Click GenerateNew Read AP1 Key to generate an additional

read key forthe channel

Note: Use this field to enter information about chanrel read keys. For example,

add notes to keep track of users with access %o your charnel.

Read API Keys

STEP 7:CHANNEL ID =->inthink cloud speak,APl KEY-> inthink cloud speak Enter
in the program.

STEP 8: Switch on the wifi hot spot in our smart phone and get the SSID and password.

52

» This 4 line program is a header file program included in the main program.
» Channel ID no and API key from think speak cloud website enter in the header
file.

DSHE © ™=

Files final.py < <untitied> * - <untitled> * © [hx711.py]* <untitied>
9 adcl = machine.ADC(28)

» 12 sensor_temp = machine.ADC(4)
conversion_factor = 3.3 / (65535)

Paste your API Key From
ThingSpeak Cloud

3 HTTP_HEADERS = {'Content-Type'. ' n/json'}

13 applicafig
4 THINGSPEAK_WRITE_API_KEY = ['2FY6BASPFZ616CG5"

16 ssid = [testAP' Your Wifi Hotspot Name
17 password = Your Wifi Hotspot Password

B B

Shell

adel: 3190
28.44883

adcl: 3134
28.44883

adecl: 3173
28.44883

adel: 3162
28.44683

STEP 9 : upload the program

STEP10: view the sensor value inthe graph.

7.1. ADC VALUE SEND TO THINGSPEAK CLOUD

PROGRAM :

from machine import Pin, ADC
import utime

import machine

import urequests

import machine

from machine import Pin

import network, time

adcl = machine. ADC(28)

sensor_temp = machine.ADC(4)

53

conversion_factor = 3.3/ (65535)

HTTP_HEADERS = {'Content-Type": "application/json'}
THINGSPEAK_WRITE_API_KEY ='909X13AJIXYLUQ4W'

ssid = 'testAP'

password = 'password12345'

Configure Pico W as Station
sta_if=network.WLAN(network.STA_IF)

sta_if.active(True)

if not sta_if.isconnected():
print(‘connecting to network..."
sta_if.connect(ssid, password)
while not sta_if.isconnected():
pass

print('network config:', sta_if.ifconfig())

while True:
#time.sleep(5)
vall = adcl.read_ul6() >>4

print(" =="
print("adcl: ", vall)

reading = sensor_temp.read_ul6() * conversion_factor
temperature = 27 - (reading - 0.706)/0.001721
print(temperature)

time.sleep(2)

temp_readings = {'field1":temperature,'field2"vall }

54

request = urequests.post('http://api.thingspeak.com/update?api_key="+ THINGSPEAK_WRITE_API_KEY, json
=temp_readings , headers = HTTP_HEADERS)

request.close()

OUTPUT :

Shell

>>>
network config: ('192.168.43.66', '255.255.255.0', '192.168.43.1"', '162.165.43.1")

adcl: 3172
29.85327

adcl: 318¢
29.85327

adcl: 3194
29.85327
adcl: 3182
29.85327

55

€) GitHub - robert-hi/hx711: This = X |) h711% Move interface instantian X [RP2040 W - ThingSpeak loT X SparkFun Load Cell Ampifier -+ X | () GitHub - robert-hivhe?11: This = X |+ = X
& > C & thingspeakcom/channels/2021744/private_show * @ :

i1 Apps @ Making Chicken Bu.. @ Arduino-LED-Fad.. [§] ESP32 PinoutRefer.. o) RS232 Connector P € BuildaCircuitwith.. @ Projects | Computer.. [[] MicroPython - Pyth... @ Projects | Computer.. W& W3Schools Tryit Edi.. »

m ThingSpeak" Channels ~ ~ Apps~ Devices~ Support~ CommercialUse How'to Buy

Private View Public View Channel Settings Sharing APIKeys Data Import / Export

Export recent data MATLAB Analysis MATLAB Visualization

Channel20f2 < >

Add Visualizations]

£ Add Widgets I

Channel Stats

Created: 2 minwigs.age
Lastentry: Jess fhan.aminuteage

Entries: 3
Field 1 Chart [=l A Field 2 Chart 2 o & %
RP2040 W RP2040 W
3180
= =
¢ H
g g 170
g £
£ §
ki K
16:06:20 16:06:30 16:06:40 16:06:¢ 16:06:20 16:06:30 16:06:40 16:06
Date Date
o o
s . 16:06
H O Type here to search o= - 7 i v ‘ 30°C Mostlycloudy ~ T d9) ENG 1233 =]

8. INTRODUCTION TO RTOS

What is An RTOS?

"Provide a free product that surpasses the quality and

service demanded by users of commercial alternatives™

Dedicated FreeRTOS developers have been working in close partnership with the
world's leading chip companies for more than 15 years to provide you market leading,

commercial grade, and completely free high quality RTOS and tools ...but what is an
RTOS?

This page starts by defining an operating system, then refines this to define a real time
operating system (RTOS), then refines this once more to define a real timer kernel (or

real time executive).

See also the FAQ item "why an RTOS" for information on when and why it can be

useful to use an RTOS in your embedded systems software design.

56

https://www.embedded.com/electronics-blogs/embedded-market-surveys/4458724/2017-Embedded-Market-Survey
https://www.freertos.org/FreeRTOS-Coding-Standard-and-Style-Guide.html
https://www.freertos.org/FAQWhat.html#WhyUseRTOS

What is a General Purpose Operating System?

An operating system is a computer program that supports a computer's basic functions,
and provides services to other programs (or applications) that run on the computer. The
applications provide the functionality that the user of the computer wants or needs. The
services provided by the operating system make writing the applications faster, simpler,
and more maintainable. If you are reading this web page, then you are using a web
browser (the application program that provides the functionality you are interested in),

which will itself be running in an environment provided by an operating system.

What is an RTOS?
Most operating systems appear to allow multiple programs to execute at the same time.
This is called multi-tasking. In reality, each processor core can only be running a single
thread of execution at any given point in time. A part of the operating system called the
scheduler is responsible for deciding which program to run when, and provides the

illusion of simultaneous execution by rapidly switching between each program.

The type of an operating system is defined by how the scheduler decides which
program to run when. For example, the scheduler used in a multi user operating system
(such as Unix) will ensure each user gets a fair amount of the processing time. As
another example, the scheduler in a desk top operating system (such as Windows) will
try and ensure the computer remains responsive to its user. [Note: FreeRTOS is not a
big operating system, nor is it designed to run on a desktop computer class processor, |

use these examples purely because they are systems readers will be familiar with]

The scheduler in a Real Time Operating System (RTOS) is designed to provide a
predictable (normally described as deterministic) execution pattern. This is particularly
of interest to embedded systems as embedded systems often have real time
requirements. A real time requirements is one that specifies that the embedded system

must respond to a certain event within a strictly defined time (the deadline). A guarantee

57

to meet real time requirements can only be made if the behaviour of the operating

system'’s scheduler can be predicted (and is therefore deterministic).

Traditional real time schedulers, such as the scheduler used in FreeRTOS, achieve
determinism by allowing the user to assign a priority to each thread of execution. The
scheduler then uses the priority to know which thread of execution to run next. In

FreeRTOS, a thread of execution is called a task.

What is FreeRTOS?

FreeRTOS is a class of RTOS that is designed to be small enough to run on a

microcontroller - although its use is not limited to microcontroller applications.

A microcontroller is a small and resource constrained processor that incorporates, on a
single chip, the processor itself, read only memory (ROM or Flash) to hold the program
to be executed, and the random access memory (RAM) needed by the programs it

executes. Typically the program is executed directly from the read only memory.

Microcontrollers are used in deeply embedded applications (those applications where
you never actually see the processors themselves, or the software they are running)
that normally have a very specific and dedicated job to do. The size constraints, and
dedicated end application nature, rarely warrant the use of a full RTOS implementation -
or indeed make the use of a full RTOS implementation possible. FreeRTOS therefore
provides the core real time scheduling functionality, inter-task communication, timing
and synchronisation primitives only. This means it is more accurately described as a
real time kernel, or real time executive. Additional functionality, such as a command

console interface, or networking stacks, can then be included with add-on components.

58

Vi Microsystems Pvt.Ltd., Chennai-9¢6
INTERNSHIP TRAINING PROGRAM

College Name: AMET C:?Qm:vﬁ Chennai - 603113,
Duration: 1 Week (11.03.2024 to 16.03.2024) Morning

[11.03.2024 12.03.2024 [13.03.2024 [14.03.2004 15.03.2024 | 16.03.2024 |
Students Zmi

S. No \

|8 Date ,,
_ DIVYANSHU OJHA L. . Q R S

2. VARUN CHITRANSH % i A [T wilb= (@ nl=

3 ARYAN SINGH BORA = =T

Y FARHAN JAWED ANSARI Fouban _ [teorhan —re ES) Fostbor __
5. ANGSUKH BAITALIK S—— — NWWI\\{!\ _ S

6. | JIGNESH VIJAY KATE Pt | Fea= ="]
T. AKASH S UL L /Ide e, _

,. _ = |l
ADHITHYAN P VTS AT\ . Dol

BULNAT B
o DEEKSHATH V Smumm S %) Vi V : -] ,
' 10. [GIDEON MATHEW - A M Gedd, CuM, |
. HEMACHANDRAN R , v ‘ . d
12. KIRUBAKARAN B ﬂ
13. ARAVIND KUMAR A
14. ARISH BALA D
15. ADHAVAN M

?:Qo:@ Name

Date
16. JAGADEESH.P
17. DHINESH S
18. |KALALG

<>WVI:7: S

HEMANTH KUMAR G

| JAGANADHA GANDHI[E
ADHITHYAN A

VIGNESH Vv
LAVITHA VS

ARYAKI PRASHANT NARKAR
| ARUN PANDI V

GOVINDA RAJA PERUMAL R

‘\“ Q

20. SAKSHI D
21. KANNIKA KESAR R]
22, KARUNYA Vv

KALIMUTHU S

ARSLAN MAHISR M) | T H

Students Zui
S. No

\

— Date

33. | ISHAAQ AHAMED KHAN Colusny | THhasy) | Toloasy e Ly v\&c?ﬁ R\

34, | AIINJAMES g e % L%\ | & | H
35. | JOBIN GEORGE &ionpsy gﬁﬁmm‘ \%%4 \% \%\\

. oS i = = :

36. | ABHINAV K %%ﬁx% \\ﬁv\v@ﬁw\ H\L\\%NMHP\
37. | HARISHM | e E\E/«»@?E ?&%& g T \.szp |
38. ANTHONY ¥ BHARVTH 1, V] ?%/7@\ M- P | .?/&/Ez.p%% ?@@VW \

o« DHINE SHB
i~ ARIJUN vijpy

23 V. p ORMPEER R TH (V.P. a;zmz._.svﬁmne/ 73— Kx&i(%?

Fized . i il
T\

& L ¥ gt

Vi Microsystems Pvt.Ltd., Chennai-96
INTERNSHIP TRAINING ENOOF?ZM

College Name: AMET University, Chennai - 603113.

Duration: 1 Week { 11.03.2024 t0 16.03.2024) Afternoon

_ﬁ Students Name
S. No t
_ Date

11.03.2024 12.03.2024

13.03.2024

14.03.2024

15.03.2024

16.03.2024 |

1 , DIVYANSHU OJHA
2: | VARUN CHITRANSH

QM b=

(98}

| ARYAN SINGH BORA

I

m,
|
|
|
|

4. .| FARHAN JAWED ANSARI

gouiany -

|5 | ANGSUKIEH BAITALIK

D6 | JIGMESH VIJAY KATE

Nz
o
Amgpukh

-8

7. [AKASHS

iS22

| 8. | ADHITHYAN P

.‘C’

| DEEKSHATH V

{ 10. | GIDEON MATHEW

| 11. HEMACHANDRAN R

2. KIRUBAKARAN B

18 | ARAVIND KUMAR A

14, ARISH BALA D

1% - ADHAVAN M

__ Students Name

_~ R e Date
16. JAGADEESH F

?. DHINESH S

iw. KALAI G

g. , VARSHIINI S

, 20. , SAKSHI D

| 21 | KANNIKA KESAR . R

2. _ﬂ KARUNYA V

_, 23, _ HEMANTH KUMAR G

_ 24, __ JAGANADHA GANDHI E

ﬁ 25 , ADHITHYAN A

ﬁo. _TSQmem Y

?. , LAVITHA V S
28. J ARYAKI PRASHANT NARKAR
29. , ARUN PANDI V
30. GOVINDA RAJA PERUMAL R
31, KALIMUTHU S
. ARSLAN MATER

MALLTCK

Students 2:::..\ \ﬁr

\ UM:.G

[SHAAQ AHAMED KHAN - 1~
N s Goboy |0 T, | S U bt
34, AJIN JAMES \ :

35. | JOBIN GEORGE Pdri— s :
36, | ABHINAVK , E%% % %
N 79NN B! | \
ARSI ;E M A = i
Y > &é‘s&\ i) L

37.
|
38. , ANTHONY M

37 DHINESH-RB i |

0 %@N&ﬂh Hinsh B Dhsesh b Prreh g Glirash. B

e bk e en Al
e T OEF &

50 \Ha% <a£

DURATION: 1 WEEK.

l Students Name

Vi Microsystems Pvt.Ltd, Chennai-96

INTERNSHIP TRAINING PROGRAM
COLLEGE NAME: AMET UNIVERSITY, CHENNAI - 603113,

SESSION, AN
& No 22.03.24 | 23.0324 | 250324 | 26.0324 | 27.0324 | 280324 | 29.0324
R g V7 o e I gy
2 | SIDHARTH ROY et | SR (20) 2L | g dhain] Dds T\
> |KAVINRK | oo | RO i | Bomon [e (@ —|\ |
{ | MURALIDHARAN R ,&NN‘\\ @i S ey > |) g
5. HARISH K Tﬂg sl | =W R (0P &Afb \
6. SHANMUGARAJ M :Wvlvs;% &\f oo %N&(LT \
T [T bl w b il gl |
5 fsman W R AP ey
B | RITHIK VIGNESH M+ M | | e @.ﬁ*\\mg\ Kg\ﬂ \J; il
| 10| JOE JAMES SERAPIN P (p S by | o A K FF mm.f,wa, \ |
s DHAREN |Roe 1S 2o L Ll [N | /
| 12. | DHYNAESHWAR ”&MH _,ﬂw»ru — E@i&ﬂ W/ -
13. SEBOVIN Lo T v
14, / ABILASH f% _@v@wW\ TLWOTWL @ > ,@N/\\
15. # ATHUL KRISHNA

Students 29:3\

\

22.03.24

_/
\
23.03.24 25.03.24 26.03.24 27.03.24 28.03.24 29.03.24 |
S. No e |
il Date R
| 16. JASUVA JENIS JOVIN .,k\ “\/,,\
ﬂ 7. SHAHANAWAZ KHAN V
17 SHAH NAINAZ _|<HAN o
18. MOHAMMED KAIF .
| : JuSs)—
| 19. SURYAKANTH 7 §
[20. Td
{
120 ?

COLLEGE NAME: AMET UNIVERSITY, CHENNAI - 603113.

DURATION: I WEEK.

Vi Microsystems Pvt.Ltd, Chennai-96
INTERNSHIP TRAINING PROGRAM

Students Name

YEAR = 1I
SESSION: AN

|
| 22.03.24 29.03.24
M S
__ Date Y
H SAMAN SINGH Q?K;T . ;Nmﬂlﬂfﬂu @\
NAVANEETHAN P

RANJITH M

NAVEEN KUMAR

—1

Moot | Mot | e, I htssdiect i ol \

s | SHAMER BASHA C \a A.\ R s - RV VA F e \
ma. | SIVAKUMAR1 \ﬁwi g A] X T _ o / |
7 [ABISHEKA A kmxﬁ\ At |1 - b\E\ A Ego\i\ \ |,

8. | SANJEEVI KUMAR S i |l | Qprmtiii \
B BRUHAN MALIKDEEN A P g ﬁg@% L@emw%mz \ L
10, MOHAN RAJ M , \
. GOKUL PANDIT R \
12, PRAVEEN C

POSWAL KHUSHI S

MARIA ROSHAN M

‘ -2
——/‘/

Students Name \ 29.03.24)

220324 | 23.0324 | 250324 | 260324 | 27.0324 | 28.03.24

S. No \

Date
16, VISHWAS S Jocie | Ay s s w Aol sovigl] g ok |y
7. HARI PRASATH S b By byl v Q. _§Em§&\%§l \
18. SOOROJ = \
9. ARAVINDAN S | | a. A~oudan \
20. AMARIATH G G IR \
21 GANESAN M \ e o | Bied- | |
2. SELVAKUMAR S ey @l e i X vl D NEL /
23. />mz/<2w k«ﬁ@ Ao P gﬂ«?ﬁ TR I S ,
24, THARUN KUMAR , ‘ A K
TOAN- UL gdn Nt

Vi Microsystems Pvt.Ltd, Chennai-96

INTERNSHIP TRAINING PROGRAM B
COLLEGE NAME: AMET UNIVERSITY, CHENNAI - 603113, YEAR : I
DURATION: | WEEK. SESSION: FN
. € 22.03.24 | 23.0324 | 250324 | 260324 | 27.03.24 | 28.0324 | 20.0324
. (o))
Date £ 7 A /] PR N) g :
B SAMAN SINGH VO A O R e e
2. | NAVANEETHAN P P Mol [Pasasdb L MY | ooy |, L \
2 RANIITH M M S o | (B z%% b R \
4. NAVEEN KUMAR R = = 0.
5. SHAMER BASHA C Ol ,B\ . Wﬂ@% Qunds T chowr- /
6. SIVA KUMAR I Teh [T o8 g o A gear]
7 ABISHEK A AP A N el A AT (o medd | svﬁr&vd / |
8. SANJEEVI KUMAR S S0t] Sogsebc] Sl | Grdaosery | Socpang] S0
9, "BRUHAN MALIKDEEN A AT et POLEST |0 Bk | BeRebE L e e o | \ |
10. MOHAN RAJ M pas M mvﬁ_ % fet- c _ M. Zeg&vé %&,\m\ TVRE P / ,,
1 GOKUH PANDIT R QL ¥ Rlorx Redi| p (opl redif p loo bl d 280 o | R ¥ , \ |
12. PRAVEEN C o e T R [0 KA Tk \
3. | POSWAL KHUSHI S | Wi [\SF P)| b Tl
B T AT — —_—
I 15. MARIA ROSHAN M M M- G @A MM Rai| M N RIUY . maa v
T 14

5 Samsth

Students Name
03, 03.
S No - 22.03.24 | 23.03.24
. bate |]

16. VISHWAS S s SUnl
17, THARIPRASATHS : @ dlg @1 mrﬁ.\«ﬂm |
18, | SOORQY o m N:
19 [ARAVINDANSS g DD ¢ poed
,,,J ,, ‘ —— : v
| 20. AMARNATH G . Mo L e, AN “
| 21. | GANESAN M ToEr A}

| A
| 22. ' SELVAKUMAR S AN — Ny,m\
1 I | . B h
| 8L ._ ASHWIN R p&.] il %iw@
| 24 | THARUN KUMAR

o b= e —
W, a_

{
, ”
,
M |

\ . .

Vi Microsystems Pvt. Ltd, Chennai-96
INTERNSHIP HW»LZEAO PROGRAM

COLLEGE NAME: AMET UNIVERSITY, CHENNALI - 603113.
DURATION: 1 WEEK.

YEAR I
SESSION: FN
Students Name 22.0324 | 23.0324 | 250324 | 26.0324 | 27.0324 | 280304 29.03.24
S. No
- Date

W\yzz\yw

LSty Ao o W
2 | SIDHARTH ROY Atk | Srd ey §M@ &Lr?f\» Qoo]\
= | KAVINRK B | Kavins | ot Hapetn . | (g Q1 > |\
4 | MURALIDHARAN R Qtr | B0y | 6Bl AT A m%m@r@u S A
5 HARISH K Cod= O o= .] D]
6 SHANMUGARAI M WA AN SRS ! Mol b |\ |
7 LIK(THJ AN \ﬂﬁ»ﬂw%@%\ﬁ. Shfe A\
8 SHYAM - | B | Gl | St ey o |\ |
9. RITHIK VIGNESH M + M oy Ry W M @W\% londiy™ | \
T JOE JAMES SERAPIN v & Y& ¢ Q@\%%\ @ﬂ@f A | _|
1. | THARUN £ P)%L((\Sed N //_
12 | DHYNASHWAR By— v Eho— | ﬁ@w O~ gg
T. | SEBOVIN - Seeoim | Seborl? | Glovin. |sbovin —| chn | Gl

vall \ § "3 ya \
|14 | ABILASH B A [N | R g@\ Q- | QPO % X
iw. , ATHUL KRISHNA ‘v

S No Students Name 22.03.24 | 23.0324 | 25.0324 | 260324 | 27.0324 | 28.0324 NO.S.N»)
—UN_”O N, n n 0 a N ~
16. JASUVA JENIS JOVIN % M@AIW - % (T 0
17 SHAHANAWAZ KHAN % T A — Q\&M\Mxr\ mﬂ&\%ﬁ,ﬂ%ﬂ @_w
SHAI{NAINA Z_ J<HAN N;KE../ 15 \ Sk D Wum&ﬂ\\ mv@ P||
8. MOHAMMED KAIF Q> (Rt G| m1ed— WSoo— | \
T itie kol 2 e el QG Dl g o]
20. £k I R R A E e I § \
18 \
22. ,

menaw‘my

b

Vi Microsystems Pvt.Ltd, Chennai-96
INTERNSHIP TRAINING PROGRAM
COLLEGE NAME: AMET UNIVERSITY, CHENNAI - 603113.

YEAR : 1
DURATION: 1 WEEK. SESSION: AN

Students Name \ 01.04.24
'S.No \
,ﬂ Date

_
| 1. , RANJITH C

02.04.24 03.04.24 04.04.24 05.04.24 06.04.24 07.04.24

LIPS Ron R ¢ .UD:/.? G W.?\H” G Randift O Rany ViR

| SRISABARI BALASAKTHI 'S Zen | £ Sl E05Y | Camx. (B

I

E [MUTHU SURESH'S S | e | Y Y- | S | Do
B MATHI BALA K T rattcn |y ehimdd o hnettoW by bl 4 el
6. RAKESH X5 Qedss (ks R8¢ s [@ds ﬁv%x
s VRNV (LK RVR (A% NEC SR VES S O

8. MASILAMANI V Veptlanains | yemerrlamaw | vimeatomor i) | v rasilowmast s anos™) atven

5 TORTARAY R s oD o o |
10 SAHAYA JABIN BIJO A Py FDNCL 1ofPe bk |
L HARRIS CHRISTOPHER %\ % o= Hu0_ L Ko @ FH- | SRS+ |
2 MOKESH T TR | TR TP M T

3] RAMANA A Abd | M | Aboen | A EX& ==

14, MATHEW FRANKLIN # 1) D DM D MK | B Horhend 7). prabhod DU

s, KIRUBANATHAN J Tl u /T T el ,Fer T b [Tt

- - T e T T e
2 TR T e AT :
v gt TSR S A e oL Rl 3 R Tl L v

Fri; P TN,

Homh, AT

S. No
Date
16. VEERA GANESH
17. MANOJE KUMAR J
18. PRASANA A V
119, LOGESH G
20. JEEVIDOSS J
o1 VARUN KUMAR M - | |
22. NAVIN E) iy \ J
25. MONISH P Io.ﬁ&?ﬂ arka&l«)ﬂ géw I.o_\r“or. vzo_\r.cffuv\ .\.\65“{@__ J
24 [SRIMAN'S Do | %~ | K (L. (730 [4N |
‘bm A VIMPAL KAMM A @\x OCHA - A@,&u\ @&A %JR.« \\@%@1 \ q
ob. |S- gauin pumeg E4. | Ry. |BG. ﬁﬂ n\/@‘ﬁw ~§ | Lq
|

Vi Microsystems Pvt.Ltd, Chennai-96
INTERNSHIP TRAINING PROGRAM

COLLEGE NAME: AMET UNIVERSITY. CHENNAI - 603113. memwozm % y
DURATION: | WEEK. .
Students Name 01.0424, | 02.0424 | 03.0424 | 04.0424 | 050424 | 06.04.24 | 07.04.24
S. No .
Date X
25, MOHAMYIED SHAIl S S R | Ko
26. ROHAN
O m r%\.
27. ABHISHEK SATHESH
28. PRANAV D
29. RIYAZ KHAN A
30. MWHAMMED SHARIF
31. ADHITHYAN K S
32. SULTHAN MOHAMMED HAREERI
33. MANTHAN VHADGIRE
, 34, # ZAID GHANI
, 35 , TEJAS SURYE
To | NIKHIL JETHWA
/ 37 / PRANAV PRINCE
38. ~ ANGITH B ‘

SN Qerm ﬁ 2

Vi Microsystems Pvt.Ltd, Chennai-96
INTERNSHIP TRAINING PROGRAM

COLLEGE NAME: AMET UNIVERSITY, CHENNAI - 603113.
DURATION: 1| WEEK.

YEAR :1I
] SESSION: FN
N m:_%imi 01.0424 | 02.0424 | 03.0424 | 040424 | 050424 | 06.0424 | 07.04.24
. INO =
— Date v ® gy
AR ‘o - LN
/w MMM_ZMMWW BALASAKTHI S C.Forit | ¢ Rangith | QR R | Ron 3, 4 nﬁﬁf c-Rany 1
2. ,‘ Gl | ¥l | Sede |80 l=s
, 3. , MUTHU SURESH S QL .
= | /.\:/,\Zﬂ?i | & ‘ {
5. | MATHI BALA K - .otk |/, AL £l lpmotPELl—
6. [RAKESHES (Ll ¢ R e N S YT |
7 [VASANTII C U w\\@x Tt L\ N VAl
_Q. 7?&:;9522 Voo laues, | VeI |V magfeme of | ¥ooamailasags
/ 9. # LOKESHWARAN K s (oe® e
ﬂo, _/m>:><> JABIN BLJO f = Sl o ® vf - i
ﬂ, /HM%/MM M:Eﬁ%z% N ﬁ [yl
2. CESH T :%W - 5 A\mm ._\f\mﬂ_
L Emri=a ke
: / 2W FRANKLIN 4
M:. ,.Ezcw\/zz,m;zg ™ = C% SARZADE £ A K f |
2ok, (S el (T |

L A ST T o A

Students Name

S. No
Date

16. VEERA GANESH
17, MANOJE KUMAR
ﬁm. , PRASANA A V
. 19. _ LOGESH G
mo. * JEEVIDOSS J
‘ 21. ” VARUN KUMAR M
mw. _ NAVIN E

23. , MONISH P
/ 24. , SRIMAN.S
Wm ; AVMAL KAn A
/ 9. S-RAUVINDKUMA R

Vi Microsystems Pvt.Ltd, Chennai-96
INTERNSHIP TRAINING PROGRAM

*

COLLEGE NAME: AMET UNIVERSITY, CHENNAI - 6031 13.
DURATION: 1 WEEK.

YEAR]
SESSION: FN

Students Name

Date

01.04.24

02.04.24

03.04.24

04.04.24 05.04.24

06.04.24 07.04.24

MOHAMMED SHAJI S

ROHAN

[mg
ABHISHEK mi:ww:

PRANAV D

RIYAZ KHAN N

Vi
s
A% /

MUHAMMED SHARIF

ADHITHYAN K S

SULTHAN MOHAMMED KAREERI

=S
e
ke

MANTHAN VHADGIRE

%

ZAID GHANI

TEJAS SURYE

NIKHIL JETHWA

PRANAYV PRINCE

ANGITH B

Shoo Qu £ P

Y

Vi Microsystems Dvt. Ltd.,

Plot No: 75, Electronics Estate,
Perungudi,
Chennai - 600 096.

CERTIFICATE OF COMPLETION
lLaec2zembd.. Studying

This is to certify that Mr/Ms......RAKESH....5..............

T N ean...... BB = Department...of.. ECE.. L Eleetsdcal... and. CO0PLEER ...
o AE‘.’IEI'....U.I\.LE&!?rﬂ'f.H has successfully completed
&tern.. L LG, AF 2T s carrannnns

..... Engmmuy.:[
his/her Internship training programme on Em.h:ddmﬂ.sy
in our company from .24. . TUQ@. &AMk, to {Jﬁ:."u.liac.iw.ﬂ.a}. We appreciate his/her interest
and the efforts taken to do this training programme. During the period his/her conduct and

the performance is satisfactory.
. OO.A B

We wish success in all future endeavors. _—
r(/ e
He=I
N7 P Manager
Vi Microsyelems v, bel, Chennl - 9%

- A ViMicrosystems Dvt. Itd.,, |

i

Plot No: 75, Electronics Estate, |

Perungudi, i

} Chennai - 600 096. |
CERTIFICATE OF COMPLETION

This is to certify that Mr./Ms. P DRYANESHAR....... Register No: .AEERIRIZ.L... |

studying in the EEEE'M year of the Department of B S = {

at AMET University - Chennai, has successfully completed a 35 Hours Value added training
program on “EMBEDDED SYSTEM WITH IoT ” at our company From ...R2..Q3:.R2022%....

To ...02%.03:2024....... | L

We appreciate their interest and the efforts taken to complete this training program.

Throughout the period, their conduct and performance were satisfactory.

We extend our best wishes for their future endeavors.

Manager .
Vi Microsystems Dvt Ltd., Chennai - %.

: |
e . WIS ey 1 RI AT P AR PUF N o T e A e AP N SR TRV o TR 1 S i f = L]
L

(% Scanned with OKEN Scanner

NN

	User Manual
	Version1.0
	TechnicalClarification/Suggestion:
	TechnicalSupport Division,ViMicrosystemsPvt.Ltd.,
	Ph:91-44-24961842,91-44-24961852
	1. INTRODUCTION TO EMBEDDED SYSTEM
	Examples of embedded systems
	How does an embedded system work?

	The processor may be a microprocessor or microcontroller. Microcontrollers are simply microprocessors with peripheral interfaces and integrated memory included. Microprocessors use separate integrated circuits for memory and peripherals instead of inc...
	Characteristics of embedded systems
	Structure of embedded systems
	2.RASPBERRY PI PICO RP2040

	Features of RP2040 Chip — High performance. Low cost. Small package.
	Raspberry Pi Pico W and Pico WH
	How to Install MicroPython on Raspberry Pi Pico?
	Download MicroPython Binary
	Install MicroPython on Raspberry Pi Pico

	Downloading Thonny
	Configuring Thonny

	Programming Raspberry Pi Pico with MicroPython
	Blink an LED
	Read from Button
	What is An RTOS?
	What is a General Purpose Operating System?
	What is an RTOS?
	What is FreeRTOS?

