

Value Added Course

A Sample Report of the Value Added Course Titled “Embedded

Systems with IoT” offered for the students of the Department of

Electrical and Electronics Engineering is given below

| inwar

Dr.V.Sridevi

Professor and HoD

To

Dept. of EEE

OFFL:r

The Registrar

Sir.

15 FEB 202 4

AMET Deemed to be University.

S.No

2

3

Sub: Renewal of Existing MOU's Reg.

4

Note:

AMET
ACADEN1Y QF MARITIME EDUCATION AND TRAINING
Decmed to ic uUniversily Under Setion 3 of UGC Act 1956

..ROM THE OFFICE OF HOD-EEE

Workshop/Value Added
Programs

ioT Embedded and Arduino
Automation

Engineering Design and Additive
Manufacturing
Maintenance (Mechanical and
Electrical)

There are 14 MOU's associated with the Department of Electrical and Electronics Engineering to

support stùdent activities, FDP, Training programs etc. We would like to renew one of the existing MOU's

namely VI Microsystems Pvt.Ltd since their validity period was over in December 2023. I request you to
kindly do the needful.

All the above fee is exclusive of GST

Thanking you,

Dr.V.Sridevi
Professor and HoD

Duration

(In Hours)

35
3

35

NAAC

Max. batch
Size

40

40

Hos.tg
Dley pro(on

40

Amin
MET/

eemed

Boarding & Lodging for the trainees will be additional, only if required.

Filo Resbmit

Date:

1FEB ZULu

INWARD

CHENN

No. of

batches per
year

(A

15.02.2024

Progranm
fee/batch

INR 40,000/
INR 40,000/

Travel, Boarding and Lodging for the trainers to be borne by the University, for all the training
execution scheduled at the University.

INR 40,000/

University will sponsored Rs. 25000/- for conducting Skill Development or Value Added Training

program per semester and the balance amount will be collected from the students (Rs. 1000/student).

INR 40,000/

AMET
UNIVERSITY

Report on
Value Added Course

On

for

Embedded System with loT

I, II and III Year

A

Organized By

NAAG

Department of Electrical and Electronics Engineering

Batch 1: 11-03-2024 to 16-03-2024

Batch 2: 22-03-2024 to 28-03-2024

Batch 3: 1-04-20244 to 06-04-2024

Venue: VI Microsystems Pvt.Ltd, Chennai

1 mic
ro

Py
tho

n
IDE

,

Th
orn

y IDE
, and

Int
rod

uc
tio

n to
 C

and

Em
be

dd
ed

 -
Py

tho
n,

abo
ut

Th
onn

y IDE

-
Th

orn
y

She
ll.

Ab
out

Un

it 2:

Em
be

dd
ed

So
ftw

ar
e

To
ols

 and

Si
m

ul
at

io
n In

te
rru

pt
s-

Tim
er- PWM

-
Int

erf
ac

e of

pe
rip

he
ral

dev
ice

, Em
be

dd
ed

sys
tem

boa
rd

ar
ch

ite
ctu

re

C
la

ss
if

ic
at

io
n.

&

M

icr
oc

on
tro

lle
r

-
Cl

as
sif

ica
tio

n

bas
ed on

Ar

ch
ite

ctu
re

-M
em

or
y In
tro

du
cti

on
 to

Em
be

dd
ed

sys
tem

M
icr

oc
on

tro
lle

r

Cl
as

sif
ica

tio
n

:
Di

ffe
ren

t

be
tw

een

m
icr

op
ro

ce
ss

or

M
icr

op
ro

ce
ss

or
 and

-

Bo
ard

 U
nit 1:

In

tro
du

cti
on

 and

Co
nf

ig
ur

ati
on

 of

Em
be

dd
ed

sys
tem

Co
urs

e
Sy

lla
bu

s:
co

nc
ep

ts
5.

ex

pe
rie

nc
in

g

ex
ten

siv
e and

ha
nd

s-o
n in

Em

be
dd

ed

with
 loT

4.

Kn
ow

led
ge

abo
ut

Wi
red

 and

wi
rel

ess

co
m

m
un

ica
tio

n

sy
ste

m
2.

Ga

ini
ng

Ad
va

nc
ed

kn
ow

led
ge

 of

loT,
 se

ns
or

s and

Va
rio

us

do
m

ain
s wit
h the

ha
nd

s on

se
ss

io
n

1.

U
nd

er
sta

nd
in

g the

co
nc

ep
t of

Em

be
dd

ed

sys
tem

 and real

tim
e

CO
UR

SE

OB
JE

CT
IV

E:
D

ur
at

io
n:

35
 - 40

Ho

urs
 To

pic
 :

Em
be

dd
ed

Sy
ste

m with
 loT H

an
ds

-o
n

Va
lue

Ad
de

d

Co
ur

se

so
ftw

are

int
ro

du
cti

on
 -

In
tro

du
cti

on
 to

Di

ffe
ren

t

Ty
pes

 of

On
lin

e

Too
l

Pla
tfo

rm
 /

sim
ula

tor
 -

Di
git

al /O

int
erf

ac
e,

An
alo

g I/O
int

erf
ac

e

-

Ide
nti

fy
Em

be
dd

ed

with
 loT

3.

Ap
ply

ing
 the

fu
nd

am
en

tal

the
ori

es and

co
nc

ep
ts of

Em

be
dd

ed

Embedded wokwi pico micropython Simulation Tool.

Unit 3: Peripherals and Sensors Interfacing

LED blinking task - Buzzer, Relay and switch Interfacing, 7
segment and LCD Interfacing PWM Generation, different types of

Analog and digital sensors are interfacing - LM 35 -Ultrasonic -
LDR- IR -Potentiometer and Accelerometer.

2

Unit 4: Wired and Wireless Communication Protocols

Wired communication Communication

Unit 5: Cloud Platforms for I0T

Protocols

Communication: UART - 12C - SPI- wireless communication

Protocols zigbee Bluetooth ,RF LoRaWAN Wi-Fi and

loT ,wired and wireless communication application interfacing

systems.

services

Serial

Introduction to I0T Understanding loT fundamentals IOT

time Examples of loT Overview of loT components and loT

Communication Technologies Challenges in I0T ,Cloud
Platforms for IOT Study of IOT Cloud platforms ThingSpeak

Architecture and protocols Various Platforms for loT Real

API ,Fire base and Blynk app, Interfacing RP2040 W with Web

Course Outcomes:

1

Students will be able to

5 -Days hands-on training program in Dual core embedded
controller

1 Design and develop the embedded system application to
acquire the data from sensors like temperature, pressure,

humidity, flow etc, and communicate collected signals to the
computer through UART, I2C and SPl port.

DayFN

3

2. Develop the embedded system to interface with

accelerometer, ultrasonic sensor, and encoder to acquire the
3. To study of various loT Protocols

2

3

4

-Introduction to Embedded
systems
-Difference between
Microprocessor Vs
Microcontroller
-Raspberry pi RP 2040 Pico
microcontroller Introduction
- GPIO, Timer
-Introduction to PWM, PWM
Generation, LED Fading Using

PWM,
-VIF Control of Induction Motor
- Introduction to sensors,
concept of analog and digital
sensor, Hands-on training for
Different types of digital sensor
interfacing

Introduction to display unit
types of display , about LCD and
7 segment display with hands
on programming

AN

Hands-on training
Raspberry pi Pico
Programming overview
LED interfacing, Button
Interfacing and different
types of IO concept with
Example
Dual core, Programmable I0

and State Machine concept
with Hands-on training

Introduction to ADC and
types
Hands-on training for
Potentiometer interfacing,

Temperature sensor
interfacing
Hands-on training -
Ultrasonic sensor interfacing

Relay interfacing and buzzer
interfacing

5 Introduction to Wireless
technology , About raspberry pi
rp2040 VW and Introduction to
loT cloud, sensor data send to
any cloud service with hands-on

COurse.

The following Boards and Industrial projects will be used in this

RP2040 W based Carrier Board

As Raspberry Pi based embedded Controllers become more and
more awareness among students, Vi Micro has designed another
innovative Carrier Board, based on Raspberry RP2040 Processor,
which provides Dual Core Cortex M0+ Microcontroller, 16 GPIO,

ADC, etc. to build many Embedded Applications and Study the
Interfacing of Various Devices to RP2040

P7RTLS

3.1P10

Temperature and Ultrasonic
data send to cloud

1. interface a 16*2 LCD Display

3. Interface Various Sensors

WiFi

Home automation using loT -
project

Hands on Experiments above Trainer kit used

2. interface 2*7 Segment Display

i Nicrossstes

4. Acqure ADC Sensor Data and display on a Smart Phone through

COURSE OUTCOMES:

5

Students will acquire basics of Embedded system and Real time
loT Application

" Student get knowledge microprocessor and controller.
Students get the real time sensors working procedure and get

hands-on training Observe surface area and objects on

systematic basis and thereby monitor their changes over time.

" loT Application (Internet of Things)
" Real time Application.

REFERENCES:

1.RP2040 Assembling language Programming - Stephen
smith

2.Raspberry pi pico Essentials:Program,Build,and Master
Over 50 Projects with micro python

Online Link :

https://www.google.com/search?rlz=1C1JZAP_enlN10291
N1029&cs=0&g=Raspberry+Pit+Pico+Essentials:+Progr
am,+Build, +and+Master+Over+50+Projects+with+Micro
Python+and +the+RP2040+Microprocessor+Dogan+lbra

him&stick=H4s|AAAAAAAAAONgVeLVT9c3NCzJMiusS
C4uM-IpkKjAyMDFQSMrPzy4-xQiRLTAOKkgzSc
D8WGq4fy840LyPAuTR4yLmLgFXV64Jyw1g2nSmpPX

GCcycQn450cXp
ZUBqXmJJakpoTkCxlysbnmlWSWwWAoJSVFzQYwojDfP
LUsyyzUSgQpkm2UnZ6RYFAjMfzCNUSiUizs4tSQk3zc
JTOtUshNylWL0zc1 Nym1qNg_TUiZi8s5PycnNbkkMz9

PSFRKmEtQPxkuoA 2ixJfEKd
rr5BUkl8sVEBRIYrJg0mpUKjuF2Xpp1jixDc1_7_f6hkklO
UhpYgF5tLfm5iZp4gU_lle7kF7

6

21hLk4Qhlr8vPycysFpdjuFm37f8JeSZHTpp-7IXD
W3tBVWpGhdkzxA5IMCswaDAYXr7G_OAt td

LQagRU37Vhxi4
BgFGAwYuJgqGLgWcTaxhiUWFwWAdHxRpUJAJhAI5yu
4FhenAgMIMafYSiGgKD

9KDFXR8GpNDMnRUchMS9FwTexuCS1SMG_DEIYG
oCUZAG9V6xQnlmSoeCbmVyUH1BZkpGfB1ZckpGqE
BQAjkiwvEFRÍnJqcXF
KYJLÍnpinoJnUIFiRmbuBDZGABX6pZsCAgAA&sa=X&v
ed=2ahUKEWjamLKDSNH8AhUx5HMBHeKbDDQQ7{AI
egQlABAU

SOFTWARE REQUIREMENT:

Thonny IDE

" Python and Micro Python Language
" Wokwi simulator Tool (Online Simulation Tool)

HARDWARE REQUIREMENT:

Processor - ARM Cortex MO (Raspberry pi Pico
RP2040W)

1

RP2040 CARRIER BOARD

User Manual

Version1.0

TechnicalClarification/Suggestion:

✍/☎

TechnicalSupport

Division,ViMicrosystemsPvt.

Ltd.,

PlotNo:75,ElectronicsEstate,Perungudi,C

hennai-600096,INDIA.

Ph:91-44-24961842,91-44-24961852

Mail:rnd@vimicrosystems.comW

eb:www.vimicrosystem.com01/14/

05/10

mailto:rnd@vimicrosystems.com
http://www.vimicrosystem.com/

2

CONTENTS

1. INTRODUCTION TO EMBEDDED SYSTEM 3
2. RASPBERRY PI PICO RP2040 7
3. RP2040 MICROCONTROLLER 14
4 RP2040 CARRIER BOARD 16
5. SOFTWARE REQUIRED & PROGRAMMING

18

6. PROGRAMMING

6.1 LED 31
6.2 BUTTON WITH LED

33

6.3 LCD DISPLAY 34
6.4 INTERFACING LM 35 WITH LCD 35
6.5 SEVEN SEGMENT DISPLAY 36
6.6 POT WITH 7 SEGMENT INTERFACING 40
6.7 ULTRASONIC SENSOR

42

6.8 BUZZER 45
6.9 RELAY WITH SERIAL 45
6.10 SWITH INCREMENT WITH LED

46

6.11 TEMPERATURE SENSOR 48
6.12 ADC 49
6.13 PWM

50

7 PROCEDURE IN THINK SPEAK

51

7.1 ADC VALUE SEND TO THINGSPEAK CLOUD

53

8 INTRODUCTION TO RTOS

56

3

1. INTRODUCTION TO EMBEDDED SYSTEM

An embedded system is a combination of computer hardware and software designed for

a specific function. Embedded systems may also function within a larger system. The

systems can be programmable or have a fixed functionality. Industrial machines,

consumer electronics, agricultural and processing industry devices, automobiles,

medical equipment, cameras, digital watches, household appliances, airplanes, vending

machines and toys, as well as mobile devices, are possible locations for an embedded

system.

While embedded systems are computing systems, they can range from having no user

interface (UI) -- for example, on devices designed to perform a single task -- to complex

graphical user interfaces (GUIs), such as in mobile devices. User interfaces can

include buttons, LEDs (light-emitting diodes) and touchscreen sensing. Some systems

use remote user interfaces as well.

Marketability, a business-to-business (B2B) research firm, predicted that the embedded

market will be worth $116.2 billion by 2025. Chip manufacturers for embedded systems

include many well-known technology companies, such as Apple, IBM, Intel and Texas

Instruments. The expected growth is partially due to the continued investment in

artificial intelligence (AI), mobile computing and the need for chips designed for high-

level processing.

Examples of embedded systems

Embedded systems are used in a wide range of technologies across an array of

industries. Some examples include:

 Automobiles. Modern cars commonly consist of many computers (sometimes as

many as 100), or embedded systems, designed to perform different tasks within the

vehicle. Some of these systems perform basic utility functions and others provide

entertainment or user-facing functions. Some embedded systems in consumer

https://www.techtarget.com/searchapparchitecture/definition/user-interface-UI
https://www.techtarget.com/whatis/definition/GUI
https://internetofthingsagenda.techtarget.com/feature/Biometric-IoT-sensors-shape-the-future-of-user-interfaces
https://internetofthingsagenda.techtarget.com/feature/Biometric-IoT-sensors-shape-the-future-of-user-interfaces
https://www.techtarget.com/searchcio/definition/B2B
https://www.techtarget.com/searchcio/answer/What-is-embedded-intelligence-and-how-can-CIOs-prepare-for-it
https://www.techtarget.com/searchmobilecomputing/definition/nomadic-computing

4

vehicles include cruise control, backup sensors, suspension control, navigation

systems and airbag systems.

 Mobile phones. These consist of many embedded systems, including GUI

software and hardware, operating systems (OSes), cameras, microphones, and USB

(Universal Serial Bus) I/O (input/output) modules.

 Industrial machines. They can contain embedded systems, like sensors, and

can be embedded systems themselves. Industrial machines often have embedded

automation systems that perform specific monitoring and control functions.

 Medical equipment. These may contain embedded systems like sensors and

control mechanisms. Medical equipment, such as industrial machines, also must be

very user-friendly so that human health isn't jeopardized by preventable machine

mistakes. This means they'll often include a more complex OS and GUI designed for

an appropriate UI.

How does an embedded system work?

Embedded systems always function as part of a complete device -- that's what's meant

by the term embedded. They are low-cost, low-power-consuming, small computers that

are embedded in other mechanical or electrical systems. Generally, they comprise a

processor, power supply, and memory and communication ports. Embedded systems

use the communication ports to transmit data between the processor and peripheral

devices -- often, other embedded systems -- using a communication protocol. The

processor interprets this data with the help of minimal software stored on the memory.

The software is usually highly specific to the function that the embedded system serves.

The processor may be a microprocessor or microcontroller. Microcontrollers are simply

microprocessors with peripheral interfaces and integrated memory included.

Microprocessors use separate integrated circuits for memory and peripherals instead of

including them on the chip. Both can be used, but microprocessors typically require

more support circuitry than microcontrollers because there is less integrated into the

https://www.techtarget.com/searchenterpriseai/feature/Machine-learning-on-microcontrollers-enables-AI

5

microprocessor. The term system on a chip (SoC) is often used. SoCs include multiple

processors and interfaces on a single chip. They are often used for high-volume

embedded systems. Some example SoC types are the application-specific integrated

circuit (ASIC) and the field-programmable gate array (FPGA).

Often, embedded systems are used in real-time operating environments and use a real-

time operating system (RTOS) to communicate with the hardware. Near-real-time

approaches are suitable at higher levels of chip capability, defined by designers who

have increasingly decided the systems are generally fast enough and the tasks tolerant

of slight variations in reaction. In these instances, stripped-down versions of

the Linux operating system are commonly deployed, although other OSes have been

pared down to run on embedded systems, including Embedded Java and Windows IoT

(formerly Windows Embedded).

Characteristics of embedded systems

The main characteristic of embedded systems is that they are task-specific.

Additionally, embedded systems can include the following characteristics:

 typically, consist of hardware, software and firmware;

 can be embedded in a larger system to perform a specific function, as they are

built for specialized tasks within the system, not various tasks;

 can be either microprocessor-based or micro controller-based -- both are

integrated circuits that give the system compute power;

 are often used for sensing and real-time computing in internet of things (IoT)

devices, which are devices that are internet-connected and do not require a user to

operate;

 can vary in complexity and in function, which affects the type of software,

firmware and hardware they use; and

 are often required to perform their function under a time constraint to keep the

larger system functioning properly.

Structure of embedded systems

Embedded systems vary in complexity but, generally, consist of three main elements:

https://internetofthingsagenda.techtarget.com/definition/system-on-a-chip-SoC
https://www.techtarget.com/whatis/definition/ASIC-application-specific-integrated-circuit
https://www.techtarget.com/searchdatacenter/definition/real-time-operating-system
https://www.techtarget.com/searchdatacenter/definition/real-time-operating-system
https://www.techtarget.com/searchdatacenter/definition/Linux-operating-system
https://www.theserverside.com/definition/EmbeddedJava
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT

6

 Hardware. The hardware of embedded systems is based around

microprocessors and microcontrollers. Microprocessors are very similar to

microcontrollers and, typically, refer to a CPU (central processing unit) that is

integrated with other basic computing components such as memory chips and digital

signal processors (DSPs). Microcontrollers have those components built into one

chip.

 Software and firmware. Software for embedded systems can vary in

complexity. However, industrial-grade microcontrollers and embedded IoT systems

usually run very simple software that requires little memory.

 Real-time operating system. These are not always included in embedded

systems, especially smaller-scale systems. RTOSes define how the system works by

supervising the software and setting rules during program execution.

In terms of hardware, a basic embedded system would consist of the following

elements:

 Sensors convert physical sense data into an electrical signal.

 Analog-to-digital (A-D) converters change an analog electrical signal into a

digital one.

 Processors process digital signals and store them in memory.

 Digital-to-analog (D-A) converters change the digital data from the processor

into analog data.

 Actuators compare actual output to memory-stored output and choose the

correct one.

The sensor reads external inputs, the converters make that input readable to the

processor, and the processor turns that information into useful output for the embedded

system.

https://www.techtarget.com/whatis/definition/digital-signal-processing-DSP

7

2.RASPBERRY PI PICO RP2040

Designed by Raspberry Pi, RP2040 features a dual-core Arm Cortex-M0+ processor

with 264kB internal RAM and support for up to 16MB of off-chip flash. A wide range of

flexible I/O options includes I2C, SPI, and - uniquely - Programmable I/O (PIO). These

support endless possible applications for this small and affordable package.

Whether you have a Raspberry Pi Pico or another RP2040-based microcontroller board,

everything you need to get started is here. You’ll find support for getting started

with C/C++ or MicroPython on Raspberry Pi Pico, and links to resources for other

boards that use RP2040. There are also links to the technical documentation for both

the Raspberry Pi Pico microcontroller board and our RP2040 microcontroller chip.

RP2040 is the debut microcontroller from Raspberry Pi. It brings our signature values of

high performance, low cost, and ease of use to the microcontroller space.

With a large on-chip memory, symmetric dual-core processor complex, deterministic

bus fabric, and rich peripheral set augmented with our unique Programmable I/O (PIO)

subsystem, it provides professional users with unrivalled power and flexibility. With

https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html#technical-specification
https://www.raspberrypi.com/documentation/microcontrollers/c_sdk.html#sdk-setup
https://www.raspberrypi.com/documentation/microcontrollers/micropython.html#what-is-micropython

8

detailed documentation, a polished MicroPython port, and a UF2 bootloader in ROM, it

has the lowest possible barrier to entry for beginner and hobbyist users.

RP2040 is a stateless device, with support for cached execute-in-place from external

QSPI memory. This design decision allows you to choose the appropriate density of

non-volatile storage for your application, and to benefit from the low pricing of

commodity Flash parts.

RP2040 is manufactured on a modern 40nm process node, delivering high

performance, low dynamic power consumption, and low leakage, with a variety of low-

power modes to support extended-duration operation on battery power

Key features:

Dual ARM Cortex-M0+ @ 133MHz

264kB on-chip SRAM in six independent banks

Support for up to 16MB of off-chip Flash memory via dedicated QSPI bus

DMA controller

Fully-connected AHB crossbar

Interpolator and integer divider peripherals

On-chip programmable LDO to generate core voltage

2 on-chip PLLs to generate USB and core clocks

30 GPIO pins, 4 of which can be used as analogue inputs

Peripherals

2 UARTs

2 SPI controller

2 I2C controllers

9

16 PWM channels

USB 1.1 controller and PHY, with host and device support

8 PIO state machines

Features of RP2040 Chip — High performance. Low cost. Small package.

The RP2040 features a dual-core Arm Cortex-M0+ processor clocked at 133MHz with

264KB internal SRAM and 2MB internal flash storage and can be programmed in both

C/C++ and the beginner-friendly MicroPython.

(Picture quoted from Raspberry Pi Official)

Raspberry pi Pico

10

Raspberry Pi Pico W and Pico WH

Raspberry Pi Pico W adds on-board single-band 2.4GHz wireless interfaces (802.11n)

using the Infineon CYW43439 while retaining the Pico form factor. The on-board

2.4GHz wireless interface has the following features:

Wireless (802.11n), single-band (2.4 GHz)

WPA3

Soft access point supporting up to four clients

The antenna is an onboard antenna licensed from ABRACON (formerly ProAnt). The

wireless interface is connected via SPI to the RP2040 microcontroller.

Due to pin limitations, some of the wireless interface pins are shared. The CLK is

shared with VSYS monitor, so only when there isn’t an SPI transaction in progress can

VSYS be read via the ADC. The Infineon CYW43439 DIN/DOUT and IRQ all share one

pin on the RP2040. Only when an SPI transaction isn’t in progress is it suitable to check

for IRQs. The interface typically runs at 33MHz.

For best wireless performance, the antenna should be in free space. For instance,

putting metal under or close by the antenna can reduce its performance both in terms of

gain and bandwidth. Adding grounded metal to the sides of the antenna can improve

the antenna’s bandwidth.

https://www.raspberrypi.com/documentation/microcontrollers/rp2040.html#welcome-to-rp2040

11

 RP2040 MICROCONTROLLER

12

RASPBERRY PI PICO PINOUT FEATURS

 Micro-USB B port for power and data (and for reprogramming the Flash)

13

 12MHz Crystal Oscillator with two PLLs provide a system clock up to 133MHz,

and a fixed 48MHz clock for USB or ADC.

 Code may be executed directly from 2MB of on-board Flash memorythrough a

dedicated SPI.

 Raspberry Pi Pico is a microcontroller board based on the Raspberry Pi RP2040

- 32 bit microcontroller chip

 3-pin ARM Serial Wire Debug (SWD) port.

 FourRP2040 GPIO pins are used for internal board functions, these are:

 GPIO29 IP (ADC3) Used to measure VSYS/3

 GPIO25 OP Connected to onboard LED

 GPIO24 IP VBUS sense - high if VBUS is present, else low

 GPIO23 OP Controls the on-board SMPS Power Save pin

14

3.RP2040 MICROCONTROLLER

POWER SUPPLY:

At its simplest, RP2040 requires two different voltage supplies, 3.3V (for the IO)

and 1.1V (for the chip's digital core).

15

CORTEX-M0 PROCESSOR FEATURES

• The ARM Cortex-M0+ processor brings 32-bit power at an 8-bit Cost.

• Has the Smallest Footprint & Lowest Power requirements, consumes just

9µA/MHz on a low-cost 90nm LP process, around one third of the energy of any

8- or 16-bit processor available today, while delivering significantly higher

performance.

• The low-power processor is suitable for a wide variety of applications, including

sensors and wearables.

• Single-cycle IO to speed access to GPIO and peripherals.

• Improved debug and trace capability and a 2-stage pipeline.

• The exceptional code density of Cortex-M0+ significantly reduces memory

requirements, ideal for use in wearables for healthcare, fitness, and more.

• With its three highly optimized low-power modes, the processor conserves

energy to match processing demands.

16

4. RP2040 CARRIER BOARD

The Following On board peripherals available in the carrier board

1. RP2040 Microcontroller

2. Bush Button

3. Seven Segment display

4. Potentiometer

5. Ultrasonic Sensor

6. 16*2 LCD Display

7. Buzzer

8. Relay

9. USB Connector

10. USB Cable (B-Type)

11. LED

12. Temperature sensor

13. ADC

17

18

5. SOFTWARE REQUIRED & PROGRAMMING LANGUAGE

Raspberry Pi Pico Programming – Overview – GPIO Access

The Raspberry Pi Pico accepts programming with the following programming

languages: C/C++, MicroPython, assembly language.

Although the Pico by default is set up for use with the powerful and popular C/C++

language, many beginners find it easier to use MicroPython, which is a version of the

Python programming language developed specifically for microcontrollers.

In this Lab we will learn how to install and use the MicroPython programming language.

We will be using the Thonny text editor which has been developed specifically for

Python programs.

19

How to Install MicroPython on Raspberry Pi Pico?

Download MicroPython Binary

Let us now get started with MicroPython on Raspberry Pico. The easiest and fastest

way to run MicroPython on Raspberry Pi Pico is to download the prebuilt binary from the

official Raspberry Pi Pico’s website.

Go to the documentation page of Raspberry Pi Pico and click on “Getting Started

MicroPython” tab.

The content below the tab changes according to the selected tab and when you click on

“Getting Started MicroPython”, a text related to Getting started with MicroPython

appears along with a small animation on how to install MicroPython on Raspberry Pi

Pico.

https://www.raspberrypi.org/documentation/rp2040/getting-started/
https://www.electronicshub.org/wp-content/uploads/2021/02/Installing-MicroPython-1.jpg

20

Read all the information and click on “Download UF2 file” option. A MicroPython

Binary in the form of a .uf2 file will be downloaded.

https://www.electronicshub.org/wp-content/uploads/2021/02/Installing-MicroPython-2.jpg
https://www.electronicshub.org/wp-content/uploads/2021/02/Installing-MicroPython-3.jpg

21

Install MicroPython on Raspberry Pi Pico

After downloading the MicroPython Binary, we have to upload this firmware in to the

Raspberry Pi Pico. For that, first we have to put the Pico in bootloader mode.

To do that, plug-in a micro-USB cable to micro-USB port of Raspberry Pi Pico. Now,

hold the BOOTSEL button on the Pico and plug-in the other end of the USB cable to a

USB port of the host computer (while holding the BOOTSEL button).

You can release the button after a couple of seconds when the Raspberry Pi Pico

appears as a Mass Storage Device with name “RPI-RP2”. If you open it, you will see a

text file and an HTML file.

Now, go to the downloads folder and drag-and-drop the downloaded MicroPython UF2

file onto RPI-RP2 device. After copying, the Raspberry Pi Pico will restart and run

MicroPython. The mass storage device will disappear after you copy the MicroPython

UF2 file.

https://www.electronicshub.org/wp-content/uploads/2021/02/Installing-MicroPython-4.jpg

22

Your Raspberry Pi Pico is now running MicroPython. You are now ready to program

Raspberry Pi Pico with MicroPython.

Downloading Thonny

https://www.electronicshub.org/wp-content/uploads/2021/02/Installing-MicroPython-5.jpg

23

Thonny is a simple Python IDE available for Windows, Mac and Linux. The Raspberry

Pi OS comes with Thonny preinstalled. Since I am using a Windows system, I

downloaded the Windows version of Thonny. An executable called “thonny-3.3.5.exe” is

downloaded.

Double click on the downloaded executable and install Thonny. There is nothing special

with this installation and it is very straight forward. Optionally, you can select to create a

desktop shortcut.

Configuring Thonny

After downloading and installing Thonny IDE, open it. Make sure that Raspberry Pi Pico

is already plugged into the host computer. Thonny IDE is very simple. Its layout can be

divided into four parts: Toolbar, Script Area, Shell, Interpreter.

https://www.electronicshub.org/wp-content/uploads/2021/02/Download-Thonny-1.jpg

24

 The Toolbar: Contains icons for saving, running and stopping the programs.

 The Script Area: This is where you write the Python Programs.

 The Shell: The Python Shell is an interactive REPL (Read-Evaluate-Print-Loop)

block where you can give individual commands to the interpreter and it will

execute them.

 The Interpreter: Select the right interpreter from the bottom right of the IDE.

By default, Thonny IDE is configured to interpret Python 3.x.x.

25

Click on Python 3.7.9 (or whatever the version is) and select MicroPython (Raspberry Pi

Pico) interpreter. As soon as you select the MicroPython interpreter, the shell at the

bottom changes to MicroPython.

Since MicroPython supports interactive REPL, you can enter commands in the shell and

Raspberry Pi Pico will execute them. Let us try this. We will start with Hello World of

programs which is to print Hello World.

Programming Raspberry Pi Pico with MicroPython

In the Shell, type the following next to “>>>” symbol and hit enter.

print(“Hello, World!”)

This is an instruction to the MicroPython Interpreter running on Raspberry Pi Pico. Up

on receiving this command, the MicroPython will respond with the message “Hello,

World!” and prints it on the shell itself.

26

If you remember the layout of the Raspberry Pi Pico, an LED is connected to GPIO 25.

We can try to turn this LED ON and OFF from the shell.

For that, first we have to import a special library called ‘machine’. The machine library in

MicroPython is used to control the hardware of a board, Raspberry Pi Pico in this case.

You can reset the microcontroller, put it to sleep, enable or disable interrupts, wake it

from sleep using machine module.

Some of the classes of machine module are: Pin, Signal, ADC, UART, SPI, I2C, RTC,

Timer, WDT, SD Card and so on.

We will learn about all the modules and their classes as and when we use them. The

MicroPython documentation is good place to begin with if you want to explore further on

MicroPython Libraries.

Since we want to use the GPIO block, we can import the ‘pin’ class from the ‘machine’,

which is used to control the IO pins of the Raspberry Pi Pico.

from machine import Pin

https://www.electronicshub.org/basics-uart-communication/
https://www.electronicshub.org/wp-content/uploads/2021/02/Programming-Raspberry-Pi-Pico-with-MicroPython-1.jpg

27

Next, we create an object of class Pin and set the GPIO number and its direction i.e.,

Input or Output.

led_gpio25 = Pin(25, Pin.OUT)

To turn ON the LED, we have to set its value to 1.

led_gpio25.value(1)

Type the above lines one after the other in the shell. You can see the LED turned ON.

To turn the LED OFF, set the value of the pin to 0.

led_gpio25.value(0)

Blink an LED

Executing commands from shell is good but what if you want to write a complete Python

program? That is why you have the script area. Let us now see how can we write our

first Python Program for Raspberry Pi Pico and Blink an LED.

In the board, 5mm red LEDs L2 and L3 are connected to GPIO 2 and GPIO 3 of

Raspberry Pi Pico with the help of a 330Ω current limiting resistor.

28

Now, in the script area type the following program. The code is commented for detailed

explanation on what each line does. You can ignore the comments.

Click on save and select Raspberry Pi Pico, when asked.

29

Give a name as “main.py” to the file and click on OK.

30

Reason for Naming main.py

When you reset any microcontroller (either power down completely and power it on or

button reset), you expect the microcontroller to execute the program once again. If you

want the same thing to happen in Raspberry Pi Pico, then you have to name the Python

script as ‘main.py’. You can provide any name for the Python program when saving like

‘blinky.py’ but it will not execute if you remove the power and reconnect it. For this, you

have to name the Python Program as ‘main.py’.

Even if you have multiple Python Scripts in Raspberry Pi Pico, if there is a file named

main.py, then MicroPython will execute that.

Instead of setting the value to 1 and 0, you can use the toggle function to reduce the

code.

Read from Button

We have seen how to set Raspberry Pi Pico’s GPIO Pin as Output and Blink an LED.

Let us now extend this by setting a GPIO Pin as an Input and connecting a Button to the

GPIO Pin. We will read the status of the Button and toggle the state of the LED.

In the Board,

31

GPIO 4 & GPIO 5, can be used as an Input Pin and connected to a simple momentary

push button switch pulled up through a 10K Resistor, as shown above. So, normally the

Pico reads HIGH on the button pin but when the button is pushed, Pico reads LOW on

the button pin.

6.PROGRAM

6.1 LED

Light Emitting Diodes are the outputdevice connected with Gpio pin GP2 and GP3 of

RP2040 .

PROGRAM :

from machine import Pin

import utime

led1 =Pin(2,Pin.OUT)

led2 =Pin(3,Pin.OUT)

delay = .50

while True:

 led1.value(1)

32

 led2.value(0)

 print("Led1 On")

 utime.sleep(delay)

 led1.value(0)

 led2.value(1)

 print("Led2 On")

 utime.sleep(delay)

 led1.value(1)

 led2.value(1)

 print("Led1 & Led2 On")

 utime.sleep(delay)

 led1.value(0)

 led2.value(0)

 print("Led1 & Led2 Off")

 utime.sleep(delay)

Carrier Board LED Connection

Output:

33

6.2. BUTTON WITH LED

PROGRAM :

from machine import Pin

from utime import sleep_ms

button1 = Pin(5, Pin.IN, Pin.PULL_UP)#Internal pull-up

button2 = Pin(4, Pin.IN, Pin.PULL_UP)

led1 = Pin(2, Pin.OUT)

led2 = Pin(3, Pin.OUT) #0 means that the light is currently off

if __name__ == '__main__':

 while True:

 if button1.value() == 0: #key press

 led1.value(1)

 else:

 led1.value(0)

 if button2.value() == 0: #key press

 led2.value(1)

 else:

34

 led2.value(0)

6.3. LCD DISPLAY:

 Add GpioLcd.py library for lcd display

 Must save as Gpiolcd.py in RP2040

PROGRAM:

from machine import Pin

from gpio_lcd import GpioLcd

import time

count=0

lcd = GpioLcd(rs_pin = Pin(8),

 enable_pin = Pin(9),

 d4_pin = Pin(10),

 d5_pin = Pin(11),

 d6_pin = Pin(12),

 d7_pin = Pin(13))

lcd.move_to(0,0)

lcd.putstr("PERSON COUNTER")

lcd.move_to(0,1)

lcd.putstr("TOTAL COUNT :")

while (1):

 count=count+1

 lcd.move_to(13,1)

 lcd.putstr(str(count))

 time.sleep(1)

Output:

35

6.4.INTERFACING LM35 WITH LCD DISPLAY

PROGRAM :

from machine import Pin

from gpio_lcd import GpioLcd

import time

import utime

conversion_factor = 3.3/(65536)

adc2 = machine.ADC(27)

lcd = GpioLcd(rs_pin = Pin(8),

 enable_pin = Pin(9),

 d4_pin = Pin(10),

 d5_pin = Pin(11),

 d6_pin = Pin(12),

 d7_pin = Pin(13))

while True:

 val2 = adc2.read_u16()

 temp = (val2 * conversion_factor)*100

 temp1 = int(temp)

 temp2 = str(temp1)

36

 print("===============================")

 print("temperature: ",temp1)

 lcd.move_to(0,0)

 lcd.putstr('TEMP in Degree :')

 lcd.move_to(0,1)

 lcd.putstr(temp2)

 time.sleep(0.8)

Output:

6.5. SEVEN SEGMENT DISPLAY: (connected suing i2c , GP20 and Gp21 SDA ,SCL)

Add library for seven segment …Must save as pcf8574.py save in RP2040

PROGRAM : (Count digital number 0 to 100)

import pcf8574

from machine import I2C, Pin

37

import time

import array as arr

count=0

mod=0

mod1=0

m = arr.array('i', [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7c,0x07,0x7f,0x67])

i2c = I2C(id=0,scl=Pin(21),sda=Pin(20),freq=100000)

pcf = pcf8574.PCF8574(i2c, 0x21)

pcf.port =0x00

pcf = pcf8574.PCF8574(i2c, 0x20)

pcf.port =0x00

for n in range(11):

pcf.port =m[n]

time.sleep(0.5)

while(1):

 if(count<=99):

 pcf = pcf8574.PCF8574(i2c, 0x21)

 count=count+1

 mod = count % 10

 mod1 = count / 10

 pcf.port =m[int(mod)]

 print(count)

if(count==10):

 pcf = pcf8574.PCF8574(i2c, 0x20)

 pcf.port =m[int(mod1)]

 if(count==20):

 pcf = pcf8574.PCF8574(i2c, 0x20)

 pcf.port =m[int(mod1)]

 if(count==30):

 pcf = pcf8574.PCF8574(i2c, 0x20)

 pcf.port =m[int(mod1)]

38

 if(count==40):

 pcf = pcf8574.PCF8574(i2c, 0x20)

 pcf.port =m[int(mod1)]

 if(count==50):

 pcf = pcf8574.PCF8574(i2c, 0x20)

 pcf.port =m[int(mod1)]

 if(count==60):

 pcf = pcf8574.PCF8574(i2c, 0x20)

 pcf.port =m[int(mod1)]

 if(count==70):

 pcf = pcf8574.PCF8574(i2c, 0x20)

 pcf.port =m[int(mod1)]

 if(count==80):

 pcf = pcf8574.PCF8574(i2c, 0x20)

 pcf.port =m[int(mod1)]

 if(count==90):

 pcf = pcf8574.PCF8574(i2c, 0x20)

 pcf.port =m[int(mod1)]

 else:

 print("reach maximum")

 time.sleep(1)

Output:

39

6.6. POT WITH SEVEN SEGMENT INTERFACING

PROGRAM :

import pcf8574

from machine import I2C, Pin

import array as arr

import machine

import utime

analog_value = machine.ADC(28)

count=0

mod=0

mod1=0

m = arr.array('i', [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7c,0x07,0x7f,0x67])

i2c = I2C(id=0,scl=Pin(21),sda=Pin(20),freq=100000)

pcf = pcf8574.PCF8574(i2c, 0x21)

pcf.port =0x00

pcf = pcf8574.PCF8574(i2c, 0x20)

pcf.port =0x00

while(1):

 reading = analog_value.read_u16()

 value_in_digi =((reading/65536)*100)

 count= int(value_in_digi)

 print(count)

 mod = count % 10

 mod1 = count / 10

if(count<=99):

 pcf = pcf8574.PCF8574(i2c, 0x21)

 pcf.port =m[int(mod)]

40

 if(count>=10)or(count<=19):

 pcf = pcf8574.PCF8574(i2c, 0x20)

 pcf.port =m[int(mod1)]

 if(count>=20)or(count<=29):

 pcf = pcf8574.PCF8574(i2c, 0x20)

 pcf.port =m[int(mod1)]

 if(count>=30)or(count<=39):

 pcf = pcf8574.PCF8574(i2c, 0x20)

 pcf.port =m[int(mod1)]

 if(count>=40)or(count<=49):

 pcf = pcf8574.PCF8574(i2c, 0x20)

 pcf.port =m[int(mod1)]

 if(count>=50)or(count<=59):

 pcf = pcf8574.PCF8574(i2c, 0x20)

 pcf.port =m[int(mod1)]

if(count>=60)or(count<=69):

 pcf = pcf8574.PCF8574(i2c, 0x20)

 pcf.port =m[int(mod1)]

 if(count>=70)or(count<=79):

 pcf = pcf8574.PCF8574(i2c, 0x20)

 pcf.port =m[int(mod1)]

 if(count>=80)or(count<=89):

41

 pcf = pcf8574.PCF8574(i2c, 0x20)

 pcf.port =m[int(mod1)]

 if(count>=90)or(count<=99):

 pcf = pcf8574.PCF8574(i2c, 0x20)

 pcf.port =m[int(mod1)]

 else:

 print("reach maximum")

 utime.sleep(0.5)

Output:

6.7. ULTRASONIC SENSOR

Download the following library and upload it to Raspberry Pi Pico board with the name

of hcsr04.py under the lib folder.

Must hcsr04.py save as RP2040

Inside the pico Board…

PROGRAM :

from hcsr04 import HCSR04 # we have to add this library file in the same folder or else it may not work

sometimes

from time import sleep

sensor = HCSR04(trigger_pin=15, echo_pin=14, echo_timeout_us=10000)

while True:

42

 distance = sensor.distance_cm()

 print('Distance:', distance, 'cm')

 sleep(1)

Output:

5.8. ULTRASONIC WITH LCD

PROGRAM:

from machine import Pin

from gpio_lcd import GpioLcd

import time

from hcsr04 import HCSR04

43

import utime

sensor = HCSR04(trigger_pin=15, echo_pin=14, echo_timeout_us=10000)

lcd = GpioLcd(rs_pin = Pin(8),

 enable_pin = Pin(9),

 d4_pin = Pin(10),

 d5_pin = Pin(11),

 d6_pin = Pin(12),

d7_pin = Pin(13))

def countDigits(n):

 ans = 0

 while (n):

 ans = ans + 1

 n = n // 10

 return ans

while True:

 distance = sensor.distance_cm()

 distance1 = int(distance)

 print('Distance:', distance1)

 n=countDigits(distance1)

 if(n==1):

 lcd.move_to(1,1)

 lcd.putstr(' ')

 if(n==2):

 lcd.move_to(2,1)

 lcd.putstr(' ')

 lcd.move_to(0,0)

 lcd.putstr('Distance in Cm :')

 lcd.move_to(0,1)

 lcd.putstr(str(distance1))

44

 time.sleep(0.5)

Output:

6.8. BUZZER

PROGRAM :

from machine import Pin

import time

buzzer = Pin(6,Pin.OUT)

while True:

 buzzer.value(1)

 print(" Buzzer ON")

45

 time.sleep(0.5)

 buzzer.value(0)

 print(" Buzzer OFF")

 time.sleep(0.5)

Output:

6.9. RELAY WITH SERIAL

PROGRAM :

from machine import Pin

import utime

m=0

led=Pin(7,Pin.OUT)

led.low()

while(1):

 m=int(input("Enter The Condition :"))

 if(m==1):

46

 led.value(1)

 print("on")

 elif(m==0):

 led.value(0)

 print("off")

 else:

 print("unknown charachters")

Output:

6.10.SWITCH INCREMENT WITH LED

PROGRAM :

from machine import Pin

import time

Btn_Pin1 = 4

Btn_Pin2 = 5

counter = 0

def setup():

 global sw_BtN1

47

 global sw_BtN2

 global led

 sw_BtN1 = Pin(Btn_Pin1,Pin.IN, Pin.PULL_UP)

 sw_BtN2 = Pin(Btn_Pin2,Pin.IN, Pin.PULL_UP)

 led = Pin(2, Pin.OUT)

def loop():

 while True:

 global sw_BtN1

 global sw_BtN2

 global counter

 global led

 if sw_BtN2.value()==0:

 print("Button Pressed2")

 led.value(1)

 counter+=1

 print("Count={}".format(counter))

while(1):

 if sw_BtN2.value()==1:

 time.sleep(0.1)

 break

if sw_BtN1.value()==0:

 print("Button Pressed1")

 led.value(1)

 counter-=1

 if(counter<=0):

 counter=0

 print("Count={}".format(counter))

 while(1):

 if sw_BtN1.value()==1:

48

 time.sleep(0.1)

 break

if __name__ == '__main__':

 setup()

 loop()

Output:

6.11. TEMPERATURE SENSOR

PROGRAM :

from machine import Pin

import time

import utime

conversion_factor = 3.3/(65536)

adc2 = machine.ADC(27)

while True:

 val2 = adc2.read_u16()

 temp = (val2 * conversion_factor)*100

 temp1 = int(temp)

49

 temp2 = str(temp1)

 print("===============================")

 print("temperature: ",temp1)

 time.sleep(0.8)

Output:

6.12. ADC

PROGRAM :

import machine

import utime

analog_value = machine.ADC(28)

while True:

 reading = analog_value.read_u16()

 #value_in_digi ="{:.0f}".format(reading/660)

50

 print(reading)

 utime.sleep(0.1)

6.13. PWM

PROGRAM :

from machine import Pin,PWM

from time import sleep

led=PWM(Pin(2))

led.freq(150)

while True:

 for duty in range(0,65535):

 led.duty_u16(duty)

 sleep(0.0001)

 for duty in range(65535,0,-1):

 led.duty_u16(duty)

 sleep(0.0001)

51

7. PROCEDURE IN (THINK SPEAK CLOUD)

STEP 1: GO TO THINK SPEAK CLOUD WEBSITE.

STEP 2: login the account.

STEP4: Enter the email ID.

STEP 5 : CREATE NEW CHANNEL ENTER THE NAME CLICK SAVE

52

STEP 6: CHANNEL ID CREATED,API KEY CREATED.

STEP 7:CHANNEL ID in think cloud speak,API KEY in think cloud speak Enter

in the program.

STEP 8: Switch on the wifi hot spot in our smart phone and get the SSID and password.

53

 This 4 line program is a header file program included in the main program.

 Channel ID no and API key from think speak cloud website enter in the header

file.

STEP 9 : upload the program

STEP10: view the sensor value in the graph.

7.1. ADC VALUE SEND TO THINGSPEAK CLOUD

PROGRAM :

from machine import Pin, ADC

import utime

import machine

import urequests

import machine

from machine import Pin

import network, time

adc1 = machine.ADC(28)

sensor_temp = machine.ADC(4)

54

conversion_factor = 3.3 / (65535)

HTTP_HEADERS = {'Content-Type': 'application/json'}

THINGSPEAK_WRITE_API_KEY = '909X13AJJXYLUQ4W'

ssid = 'testAP'

password = 'password12345'

Configure Pico W as Station

sta_if=network.WLAN(network.STA_IF)

sta_if.active(True)

if not sta_if.isconnected():

 print('connecting to network...')

 sta_if.connect(ssid, password)

 while not sta_if.isconnected():

 pass

print('network config:', sta_if.ifconfig())

while True:

 #time.sleep(5)

 val1 = adc1.read_u16() >> 4

 print("===============================")

 print("adc1: ",val1)

 reading = sensor_temp.read_u16() * conversion_factor

 temperature = 27 - (reading - 0.706)/0.001721

 print(temperature)

 time.sleep(2)

 temp_readings = {'field1':temperature,'field2':val1 }

55

 request = urequests.post('http://api.thingspeak.com/update?api_key=' + THINGSPEAK_WRITE_API_KEY, json

= temp_readings , headers = HTTP_HEADERS)

 request.close()

OUTPUT :

56

8. INTRODUCTION TO RTOS

 What is An RTOS?

"Provide a free product that surpasses the quality and

service demanded by users of commercial alternatives"

Dedicated FreeRTOS developers have been working in close partnership with the

world's leading chip companies for more than 15 years to provide you market leading,

commercial grade, and completely free high quality RTOS and tools ...but what is an

RTOS?

This page starts by defining an operating system, then refines this to define a real time

operating system (RTOS), then refines this once more to define a real timer kernel (or

real time executive).

See also the FAQ item "why an RTOS" for information on when and why it can be

useful to use an RTOS in your embedded systems software design.

https://www.embedded.com/electronics-blogs/embedded-market-surveys/4458724/2017-Embedded-Market-Survey
https://www.freertos.org/FreeRTOS-Coding-Standard-and-Style-Guide.html
https://www.freertos.org/FAQWhat.html#WhyUseRTOS

57

What is a General Purpose Operating System?

An operating system is a computer program that supports a computer's basic functions,

and provides services to other programs (or applications) that run on the computer. The

applications provide the functionality that the user of the computer wants or needs. The

services provided by the operating system make writing the applications faster, simpler,

and more maintainable. If you are reading this web page, then you are using a web

browser (the application program that provides the functionality you are interested in),

which will itself be running in an environment provided by an operating system.

What is an RTOS?

Most operating systems appear to allow multiple programs to execute at the same time.

This is called multi-tasking. In reality, each processor core can only be running a single

thread of execution at any given point in time. A part of the operating system called the

scheduler is responsible for deciding which program to run when, and provides the

illusion of simultaneous execution by rapidly switching between each program.

The type of an operating system is defined by how the scheduler decides which

program to run when. For example, the scheduler used in a multi user operating system

(such as Unix) will ensure each user gets a fair amount of the processing time. As

another example, the scheduler in a desk top operating system (such as Windows) will

try and ensure the computer remains responsive to its user. [Note: FreeRTOS is not a

big operating system, nor is it designed to run on a desktop computer class processor, I

use these examples purely because they are systems readers will be familiar with]

The scheduler in a Real Time Operating System (RTOS) is designed to provide a

predictable (normally described as deterministic) execution pattern. This is particularly

of interest to embedded systems as embedded systems often have real time

requirements. A real time requirements is one that specifies that the embedded system

must respond to a certain event within a strictly defined time (the deadline). A guarantee

58

to meet real time requirements can only be made if the behaviour of the operating

system's scheduler can be predicted (and is therefore deterministic).

Traditional real time schedulers, such as the scheduler used in FreeRTOS, achieve

determinism by allowing the user to assign a priority to each thread of execution. The

scheduler then uses the priority to know which thread of execution to run next. In

FreeRTOS, a thread of execution is called a task.

What is FreeRTOS?

FreeRTOS is a class of RTOS that is designed to be small enough to run on a

microcontroller - although its use is not limited to microcontroller applications.

A microcontroller is a small and resource constrained processor that incorporates, on a

single chip, the processor itself, read only memory (ROM or Flash) to hold the program

to be executed, and the random access memory (RAM) needed by the programs it

executes. Typically the program is executed directly from the read only memory.

Microcontrollers are used in deeply embedded applications (those applications where

you never actually see the processors themselves, or the software they are running)

that normally have a very specific and dedicated job to do. The size constraints, and

dedicated end application nature, rarely warrant the use of a full RTOS implementation -

or indeed make the use of a full RTOS implementation possible. FreeRTOS therefore

provides the core real time scheduling functionality, inter-task communication, timing

and synchronisation primitives only. This means it is more accurately described as a

real time kernel, or real time executive. Additional functionality, such as a command

console interface, or networking stacks, can then be included with add-on components.

	User Manual
	Version1.0
	TechnicalClarification/Suggestion:
	TechnicalSupport Division,ViMicrosystemsPvt.Ltd.,
	Ph:91-44-24961842,91-44-24961852
	1. INTRODUCTION TO EMBEDDED SYSTEM
	Examples of embedded systems
	How does an embedded system work?

	The processor may be a microprocessor or microcontroller. Microcontrollers are simply microprocessors with peripheral interfaces and integrated memory included. Microprocessors use separate integrated circuits for memory and peripherals instead of inc...
	Characteristics of embedded systems
	Structure of embedded systems
	2.RASPBERRY PI PICO RP2040

	Features of RP2040 Chip — High performance. Low cost. Small package.
	Raspberry Pi Pico W and Pico WH
	How to Install MicroPython on Raspberry Pi Pico?
	Download MicroPython Binary
	Install MicroPython on Raspberry Pi Pico

	Downloading Thonny
	Configuring Thonny

	Programming Raspberry Pi Pico with MicroPython
	Blink an LED
	Read from Button
	What is An RTOS?
	What is a General Purpose Operating System?
	What is an RTOS?
	What is FreeRTOS?

